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Abstract— Two-wheeled balancing robot is a mobile robot that has helped various human’s jobs such as the transportations. To 
control stability is still be the challenges for researchers. Three equations are obtained by analyzing the dynamics of the robot with 
the Newton approach. To control three degrees of freedom (DOF) of the robot, PIDs is tuned automatically and optimized by 
multivariable Modified Particle Swarm Optimization (MPSO). Some parameters of the PSO process are modified to be a nonlinear 
function. The inertia weight and learning factor variable on PSO are modified to decreasing exponentially and increasing 
exponentially, respectively. The Integral Absolute Error (IAE) and Integral Square Error (ISE) evaluate the error values. The 
performances of MPSO and PSO classic are tested by several Benchmark functions. The results of the Benchmark Function show 
that Modified PSO proposed to produce less error and overshoot. Therefore, the MPSO purposed are implemented to the plant of 
balancing robot to control the angle, the position, and the heading of the robot. The result of the simulation built shows that the 
MPSO – PID can make the robot moves to the desired positions and maintain the stability of the angle of the robot. The input of 
distance and angle of the robot are coupling so MPSO needs six variable to optimize the PID parameters of balancing and distance 
control. 
 
Keywords— modified PSO; balancing robot; PID; IAE; ISE; benchmark function. 
 
 

I. INTRODUCTION 

Nowadays, researchers have developed various kind of 
robots to help human’s jobs, from wheeled robot to 
humanoid [1]. Many controllers and methods have been 
made to make a robot dynamically stable and robust solution. 
One kind of robots is a two-wheeled balancing robot. This 
robot still become a popular topic because of movement 
control development [1]. Because the number of actuators 
are less than the number of degree of freedom, the robot is 
categorized as an underactuated system. 

One of the most widely applied methods for balancing 
robot is the PID method [1]–[3]. However, how to tune the 
PID parameter is still a major problem for researchers. That 
is because usually the system has a nonlinear system and 
there are unknown disturbances, such as friction, slip, and 
external force. The performance of the motor also has a lot 
of effects on the PID tuning value due to the nonlinearity of 
the motor itself [4]. One of the Artificial Intelligence tuning 
methods is Particle Swarm Optimization (PSO).  

PSO was introduced by Kennedy and Eberhart in 1995 [5] 
and became one of the modern heuristic algorithms [6]. This 
algorithm is inspired by the behavior of birds flocking, such 
as sharing internal and global information about food 
between individuals. PSO has been implemented in various 

fields because of high-speed computation [7] and simple 
operations [8]. However, the classic PSO algorithm has a big 
problem, namely premature convergence. This problem 
causes a rapid loss of diversity during evolutionary 
processing [9]. The classic PSO is easy to be trapped into 
local optimum in high dimensional space [7]. To improve 
the convergence characteristics of the PSO algorithm, the 
modifications are made in this research. 

One of the most effect on the evolution process by PSO is 
inertia weight value w. Inertia weight in PSO is introduced 
by [10]. Inertia weight value has to be tuned in order to the 
process of exploration and exploitation to be able to achieve 
the optimal value. Many studies have described the best 
method how to choose inertia weight value, and one of the 
most method used is based on time-varying, such as linear 
decreasing law [11], sigmoid [12], logarithm decreasing law 
[13] and function [14]. In this research, the inertia weight 
will be modified to another function. 

The plant used in this research is a two-wheeled balancing 
robot. After the dynamic equation is obtained, the PID 
controls are designed to control the balancing, the heading, 
and the position of the robot to keep the robot stands upright 
and move to the desired position. PID parameters values are 
obtained by tuning them using the Modified PSO that is 
designed later. 
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A. Dynamic Model of Balancing Robot 

To obtain the dynamic system from balancing robot 
modeling, this research use force analysis [15], [16] and the 
dynamic mathematical model on this system. Two-wheeled 
balancing robot structure is consist of two main parts; they 
are wheels (Fig.1) and body robot (Fig.2). Each wheel is 
actuated by separating motors, with the assumption that 
parameter of quality of inertia moment and the radius of 
wheels are the same. 

1)  Force Analysis on Wheels of Robot 

This robot balancing has two wheels with each force 
analysis, as shown in Fig. 1. 

