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Abstract— Leukemia is a malignant disease caused by the massive and rapid development of white blood cells in the bone marrow. 

These excessive white blood cells begin to interfere with the body’s mechanism rather than fighting infection. Acute Myeloid Leukemia 

(AML) is one of the four main types of leukemia with eight subtypes, M0 to M7. AML M1, M2, and M3 have similarities, making them 

more difficult to distinguish from the other types. Furthermore, they are usually identified by calculating the ratio of myeloblast, 

promyelocyte, and monoblastic. This research aims to apply the k-Nearest Neighbor (k-NN) in classifying these cell types. k-NN is an 

algorithm used for classification based on a similarity measure. In cases of finding the best number of neighborhoods, trial and error 

were conducted. The features needed for classification are cell area, perimeter, roundness, nucleus ratio, mean and standard deviation. 

Four distance metrics such as Euclidean, Manhattan, Minkowski, and Chebyshev were used in this research. The results show that the 

Euclidean, Manhattan, Chebyshev, and Minkowski distance successfully identified 207 out of 300 objects at K=18, 197 out of 300 objects 

at K=13,  209 out of 300 correct objects at K=9, and 210 out of 300 objects at K=7.  In conclusion, Minkowski was chosen as the best 

distance metric for KNN in classifying leukemia-forming blood cells. Furthermore, the accuracy, recall, and precision values of KNN 

with Minkowski distance obtained from 5-fold cross-validation were 80.552%, 44.145%, and 42.592%, respectively. 
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I. INTRODUCTION

Leukemia is a progressive malignant disease that occurs 
due to an excessive number of immature or abnormal white 
blood cells or leukocytes in the human body. They are created 
in the bone marrow and other blood-forming organs. 
Furthermore, these increased numbers can suppress normal 
blood cells' production, which leads to other blood-related 
diseases. In general, this disease consists of two types, acute 
and chronic leukemia. Both of which depends on how fast 
blast cells in the blood can multiply. Acute leukemia is 
characterized by the swift development of blast cells in the 
blood. It may lead to death in a matter of weeks or even days 
unless treated immediately [1]. However, the case is different 
in chronic leukemia as the blast cells multiply much slower in 
order to have a longer life expectancy [2].  

This disease can also be further classified based on blast 
cell descendants, namely myeloid and lymphoid leukemia. 
Myeloid leukemia consists of white blood cells from the 
myeloid stem cell descendant [2]. In comparison, lymphoid 
leukemia is defined by the number of white blood cells from 

the lymphoid descendant. Based on the speed of immature cell 
development and cell descendant, leukemia is grouped into 
four main types: chronic myeloid, chronic lymphocytic, acute 
myeloid, and acute lymphocytic [3]. 

Acute Myeloid Leukemia (AML) is a blood cancer 
originating from the myeloid descendant. Patients would need 
to get the right treatment immediately because immature 
myeloid cells have fast growth. Furthermore, it is divided into 
eight groups of diseases based on the number of components 
of the white blood type that make up AML, namely M0, M1, 
M2, M3, M4, M5, M6, M7 [3]. These subtypes are shown in 
Table 1 below.  

TABLE I 
AML SUBTYPES 

AML 

Subtype 
Name 

M0 Undifferentiated acute myeloblastic leukemia 
M1 Acute myeloblastic leukemia with minimal maturation 
M2 Acute myeloblastic leukemia with maturation 
M3 Acute promyelocytic leukemia 
M4 Acute myelomonocytic leukemia 
M5 Acute myelomonocytic leukemia with eosinophilia 
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AML 

Subtype 
Name 

M6 Acute erythroid leukemia 
M7 Acute megakaryoblastic leukemia 

 
In AML M1, M2, and M3, three white blood cell types are 

used to determine what illness the patient suffered. They 
include myeloblast, promyelocyte, and monoblast [4]. The list 
of white blood cells sample images are shown in Table 2. 

