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Abstract—This study presents a novel application and comparison of higher order neural networks (HONNs) to forecast benchmark 
chaotic time series. Two models of HONNs were implemented, namely functional link neural network (FLNN) and pi-sigma neural 
network (PSNN). These models were tested on two benchmark time series; the monthly smoothed sunspot numbers and the Mackey-
Glass time-delay differential equation time series. The forecasting performance of the HONNs is compared against the performance 
of different models previously used in the literature such as fuzzy and neural networks models. Simulation results showed that FLNN 
and PSNN offer good performance compared to many previously used hybrid models. 
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I. INTRODUCTION 

Time series forecasting is very important in many 
applications such as financial forecasting, weather 
forecasting, traffic forecasting, etc. Time series forecasting 
aims to build a model that take advantage of past 
observations to forecast the future.  Time series in nature is 
usually non-linear or chaotic [1]. According to [2], chaotic 
system has four fundamental characteristics: aperiodic, 
bounded, sensitivity to initial conditions and deterministic. 
Aperiodic means that the same state will not be repeated, 
bounded indicates that neighbour states keep within a finite 
range and does not approach infinity, sensitivity to initial 
conditions meaning that small changes in initial conditions 
will cause divergence between two close points as the state 
of system progress, and deterministic means there is a rule 
with no random term to forecast the future state of the 
system. Chaotic time series forecasting has been observed in 
many areas such as power load [3], marketing system [4], 
exchange rate [5], etc. 

A number of methods have been used to forecast chaotic 
time series in the literature such as support vector echo-state 
machines [1], self-organizing map [6], and fuzzy and neuro-
fuzzy [7]–[10]. 

Artificial neural networks (ANN) have been also used to 
forecast chaotic time series. ANN is an intelligent-based 
approach which is inspired by biological nervous systems; it 
can learn from historical data and adjust its weight matrices 
to build model that can predict the future.  

Different types of ANN have been utilized for chaotic 
time series with varying degrees of success including 
Elman–Nonlinear Autoregressive with eXogenous input 
neural networks [2], beta basis function neural networks [11], 
orthogonal function neural network [12], radial basis 
function [13], multilayer perceptron network [14].  

Multi-layered ANN structure needs a large number of 
units to deal with complex mapping problems, which results 
in low learning rate and poor generalization [15]. To 
overcome the drawbacks of multilayered networks, different 
higher order neural networks (HONNs) with a single layer 
were introduced. 

HONNs utilize higher order terms (i.e., product units) 
which allow them to transform the input space into a higher 
dimensional space in which linear separability is possible, 
thus reducing the complexity of the network [16]. Unlike 
multi-layered ANN structure, HONNs have only one single 
layer of hidden nodes which helps to accelerate the training. 

Different types of HONNs have been used for time series 
forecasting [16]–[20] but no much attention has been paid to 
apply HONNs to forecast benchmark chaotic time series and 
compare their performance with other existing models. 

In summary, the contribution of this work as follows: 
• Application of two HONNs namely, Functional Link 

Neural Network (FLNN) and Pi-Sigma Neural 
Network to forecast two benchmark chaotic time 
series: the monthly sunspot number and the Mackey-
Glass time-delay differential equation time series. 
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• Comparison of the forecasting performance of these 
models with other existing models. 

The remainder of this paper is organized as follows. 
Section 2 describes a brief about HONNs, FLNN and PSSN. 
The experimental design used in this work is also discussed 
in this section. In section 3 we present the results and 
discussion. Finally, the conclusion is given in section 4. 

II. PROPOSED MODELS AND METHOD 

This section gives a brief about HONNs, FLNN and 
PSNN. Furthermore, it shows experimental design steps that 
we used in this works including the used time series, data 
preprocessing, network topology and training, and the 
evaluation metrics. 

A. Higher Order Neural Networks (HONNs): 

HONNs are feedforward neural network with a 
combination of summing and product units. They can 
expand the non-linear input space into higher dimensional 
space where linear separability is possible [16]. 