 
Fig. 1 Force Analysis of the Robot Wheels  

 
According to the force analysis, the dynamic equations 

are obtained based on Newton's law and the torque formula 
for the right and the left wheel. Assuming that there is no 
slippage between the wheels and the ground, the balancing 
force and moment acting on the right wheel produce the 
following equations: 

 

 ����� � ��� 	 �� 
 �� (1) 

 

 ���� � �� 	 ��� . � (2) 

 

Similarly, for the left wheel: 

 ����� � ��� 	 �� 
 �� (3) 

 

 ���� � �� 	 ��� . � (4) 

 

Considering Eq. (1)–(4) we obtained the Eq. (5). 
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2)  Force Analysis on Body of Robot 

Body of the robot is modeled as an inverted pendulum. 
The body of the robot’s force analysis is shown as Fig. 2. 

 

 
Fig. 2 Force Analysis of Robot Body 

 
The movement on x-axis: 
 

 ��� � �� 
  cos�� � 	  sin�� & ' (6) 

 

Balancing force acting on the pendulum of the robot on x-
axis: 

 (� � () 	 ()� 
 (�  

      � 	��� 	 � cos��� 
 � & ' sin�� (7) 

 

Balancing forces acting on the platform of the robot along 
the x-axis: 

 ���� � �� 
 �� 
 (+ (8) 

 

Substitute the Eq. (7) with Eq. (8) we obtained: 

�� 
 �� � ��� 
 ���� 
 � ,-.��� 	 � & ' ./0�� (9) 

 

By substituting Eq. (9) into Eq. (5) we obtain the first 
dynamic equation: 

�� ��� 
 � 
 2�� 
 2 ��
��� 
 � 1� cos  	 & ' sin 2 �

3
� ��� 
 ��� 
 ��� 
 ���  (10) 

 

The total of torque from the center of mass of the robot 
body is expressed as Eq. (11). 

 �� � � '� 
 � cos���� 	 �4 sin�� (11) 

Moment of robot about the z-axis is: 

 �5� � 	�� (12) 

 

By substituting Eq. (11) into Eq. (12) we obtain the second 
dynamic equation: 

 ��5 
 � '�� � 	� cos���� 
 �4 sin�� (13) 

 

3)  Heading of Robot Analysis 

A moment acting on pendulum and platform in the z-axis 
is: 

 ��6� � 7��� 	 ��� (14) 

 

Considering Eq. (1) – (4) and by substituting Eq. (14) into 
them we obtain the third dynamic equation: 

 �86� � 9
� ��� 	 ��� 
 7�:� 	 :�� (15) 

 

where �8 � �� 
 7'��� 
 ��
���  

 
From the three analyzes, we obtained three dynamic 

equations for 3 movements (3 DOF) on Eq. (10), (13) and 
(15). By specifying �3 � �; �' � �& ; �< � ; �= � &; �> �6; and �? � 6&  so the state space equation can be written as: 

�&3 � �'  
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where : 
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 � 
 2�� 
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��   

O' �  �   O< � � ' 
 �5  O= �  �4   M3 � �� 
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Before linear controllers are designed, the linearization 
models have to be obtained. For the linearization of system, 
this research uses Taylor series about equilibrium point [15]. 
The state-space of balancing robot equation can be written as:  

 �& � ���, M�  

Q � R� 

where � ∈ ℝ?, M ∈ ℝ', and Q ∈ ℝ? 
Equilibrium point is defined (x0,u0) = (0,0). Taylor series 

expansion about equilibrium point is written as: 
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The partial derivative is evaluated about the equilibrium 
point by neglecting the high order terms of its expansion: 

�& 	  ���U, MU� � ^ `�
`�3

��3 	 �U3� 
 ⋯ 
 `�
`�>

��> 	 �U>�

 `�

`M3
�M3 	 MU� 
 `�

`M'
�M' 	 MU'�_ 

Linearization form can be written as: 

a& � ba 
 cd 

e � fa 

Where A and B are the constant matrix that are obtained by 
using the Jacobean formula. 

b �
⎣⎢
⎢⎢
⎡`�3`�3 ⋯ `�3`�?⋮ ⋱ ⋮`�?`�3 ⋯ `�?`�?⎦⎥

⎥⎥
⎤

           c �
⎣⎢
⎢⎢
⎡`�3`M3⋮`�?`M3

       
`�3`M'⋮`�?`M'⎦⎥

⎥⎥
⎤
 

f �
⎣⎢
⎢⎢
⎢⎡
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⎥⎥
⎥⎤
 

So, the linearization model’s state space form can be written 
in form: 
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⎥⎥
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⎣⎢
⎢⎢
⎢⎡