TABLE II 
AML CONSTITUENT WHITE BLOOD CELLS 

Type Images 

Myeloblast 

 

Promyelocyte 

 

Monoblast 

 

Others 

 
 

The total ratio of these three cells mentioned above 
becomes the criteria for determining AML M1, M2, or M3 
classification. Table 3 shows the AML subtypes based on the 
present percentage of cell types. However, the values with 
additional asterisks are the most critical factors for 
determining the AML subtypes. While the remaining values 
represent the percent of the number of cell types that act as 
supports in the calculation [4].   

 

TABLE III 
AML CELLS FACTOR 

Type AML M1 AML M2 AML M3 

Myeloblast >89%* 30-89%* <30%* 
Promyelocyte <10% >10%* >20%* 
Monoblast <10% <20%* <10% 
Others <10% <10% <10% 
 

In AML M1, the presence of myeloblast in the blood must 
be more than 90%. In contrast, others should be less than 10%. 
Furthermore, the percentage of myeloblasts in the blood 
should be at 30% - 89% of all non-erythroid cells, and 
promyelocyte has to be more than 10% and monoblast less 
than 20%. The percentage of myeloblasts in AML M3 must 
be less than 30%. In the contrary, the appearance of white 
blood cells needs to be dominated by promyelocyte immature 
cells. Furthermore, monoblast and any other types of white 
blood cells are less than 10%. 

One way to identify AML is to make observations 
manually, which is quite a time consuming [5]. However, this 
method is also vulnerable to misidentification. By using 
advanced technology, this obstacle can be removed with ease 
[6]. The purpose of this research is to speed up the 
classification process for the types of white blood cells and 
reduce the level of errors that might occur when identifying 
them. Therefore, the proposed method to achieve these goals 
is to use the k-Nearest Neighbor algorithm on normalized 
white blood cell object to image the feature data set. At 
present, k-NN is still very reliable in terms of classification. 
Besides being fast, the effort needed is also relatively low [7]. 

II. MATERIAL AND METHOD 

The research started with data acquisition and ended with 
result analysis. Furthermore, each set of extracted features 
was normalized as input data in classification. Figure 1 shows 
the whole step of research. 

A. Data Acquisition 

1) Data Preparation and labeling: The AML M1, M2 
and M3 data were acquired from dr. Sardjto Hospital, 
Yogyakarta. They were basically 33 images taken from three 
blood preparations. Each image was segmented to get the 
white blood cell objects. Subsequently, they were later 
extracted to obtain the features carried out by Harjoko et al., 
in previous research. In total 734 numerical data previously 
used in Harjoko et al., analysis was extracted.  

 

 
Fig. 1  Research steps 
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Every single object from AML preparations was labeled 
with three white blood cell types. There are three labels whose 
names match the original cell name: myeloblast, promyelocyte, 

monoblast. However, the other cell types which are not 
included in these labels are grouped with the name support 

cell. Table 4 shows the breakdown of the number of objects 
in each AML preparation.  

 

TABLE IV 
THE NUMBER OF DATA USED FROM EACH CELL TYPES 

Type 
AML 

M1 

AML 

M2 

AML 

M3 
Subtotal 

Myeloblast 201 159 17 377 
Promyelocyte 6 22 101 129 
Monoblast 0 19 10 29 
Others 17 25 157 199 
TOTAL 224 225 285 734 

 

AML M1 has the highest number of myeloblast cells 
compared to other cell types. The total number of cells, which 
are the properly extracted objects on AML M1 was 224. 
Furthermore, the number of myeloblasts, promyelocyte, 
monoblast, and other support cell types in the AML M1 are 
201, 6, 0, and 17 objects. 

The number of myeloblast cells appears to decrease in the 
AML M2 preparation. On the contrary, monoblast cells begin 
to appear. Furthermore, the number of myeloblasts, 
promyelocyte, monoblast, and other support cell types in the 
AML M2 are 159, 22, 19, and 25 objects. Thus, the total data 
taken was 225. 