Using product units can increase the information capacity 
of the network thus helping to deal with complex problems 
with smaller network structure. As a results of the simple 
architectures of HONNs, they reduce the number of free 
parameters thus they can learn faster [16]. However, some 
HONNs suffer from the combinatorial explosion of the 
higher order terms and demonstrate slow learning [16]. 

This paper uses two HONNs models namely, the 
Functional Link Neural Network and Pi-Sigma Neural 
Network. With different strength and capabilities, the 
characteristic and structure of these networks are presented 
below. 

B. Functional Link Neural Networks (FLNN): 

FLNN was introduced by Giles and Maxwell [21]. FLNN 
extends the structure of feedforward network by introducing 
supplementary inputs to the network. Therefore, the 
hyperplane generated by the FLNN provides greater 
discrimination capability in the input pattern space [22]. 
FLNN has been used for different problems such as 
classification [23], system identification [24] and time series 
forecasting [18]. 

There are two common models of the FLNN: tensor 
product and functional expansion [22]. In the former model 
as shown in Fig. 1, each component of the input vector is 
multiplied by other components of this input vector. In other 
words, instead of describing input patterns in terms of a set 
of components {xi}, it is described as {xi, xij}, where j ≥i, or 
as {xi, xij, xijk}, where k≥ j ≥i, and so on. Therefore, no new 
information has been added, but joint activations have been 
made available to the network. The latter model, which is 
shown in Fig. 2, expands the dimension of the inputs by 
choosing an appropriate set of functions to deal with the 
problem at hand. The problem with this model is that 
choosing a good set of functions to expand input dimensions 
is difficult [25]. Therefore, in this work we only consider the 
FLNN with tensor product. 

The FLNN in Fig. 1 is an example of a third order FLNN. 
It consists of three external inputs and four high order inputs. 
The learning algorithm for FLNN using the incremental 
backpropagation algorithm is as follows: 

 
Fig. 1  Functional link neural network of type tensor product model. 
 

 
Fig. 2  Functional link neural network of type functional expansion model. 

 
For a given input, 

• Calculate the output as follows: 
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where σ is an activation function, W0 are the biases, Wi, Wij 
and Wijk are weights that link input nodes with the output 
node, x is a component of input vector X. 

• Compute the weight changes: 

 kiiiii XyyydW )1()( −−=∆ η  (2) 
where η is the learning rate and d is the desired output. 

• Update the weights: 

 iii WWW ∆+=  (3) 
• Continue until termination condition is satisfied. 

C. Pi-Sigma Neural Networks (PSNN): 

PSNN is a feedforward neural network with one layer of 
trainable weights. PSNN calculates its output as product of 
sum of the input components [26]. The motivation to 
develop PSNN was to develop a model which maintains fast 
learning property and powerful mapping capability whilst 
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avoiding the combinatorial explosion in the number of free 
parameters that occurs in FLNN.  

As shown in Fig. 3, PSNN consists of two layers; the 
product layer and the summing layer. The trainable weights 
are found only between the inputs and the summing units. 
The structure of PSNN is highly regular due the fact that the 
summing units can be added incrementally until a specified 
goal is achieved. 

 
Fig. 3  Pi-Sigma neural network. 

 
Despite the fact that PSNN is not a universal 

approximator [27], it demonstrated competent ability to deal 
with many problems such as classification [28], time series 
forecasting [19], image coding [29] and visual cryptography 
[30]. 

The learning algorithm for PSNN using the incremental 
backpropagation algorithm is as follows: 
For a given input, 

• Calculate the output as follows: 
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where σ is an activation function, W0j are the biases, Wij are 
weights that link input nodes with the summing nodes, x is a 
component of input vector X. 

• Compute the weight changes: 
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where η is the learning rate and d is the desired output. 

• Update the weights: 
 

 iii WWW ∆+=  (7) 
• Continue until termination condition is satisfied. 

 

D. Experimental Design: 

1)  Time Series benchmark data: we used two benchmark 
chaotic time series, namely the monthly smoothed sunspot 
numbers and the Mackey-Glass time-delay differential 
equation time series. 

Sunspot time series is a good indication of solar activity 
for solar cycles [31]. It is very important to forecast Sunspot 
time series due to the observed impact of solar activity on 
earth, climate, weather, satellites and space missions [31]. 