0s'0s=00
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⎥⎥
⎥⎤ VM3M'\ 

 
where : 

 q � 	 t�@u�
1=t��tv�t2�w�1=t��tv2tu� (16) 

 

 r � 1=t��tv�t2t@u
1=t��tv�t2�w�1=t��tv2tu� (17) 

 

 s' � 3
�

��w�tu��
1=t��tv�t2�w�1=t��tv2tu� (18) 

 

 s= � 	 3
�

tu
1=t��tv�t2�w�1=t��tv2tu� (19) 

 

 s? � 3
�

9
�'9�t���v� (20) 

 

TABLE I 
THE PARAMETERS OF BALANCING ROBOT 

τ�, τx Motor torque  

f�, fx External force to wheels  

θ�, θx Rotational angle of wheels  

x�, xx Displacement of wheels on x-axis  

 Tilt angle of robot  

φ Heading angle of robot  

my Mass of the wheels  0.12 kg 

� Radius of the wheels 0.06 m 

m Mass of pendulum  0.55 kg 

g Gravitation acceleration  9.8 m/s2 

l Distance of COG 0.2 m 

D Distance between two wheels 0.3 m 

mp Mass of platform 0.01 kg 

IM 
Moment of inertia of platform about Y-
axis 

0.03 kg.m2 

Ip 
Moment of inertia of platform and 
pendulum about z-axis 

0.004 kg.m2 

4)  Controllability and Observability 

A system is controllable if input u can control the system 
from x(0) into x(T) in finite time. A linear system is entirely 
controllable if the controllable value fz has full rank [15]. 
The controllability matrix z is defined as 
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 z � {c   bc   b|c …   b~I�c� (21) 

 

where n is order of the system.  
By using Eq.(21), the controllability matrix z  and 

controllable value fz of balancing robot can be obtained as 
Eq. (22) and (23). 

 z � �c   bc   b|c   b�c   b�c   b�c� (22) 

 

 fz � rank�z� (23) 

 

From Eq. (23), the rank of the controllable matrix fz is 6 
which is equal to the order of the system, n = 6, that means 
the linearized model of balancing robot is completely 
controllable. 

A system is observable if the observable value �z has full 
rank [15]. The observable matrix � is defined: 

  � � {f   bf   b|f …   b~I�f�� (24) 

 

By using Eq.(24), the observability matrix �  and 
observable value �z of balancing robot can be obtained as 
Eq. (25) and (26). 

 � � �f   bf   b|f   b�f   b�f   b�f��
 (25) 

 

 �z � rank��� (26) 

 

From Eq. (26), the rank of an observable matrix �z is 6 
which is equal to the order of the system, n = 6, that means 
the linearized model of balancing robot is completely 
observable. 

5)  Stability 

The stability of the system uses Lyapunov’s equation to 
test stability. The equivalent characterization of stability is 
obtained using Eq.(27). 

 b�� 
 �b � 	� (27) 

 

where Q matrix is defined as the identity matrix. By 
verifying that ���� � a��a is positive definite, this system 
can be asymptotically stable if and only if P matrix is 
positive definite. 

The open-loop of the system is analyzed by using this 
method and the results show that the system is unstable 
because P matrix is not positive definite. So the controllers 
are required to make the system stable on the desired 
positions. 

6)  PSO 

Particle Swarm Optimization (PSO) is one of 
evolutionary algorithm which every potential solution called 
‘particle’ can change their position and velocity [17]. During 
looping, every particle can manage their position to the best 
position, which is obtained from the group of particles. 

Neighbor particle association and the history of their 
experience establish the directions of particles during 
exploring the best position. The position of nth particle �� 
and the velocity of nth particle ��  change based on ith 

iteration. The previous best positions will be stored as ��� 
and the best particle among the group is represented as s�. 
The velocity and position of particles are expressed as: 

�����3� � y ∗ ��� 
 ,3�3 ∗ 1���� 	 ���2 
 ,'�' ∗ �s� 	 ���� 
  (28) 

 

 �����3� � ��� 
 �����3� (29) 

 

where: 
��� : Velocity of nth particle on ith iteration y : Inertia weight ,3,' : learning acceleration factor �3,' : Random value [0,1] 
��� : Position of nth particle on ith iteration ����  : The best position of nth particle on ith iteration  s� : The best position of the particle 

II. MATERIALS AND METHOD 

Control system in this system is designed such as Fig. 3. 
This system uses three main controllers to control three DOF 
of the robot movement: MPSO-PID control for balancing 
control itself, for heading control, and for forwarding 
movement control. 