AML M3 preparations contain 285 white blood cells where 
promyelocyte and support cells are more dominant among all 
existing cell types. The number of myeloblasts, promyelocyte, 
monoblast, and other support cell types in the AML M3 is 17, 
101, 10, and 157 objects, respectively. 

2) Input determination: Six features can be used as inputs 
for K-NN training [4]: 

 Cell area: the number of pixels that form an area of 
white blood cell, including nucleus and cytoplasm.  

 Perimeter: the outermost part of the cell object that is 
located right next to the background image. 

 Roundness: a degree of curvature measurement of an 
object that forms a circle. 

 Nucleus Ratio: the value obtained from the ratio of the 
nucleus area is divided by the cell body area. 

 Mean: In this case, this is the average distribution of 
grey color intensity values of each pixel in a grayscale 
image. 

 Standard deviation: measurement of the variation or 
dispersion of a set of value relative to its mean. It is also 
known as the square root of the variance. 

B. Data Normalization 

Data has a diverse variation and range; therefore, it needs 
to be normalized before entering the training stage. Data 
normalization aims to change the various number formats in 
the dataset to a common scale without distorting differences 
in the range of values. The formula for data normalization can 
be shown as follows: 

 

���������	��� =  
��	��� − min (��	�)

max(��	�) − min(��	�)
 (1) 

 
Where data[x] is the value of the x-index data, min(data) 

is the smallest value on each feature, and max(data) is the 
largest value of the data set from each feature [2][4]. 

C. K-Nearest Neighbor 

The k-Nearest Neighbor is a supervised classification 
algorithm based on training data that has the closest distance 
to the object. The purpose of K-NN is to classify the new 
object based on attributes and K samples of training data with 
some nearest neighbors included in the contribution of the 
voting process [6]. Furthermore, the number of k depends on 
the case where k-NN is applied. If the number is large, the 
time and memory cost will also be huge, but if it is little, the 
nearby gauge will, in general, be extremely poor attributable 
to the meager information condition [8]. Therefore, it is 
essential to find the best value of K. For that to be done, trial 
and error needs to be conducted [9]. 

Training data is projected into multi-dimensional space, 
where each dimension has a feature data. This space is divided 
into several sections consisting of collections of learning data. 
Furthermore, a point in this space is marked as class c if its 
the most common classification to the closest K of that point.  

In the training phase, K-NN stores features and class 
vectors of training data. While in the testing phase, these same 
features are calculated for the testing data. When new data is 
entered, its class is still unclear. However, the distance of this 
new one to all the learning data vectors must be calculated, of 
which the closest number of K is taken. The new point is 
classified to be included in most classifications of these points 
[10]. K-NN can be modeled in Figure 2 below. 

 

 
Fig. 2  K-nearest neighbor sample model 

 
Figure 2 displays two classes, A and B. There is also a test 

data located right in the center of the circle. If k = 3 is used, 
then it can easily be seen that the data's closeness is more 
inclined to class A. However, if k = 6 is used, then the test 
data will be recognized as class B because it has a greater 
closeness to class B 

The K-NN algorithm accuracy is greatly influenced by the 
absence or presence of irrelevant features. It is also influenced 
by the weight of a feature that is not equivalent to its relevance 
towards classification [11]. Furthermore, this algorithm is 
based on selecting and giving weight on features to find the 
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best classification performance. Until today, k-NN can still be 
used to classify diseases by pattern mainly related to 
texture[12]. 

D. Euclidean Distance 

Euclidean distance is the most common distance metric 
used for KNN. It is a straight line distance between two data 
points (�� , ��) where �� , �� ∈ � appears in the N-dimensional 
vector plane [13]. The equation for Euclidean distance is 
written below 

2

1

)(),( i

n

i

ieuclidean yxyxd  


 (2) 

The distance between two points is simply calculated by 
finding the root squared difference of x and y. This formula is 
similar to the Pythagorean theorem formula. 