In this paper, we downloaded the monthly smoothed 
sunspot time series from [32]. To compare the performance 
of FLNN and PSNN with other models in [31], two 
thousands points from November 1834 to June 2001 were 
selected. 

Mackey-Glass time series is a benchmark problem that 
has been used by many researchers [11]–[14]. This time 
series is given by the following delay differential equation: 
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where �=0.2, �=−0.1, �(0)=1.2, and �=17. With this 
setting the series produce chaotic behaviour and we can 
compare the forecasting performance of FLNN and PSNN 
with other models in the literature. This time series can be 
found in mgdata.dat in MATLAB [33]. 

The input-output data pairs and the number of training 
and testing samples that we used in this paper for these two 
time series are shown in Table I. Fig. 4 and Fig. 5 show the 
used interval for training and testing samples for both time 
series. 

TABLE I 
TIME SERIES INFORMATION 

Time 
series 

Input-output data pairs Training 
samples# 

Out-of-
sample 
Samples 

Sunspot [x(t - 4), x(t - 3), x(t - 2), 
x(t - 1), x(t); x(t + 1)] 

1000 1000 

Mackey
-Glass 

[x(t - 18), x(t - 12),  
x(t - 6), x(t); x(t + 6)] 

500 500 

 

2)  Data Preprocessing: We scaled the points to the range 
[0.2, 0.8] because we used the sigmoid activation function. 
We used the minimum and maximum normalization method 
which is given by: 

 

 
Fig. 4  Sunspot time series. Blue points for training while red points for 
testing. 
 

626



 
Fig. 5  Mackey-Glass time series. Blue points for training while red points 
for testing. 
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where �̂ is the normalized value of x, min1 and max1 are the 
minimum and maximum values of all observations, and min2 

and max2 refer to the minimum and maximum values of the 
new range. 

3)  Network Topology and Training: The topology of the 
FLNN and PSNN that we used is shown in Table 2. Most of 
the settings are selected empirically. 

TABLE II 
NETWORK TOPOLOGY 

Setting Value 
Activation 
function  

Sigmoid function 

PSNN order  Empirically selected from 2 to 15 
FLNN order Empirically selected between 2-5 for Sunspot 

and between 2-4 for Mackey-Glass 
Stopping criteria  Maximum number of epochs =3000 
Initial weights  [-0.5,0.5] 
Learning rate [0.01-1] 
Momentum  [0.4-0.8] 

4)  Performance Metrics: Due we aim to compare the 
forecasting performance of FLNN and PSNN with other 
models in the literature, we used the Normalized Mean 
Squared Error (NMSE) and the Root Mean Squared Error 
(RMSE) metrics. NMSE and RMSE are given by:  
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where N, y and ̂ y represent the number of out-of-sample 
data, actual output and network output, respectively. 
 

III.  RESULTS AND DISCUSSION 

The forecasting models for FLNN and PSNN of the two 
time series are built via the experimental design settings. In 
order to obtain fair comparison between FLNN and PSNN 
and avoid weight initialization influence, the average 
performance of 30 simulations are reported as shown in 
Table III and Table IV. Note that, the results that are shown 
in these two tables are the de-normalized results. That means, 
we de-normalized the forecasted value and compared it with 
the original desired value before calculating the used metrics. 
Best average results are in boldface. 

As can be seen from Table III and Table IV, FLNN 
outperform PSNN on Sunspot time series, while PSNN is 
better than FLNN on Mackey-Glass. Therefore, each one has 
its ability based on the time series properties. 

 

TABLE III 
AVERAGE RESULTS FOR SUNSPOT TIME SERIES 

HONN 
model 

Network 
order 

Number of 
parameters 

RMSE NMSE 

FLNN 5 32 2.7398 0.0015 
PSNN  2 12 4.6745 0.0045 

 

TABLE IV 
AVERAGE RESULTS FOR MACKEY-GLASS TIME SERIES 

HONN 
model 

Network 
order 

Number of 
parameters 

RMSE NMSE 

FLNN 3 15 0.0369 0.0267 
PSNN  6 30 0.0129 0.0033 

 
During the simulations, we noticed that increasing 

network order of PSNN results in decreasing forecasting 
performance on Sunspot time series but it helps PSNN on 
Mackey-Glass time series. Learning curves for the best 
simulations are shown in Fig. 6 and Fig. 7. It can be seen 
that there is no much improvement in learning after 500 
epochs. Note that, we do not de-normalize the RMSE in Fig. 
6 and Fig. 7. 