 
Fig. 3 Overall Control Design of Balancing Robot 

 
Fig. 3 shows that an angle error for balancing control 

input is obtained by combining the tilt feedback and the 
output from distance control [2], [3], [18]. The output from 
balancing MPSO-PID would be combined with the output of 
heading MPSO-PID control and given to the both of motor 
on the right and left-side of the robot. 

Distance control is used to make the robot moves to the 
desired position. As stated by [2] the equation of 
combination errors feedback are Eq.(30) and Eq.(32). 

 ���� � R� 	  ��� (30) 

 

 ���� �  ���� 
  ���� (31) 

where: 
δ(k)  : Angle error of robot’s center balance 
CB  : Constant value of robot’s center balance 
θ(k) : Actual angle of the robot’s body 
α(k) : Overall angle error of the system 
γ(k) : Angle; output from distance PID controller 

A. Balancing MPSO-PID Control 

Balancing control is the main control for a two-wheeled 
balancing robot. This control is used to maintain the 
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standing position of the robot by controlling the tilt feedback 
from IMU sensor. 

 
Fig. 4 Balancing Control Design 

 
The input of balancing control is the sum of angle error 

from IMU (here using MPU) and the result of distance 
control, namely overall angle error (α(k)). Balancing control 
can be calculated as : 

 ����� � ��� ∗ ���� 
 �/�  ∗  ∑ ����t��3 
 �:� ∗����� 	 ���� I3�  (32) 

 

where: 
����� : velocity of balance control 
��� : Proportional constanta for Balancing PID �/� : Integral constanta for Balancing PID 
�:� : Derivative Constanta for Balancing PID 
���� I3 : Previous overall angle error 

The PID parameters value are obtained based on 
simulation using modified PSO to maintain the robot 
balance. 

B. Distance MPSO-PID Control 

As mentioned before, this control is used for the 
movement of robot to go to the desired position. The result 
of distance control can affect the angle setpoint of robot. To 
make robot moves forward, the angle setpoint is set not 
equal to zero [19]. The input for distance control is distance 
feedback from rotary encoder. 

 
Fig. 5 Distance Control Design 

The distance control can be calculated as in the following 
formula[2]: 

 ¡: � �¢ 	 ���� (33) 

 

���� � ��9 ∗ ¡: 
 �/9  ∗  ∑ ¡:t��3 
 �:9 ∗ �¡: 	¡: I3�  (34) 

 

where: �¢ : Distance setpoint ���� : Distance from the rotary encoder ���� : Angle offset, distance PID control output ��9 : Proportional constanta for Distance PID 

�/9 : Integral constanta for Distance PID �:9 : Derivative Constanta for Distance PID ¡: : Distance error  ¡: I3: Previous distance error  

The PID parameters value are obtained based on 
simulation using modified PSO to make the robot moves to 
the desired position. 

C. Heading MPSO-PID Control 

Orientation of robot is obtained from IMU sensor. 
Diagram block for this control is shown in Fig.6 

 

 
Fig. 6 Heading Control Design  

 
Heading error and the input control can be calculated as: 

 ¡ℎ � 6¤ 	 6��� (35) 

 

�¥��� � ��¥ ∗ ¡ℎ 
 �/¥  ∗  ∑ ¡ℎt��3 
 �:¥ ∗ �¡ℎ 	¡ℎ I3�  (36) 

 
where: 6¤ : Heading setpoint 6��� : Heading value from sensor �¥��� : Velocity for steering ��¥ : Proportional constanta for Heading PID �/¥ : Integral constanta for Heading PID �:¥ : Derivative constanta for Heading PID ¡ℎ : Heading error now ¡ℎ I3: Previous Heading error  

 
Result from this control �¥  will be combined with the 

result of balancing control �� for steering the orientation of 
robot. The velocity of left and right motor can be calculated 
using equation: 

 �� � �� 	 �¥ (37) 

 

 �� � �� 
 �¥ (38) 

 

The PID parameters value are obtained based on 
simulation using modified PSO to steer the orientation of 
robot. 

D. Modified PSO (MPSO) 

Modified PSO is used to set the PID parameters value on 
a two-wheeled balancing robot. The error value is controlled 
by MPSO–PID to obtain the speed that will be sent to both 
motors on the left and right side of the robot. The error 
values in MPSO use Integral Absolute Error (IAE) or 
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Integral Square Error (ISE) to get the value of the fitness 
function.  