E. Manhattan Distance 

Manhattan distance is also known as the City Block 
distance, and it measures two points along the x and y axes at 
right angles. It is the absolute sum of the lengths of the line 
segment between the points in a plane with points at (�� , ��) 
where �� , �� ∈ � appears in the N-dimensional vector plane 
[14]. The equation for Manhattan distance can be represented 
in Equation 3. 

|)(|),(
1

tan i

n

i
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 (3) 

F. Minkowski Distance 

Minkowski distance is a metric in a normed vector space 
that can be considered a generalization of both the Euclidean 
and Manhattan distances. It is used as the dissimilarity 
measurement between two vectors at � = (�!, �", … , �$) and 
� = (�!, �", … , �$)  where �� , �� ∈ � appears in the N- 
dimensional vector space [15]. The equation for Minkowski 
distance can be represented in Equation 4. 

l
n

i

l

iikowski yxyxd /1

1
min )||(),( 



  (4) 

Furthermore, since it is a generalized distance metric, we 
can manipulate the above formula by substituting ‘l’ to 
calculate the distance between two data points in different 
ways. For l = 2, the Minkowski distance gives the Euclidean 
distance. For l = ∞, the Minkowski distance gives the 
Chebychev distance [16]. 

G. Chebychev Distance 

Chebychev distance is also known as chessboard distance 
or l∞ metric, that is defined on a vector space where the 
distance between points (�, �) and �� , �� ∈ � is the maximum 
absolute distance in one dimension of two N dimensional 
points[17]. The equation for Chebychev distance can be 
shown in Equation 5. 

|)(|max:),( ii
i

chebychev yxyxd   (5) 

H. Validation 

This method is vital in ensuring that the classification 
model is clean, correct, and reliable. K-fold cross-validation 
was used as a method for this study. This method is one of the 

most common cross-validation methods because it folds data 
into numbers of k by repeating (iterating) the training and 
testing process  [18]. For every single iteration, one-fold is 
used as a test set, and the rest is used as a train set. However, 
test data takes turns by order of the k index. Figure 3 is an 
example of a 5-fold cross-validation. 

 
Fig. 3  K-fold cross-validation 

 

Figure 3 shows a set of data that is divided into five 
segments or folds. In the first iteration, the first segment is 
used as the test data. Furthermore, the number of test data set 
is 1/5*n, where n is the data set total number while the other 
four segments are used as a train set. 

 In the next iteration, the second fold of the data set is used 
as a test set, while the rest is used as a train set, including the 
very first fold. This iteration is done five times as k=5.  

III. RESULTS AND DISCUSSION 

Data was acquired by featured extraction from 734 data 
conducted by Harjoko et al. Table 5 shows the detailed data 
recap based on the highest, the lowest and average value of 
each parameter and cell types. 

TABLE V 
DETAILED DATA RECAP 

Cell type Myeloblast Promyelocyte Monoblast Support 

C
e
ll

 a
r
e
a

 

(p
ix

el
s)

 

Avg. 7377,05 13581,201 14923,72 9714,42 

Highest 14675 24099 23756 17010 

Lowest 2193 5876 8640 2216 

P
e
r
im

e
t

e
r
 

(p
ix

el
s)

 Avg. 322,4827 454,659 470,482 378,412 

Highest 493 703 678 537 

Lowest 180 277 337 176 

R
o

u
n

d
n

e

ss
 

(s
ca

le
 0

 –
 

1)
 

Avg. 0,8629 0,8153 0,8359 0,8245 

Highest 0,9719 0,9811 0,97184 0,9611 

Lowest 0,5939 0,4547 0,56533 0,5157 

N
u

c
le

u

s 
R

a
ti

o
 

(s
ca

le
 0

 
– 

1)
 