The best performance with FLNN and PSNN using the 
out-of-sample data for Sunspot and Mackey-Glass time 
series are shown in Fig. 8 to Fig. 11. As it can be noticed 
from these figures that FLNN and PSNN to some extent can 
follow the dynamics behaviour of the time series. 
 

 
Fig. 6  Learning curve for best FLNN simulation on Sunspot time series. 
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Fig. 7  Learning curve for best PSNN simulation on Mackey-Glass time 
series. 

 

 
Fig. 8  Out-of-sample forecasting for best FLNN simulation on Sunspot 
time series. 
 

 
Fig. 9  Out-of-sample forecasting for best PSNN simulation on Sunspot 
time series. 
 

 
Fig. 10  Out-of-sample forecasting for best FLNN simulation on Mackey-
Glass time series. 

 
Finally, a comparison among different models in the 

literature with FLNN and PSNN is shown in Table V and 
Table VI. It should be noted that based on our search we 
could not find studies that used the normalization range that 
we used in this work. For that, we used the de-normalized 
results for best FLNN and PSNN simulations and compared 
them with the de-normalized results in the literature or with 

studies that did not use any normalization method. The 
results show that FLNN and PSNN offer good performance 
compared to other hybrid models in the literature. Therefore, 
hybridizing other models with FLNN or PSNN could 
enhance the forecasting performance. 

 

 
 
Fig. 11  Out-of-sample forecasting for best PSNN simulation on Mackey-
Glass time series. 
 

TABLE V 
COMPARISON OF THE PERFORMANCE OF VARIOUS EXISTING MODELS 

ON SUNSPOT TIME SERIES 

Model NMSE 
Fuzzy neural networks (FNN) [31] 0.0174 

AdaBoost.regression and threshold-FNN [31] 0.0160 
Modified-AdaBoost.regression and threshold-

FNN [31] 
0.0135 

PSNN -Order 2 (this work) 0.0044 
FLNN -Order 5 (this work) 0.0015 

TABLE VI 
COMPARISON OF THE PERFORMANCE OF VARIOUS EXISTING MODELS 

ON MACKEY-GLASS TIME SERIES 

Model RMSE 
Fuzzy modelling method with Singular Value 

Decomposition (SVD) [7] 
0.0894 

Gustafson-Kessel fuzzy clustering method + 
Kalman Filtering Algorithm (KFA) with SVD [8] 

0.0748 

Orthogonal function neural network + recursive 
KFA based on SVD [34] 

0.05099 

Adaptive fuzzy inference system with local search 
for learning algorithm [9] 

0.045465 

FLNN -Order 4 (this work) 0.03656 
Beta basis function neural networks + Differential 

evolution algorithm [11] 
0.030 

Dynamic evolving computation system [35] 0.0289 
Backpropagation network + hybrid K-means-

greedy [14] 
0.015 

Modified differential evolution + radial basis 
function [13] 

0.013 

PSNN -Order 6 (this work) 0.0118 
Takagi-Sugeno fuzzy system-singleton + 

simulated annealing [10] 
0.00898 

IV.  CONCLUSIONS AND FUTURE WORKS 

This paper presents the application of two higher order 
neural networks, namely functional link neural network 
(FLNN) and pi-sigma neural network (PSNN) to forecast 
two benchmarks chaotic time series; the monthly smoothed 
sunspot numbers and the Mackey-Glass time series. Results 
showed that FLNN outperforms PSNN on Sunspot time 
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series while PSNN is better than FLNN on Mackey-Glass 
time series. Furthermore, a comparison with different hybrid 
models in the literature showed that FLNN and PSNN offer 
good performance compared to these hybrid models. Future 
works could be hybridizing swarm intelligence techniques 
with FLNN or PSNN and applying them to forecast chaotic 
time series. 
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