The modification is done on PSO by changing the value 
of the parameter on the weight formula (y� ), value of ,3 
and,' . The value of weight (y� ) of each generation are 
modified to Eq. (39) and Eq. (40). This parameter 
modification aims to widen the particles range in the 
beginning generation (global optimum) and to reduce the 
area when they are in the last generation (local optimum), so 
the PID parameters value obtained are more mature. 

 y� � yt¦) § ¨��©ª«
�©¬ � ��©¬

�©ª«� ®¯J ° (39) 

 

 ,3,' � ±�²
®��

 (40) 

 

The Eq. (39) shows that the y� value is changed 
exponentially from yt¦) to yt��, while in PSO classic the y� value is constant. The Eq. (40) also shows that the ,3,' 
value is changed exponentially, while in PSO classic the ,3,' value is constant. The classic algorithm process keeps 
exploring the best position but the convergence is delayed if 
the y� value is large while the algorithm needs exploitation 
in the last iterations [20]. 

 

 
Fig. 7 Flowchart of Modified PSO 

 
The steps for implementing the Modified PSO are 

presented in this study. Firstly, set the parameters of the 
learning factors ,3,',  the maximum inertia weight yt¦), the 
minimum inertia weight yt�� , the number of iterations ³, 
the number of particles � , and the dimension of particle :/� . Secondly, initialize the positions and velocities of 
particles of PID parameters in a given range. Thirdly, 
calculate the inertia weight y�  with the Eq. (39) and the 

learning factor ,3,'  with the Eq. (40). Fourthly, evaluate 
errors and the finesses of every particle of PID parameters 
and compare them with the previous optimal fitness to get 
the best local position Pb and best global position Gb. 
Fifthly, update the velocities and positions of particles of 
PID parameters. 

III.  RESULTS AND DISCUSSION 

This section will give the results of modified PSO tests 
using the benchmark functions and test the modified PSO 
proposed at the robot balancing plant. The Benchmark 
functions are used to test the performances of the 
optimization. 

A. Benchmark Function Testing 

The testing of optimization use several Benchmark 
Function, they are the Multivariable Sphere Function, the 
Rosenbrock Function, the Griwank Function, the Beale 
Function, and the Booth Function. Those functions use two 
variables ��, Q�  with function equations respectively are 
expressed as follow: 

1. �3��, Q� � �10 	 ��' 
 �15 	 Q�';       	30 ≤ �, Q ≤ 30 (41) 

 

2. �'��, Q� � 10 ∙ ��' 	 Q�' 
 �� 	 1�' ;   	10 ≤ �, Q ≤ 10 (42) 

 

3. �<��, Q� � 1 
 )��¸�
3UU 	 cos�� 
 Q� ;     	20 ≤ �, Q ≤ 20 (43) 

 

4. �=��, Q� � �1.5 	 � 
 �Q�' 
 �2.25 	 � 
 �Q'�';    
 	20 ≤ �, Q ≤ 20 (44) 

 

5. �>��, Q� � �x 
 2y 	 7�' 
 �2x 
 y 	 5�' ;    
 	20 ≤ �, Q ≤ 20 (45) 

 

The number of the population used are 20 with a total of 
iterations are 100 times. The number of population is not too 
big because it considers the computation speed of the 
microcontroller used to do the optimization. Based on 100 
attempts, the results of the Benchmark Function tests with 
some modifications to the PSO are presented. The SR values 
show the Success Rate of the 100 attempts conducted. 

TABLE II 
BENCHMARK FUNCTION RESULT OF PSO CLASSIC  

PSO Classic 

Function f Mean of f Minimum of f SR (%) 

f1 2.31E-16 3.57E-21 100 

f2 4.48E-08 2.00E-14 100 

f3 2.00E-03 2.22E-16 99 

f4 3.00E-03 6.55E-16 98 

f5 2.00E-15 4.98E-19 100 

 
The results of testing with the Benchmark Function on the 

Classic PSO method are shown in Table II. The inertia 
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weight and learning factor used respectively are 0.6 and 1.5. 
The testing using the Griwank function f3 and the Beale 
Function f4 show that the SR are not 100% success. From all 
Benchmark function, the smallest error is the Sphere 
Function f1 wih the value is 3.57E-21. 

TABLE III 
BENCHMARK FUNCTION RESULT OF SIGMOID FUNC.  