Avg. 0,8314 0,6016 0,6093 0,5238 

Highest 1 1 0,85866 1 

Lowest 0,5 0,3166 0,41671 0,0482 

M
e
a

n
 

(g
re

ys
c

al
e)

 

Avg. 135,3601 144,8222 149,6375 147,8820 

Highest 163,0481 167,7399 168,0211 175,6501 

Lowest 97,1572 111,9015 120,6002 114,3517 

S
ta

n
d

a
r
d

 

D
e
v

ia
ti

o
n

 

(g
re

ys
ca

le
) Avg. 20,0017 24,9116 24,2194 31,0159 

Highest 36,1478 33,8457 30,9531 46,0831 

Lowest 7,0259 14,1436 17,4565 13,1931 

 
From Table 5, myeloblast has unique criteria. Its size of the 

area is relatively the smallest compared to other cell types. Its 
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has an average of 7377.0530 pixels. Furthermore, 
myeloblast's maximum area is only 14675 pixels, which 
makes it the cell with the highest roundness and nucleus ratio 
compared to the other three. Table 5 shows that its roundness 
average is of 0.8629, and its nucleus ratio average is 0.8314. 

Promyelocyte and monoblast cell types are closely related. 
They both have an average value of four geometrical features 
that are not much different. However, both have differences 
in the value of color features, such as mean and standard 
deviation. The cytoplasmic color of monoblasts is purer blue 
while in the cytoplasm the promyelocyte cells appear pinker 
because there are visible granules. 

Support cells have a relatively diverse range of feature 
values, and that is because there are more than only just one 
form of cells in the support cells type. Examples include 
lymphocytes, myelocytes, plasma and segment cells. They 
were deliberately grouped into a new type for easy 
classification. 

Before entering the training phase, the raw data had to be 
normalized first. This method needed to be done because the 
extracted feature data still had a wide range of values. The 
range and data type of each feature can be described as 
follows: 

 The cell area and perimeter have a range of original 
integer values. 

 The roundness and nucleus ratio has a range of real 
number values between 0 and 1. 

 Mean and standard deviation in the form of real 
numbers with range limitations between 0 and 255. 

After the normalization, all features range were changed 
from varying scale from between 0 to 1. This scale would 
simplify the calculation process in classification. 

 

 
Fig. 4 Line graph of 50 K-nearest neighbor. 

 

In the first stage, selecting the best distance metrics was 
carried out by dividing training and testing data into 434 and 
300 through random data sharing. Four distance metrics were 
tested to find out the best one based on the maximum number 
of correctly predicted objects and the minimum K number. 
Furthermore, each metrics were tested in increasing value of 
K-neighborhood. It increased gradually starting from 0 and 
ending at 50. The result of 50 times k-NN iteration is shown 
in Figure 4.    

X-axes is the number of k-neighborhood, and y-axes are 
the number of correctly predicted objects. The number of 
correct objects is perpendicular regardless of the size of k-
neighborhood. Furthermore, the blue, red, yellow, and purple 
lines represent K-NN testing with Euclidean, Manhattan, 
Chebyshev and Minkowski distances, respectively. 

Figure 4 shows that the Euclidean distance successfully 
identified 207 out of 300 objects at K=18. The second metric, 
Manhattan distance, only correctly identified 197 out of 300 
objects at K=13. Chebyshev distance got 209 out of 300 
correct objects at K=9. Meanwhile, Minkowski distance could 
acquire 210 out of 300 objects at K=7. Thus, Minkowski was 
chosen for the next steps as the best distance metric for 
classifying AML cells. 

It was then later validated by using k-fold cross-validation 
in stage two. Also, the number of k-folds used in this study 
was 5. Therefore, each fold was 1/5 of the total data. Thus, it 
can be said that every fold could hold 147 data.  

In the first iteration of 5-fold cross-validation, Fold number 
1, which had 147 data, was used as the test data set. The rest 
four folds which contained 587 total data, were used as the 
train data set. This experiment was repeated five times, 
according to the proposed architecture. The test data partition 
position shifted in each iteration, in such a way that in the 
second iteration, the position of the test data set would be in 
the second fold and so on.  

The experimental results show that some data can be 
appropriately identified. Every data that has been tested, 
whether correctly or incorrectly predicted, were counted. 
Table 6 shows the prediction results from 5-fold cross-
validation. 

TABLE VI 
5-FOLD CROSS-VALIDATION 

Fold 
Correctly 

predicted 

Incorrectly 

predicted 
Subtotal 

1 119 28 147 

2 124 23 147 

3 127 20 147 

4 127 20 147 

5 119 27 146 

Total 734 

 
There are some mispredicted data seen in Table 6. 

Misclassifications occurred because the features possessed by 
some cells were very similar such that they had very close 
degrees of neighborliness. Furthermore, these data are 
aggregated by category, i.e. true positive and negative, false 
positive and negative.  

A true positive is an outcome where the objects correctly 
predict the positive class. Similarly, a true negative is an 
outcome where the model correctly predicts the negative class. 
Furthermore, a false positive is an outcome where the model 
incorrectly predicts the positive class, and a false negative is 
an outcome where the model incorrectly predicts the negative 
class [5]. Table 7 shows the confusion matrix from k-NN. 
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TABLE VII 
CONFUSION MATRIX 

 
Actual values 

Myeloblast Promyelocyte Monoblast Others 

P
r
e
d

ic
te

d
 

v
a

lu
e
s 

M
y
e
lo

b
la

st
 

347 19 5 20 

P
r
e
d

ic
te

d
 v

a
lu

e
s P
ro

m
y
e
lo

c
y
te

 

13 96 15 8 

M
o

n
o

b
la

st
 

0 3 2 0 

O
th

e
rs

 

17 11 7 171 

 
Confusion matrix was subsequently used as a basis in 

calculating the value of accuracy, recall and precision. Each 
class has the same accuracy value that totaled 83.9237% from 
this experiment. Table 8 shows detailed recall values for each 
class. The average recall value obtained from the table is 
64.822%. 

TABLE VIII 
DETAILED RECALL OF EACH CLASS 

Type Recall 

Myeloblast 92.0424403 % 
Promyelocyte 74.4186047 % 
Monoblast 6.8965517 % 
Others 85.9296482 % 
Average 64.822 % 

 
Table 9 shows detailed precision values for each class. The 

average precision value obtained from the table was 77.788%. 

TABLE IX 
DETAILED PRECISION OF EACH CLASS 

Type Precision 

Myeloblast 88.7468031 % 
Promyelocyte 72.7272727 % 
Monoblast 66.6666667 % 
Others 83.0097087 % 
Average 77.788 % 

IV. CONCLUSION 

Out of the four metrics offered in this study, Minkowski 
distance was chosen as the best metric capable of identifying 
white blood cell types forming leukemia M1, M2 and M3. 
This result is proved by the acquisition of the highest number 
of correctly predicted objects and the lowest k-neighborhood 
value obtained compared to the other three metrics in the test 
step with 210 out of 300 objects at k-neighborhood = 7. KNN 
with Minkowski distance was further analyzed with cross-
validation to obtain accuracy, recall and precision. Although 
it can predict all object classes well, proved by 83.923% 
accuracy, it is less able to determine all the relevant class in 
the data set. Furthermore, the recall and precision obtained 

was 64.882% and 77.788%. The error occurred due to the 
variations in white blood cell that were too diverse. Some of 
which even had an only small portion of true positive results. 
They had a similar characteristic which makes the 
classification process more difficult. The given suggestions 
for the next research are the use of deep learning or genetic 
algorithm to classify blood cell types. Also, the amount of 
data needs to be increased so that the research validity can be 
better. 
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