PSO (w = Sigmoid Decreasing Function) 

Function f Mean of f Minimum of f SR (%) 

f1 5.27E-22 0 100 

f2 7.62E-07 5.93E-15 100 

f3 5.09E-08 0 100 

f4 2.00E-03 5.08E-17 99 

f5 3.00E-13 1.85E-26 100 

 
The results of testing with the Benchmark Function on the 

PSO using the sigmoid function when updating the inertia 
weight are shown in Table III. The testing using Beale 
Function f4 shows that the SR value is not 100% success. 
From all Benchmark function, the smallest error are the 
Sphere Function f1 and the Griwank Function f3 wih the value 
are 0. 

TABLE IV 
BENCHMARK FUNCTION RESULT OF LDPSO  

PSO (w = Linear Decreasing Function) 

Function f Mean of f Minimum of f SR (%) 

f1 1.6E-12 6.7E-17 100 

f2 4.69E-08 4.82E-13 100 

f3 3.51E-10 6.22E-15 100 

f4 1.E-03 5.03E-14 99 

f5 1.52E-12 2.93E-17 100 

 
The results of testing with the Benchmark Function on the 

PSO using the linear decreasing function when updating the 
inertia weight are shown in Table IV. The testing using 
Beale Function f4 shows that the SR value is not 100% 
success. From all Benchmark function, the smallest error is 
the Booth Function f5 wih the value is 2.93E-17. 

TABLE V 
BENCHMARK FUNCTION RESULT OF PSO PROPOSED  

Modified PSO Proposed 

Function f Mean of f Minimum of f SR (%) 

f1 0 0 100 

f2 7.57E-06 6.97E-18 100 

f3 2.54E-12 0 100 

f4 7.64E-05 5.87E-19 100 

f5 1.65E-23 0 100 

 

The results of testing with the Benchmark Function on the 
Modified PSO purposed are shown in Table V. All of the 
testing using Benchmark Function shows that the SR are 
completely 100% success. From all Benchmark function, the 
smallest error are the Sphere Function f1 , the Griwank 
Function f3, and the Booth Function f5 wih the value are 0. 
The Modified PSO proposed show the improvement of the 
error and success rate produced. 

B. Results of Simulation 

Simulations are built in the Matlab Simulink program by 
describing the balancing robots dynamic. The experiments 
are done by implementing the PSO and MPSO proposed to 
three PIDs that will control the angle, the distance, and the 
heading of balancing the robot.  

1)  Simulation with IAE 

For the simulation, the desired position is set 10 meters 
with the balancing setpoint is 0 degree and the heating 
setpoint is 30 degree. The errors would be calculated by 
Integral Absolute Error (IAE) to evaluate the fitness function. 
The results of optimization using PSO–PID and MPSO–PID 
are shown as Fig.8.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Angle Response (a), Distance Response (b), and Heading response (c) 
of Balancing Robot with PSO and MPSO – PID – IAE 
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Fig. 8 shows the comparison between the responses using 
PID with PSO and MPSO. The results using both MPSO-
PID and PSO-PID are the system of balancing robot can 
move to the desired position (x=10) and be able to be stably 
balanced. Both of them also be able to steer the plant to the 
desired heading (6=30). The value of PID parameters are 
optimized by PSO (line: blue) and MPSO proposed (line: 
red). The responses using MPSO–PID have less overshoot 
and oscillation and reach stability faster than using PSO – 
PID. 

2)  Simulation with ISE 

For comparison, the errors would be calculated by 
Integral Square Error (ISE) to evaluate the fitness function. 

For the second simulation, The desired position also is set 10 
meters with the balancing setpoint is 0 degree, and the 
heading setpoint is 30 degree. The errors would be 
calculated by Integral Square Error (ISE) to evaluate the 
fitness function. The results of optimization using PSO–PID, 
and MPSO–PID are shown as Fig.9. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9 Angle Response (a), Distance Response (b), and Heading response (c) 
of Balancing Robot with PSO and MPSO – PID – ISE 

Fig. 9 shows the comparison between the responses using 
PID with PSO and MPSO. The results using both MPSO - 
PID and PSO – PID using ISE are similar to the results using 
IAE, but the responses using ISE have better performances 
than using IAE. These happen because if the system uses 
ISE, the error of system will be squared, so the value of error 
which is bigger than 1 then it will be bigger, and the values 
which is less than 1 then it will be smaller. 

IV.  CONCLUSIONS 

The conclusion from this research is that Modified PSO 
proposed is capable enough to optimize multivariable 
function (verified by Benchmark Function test). For 
simulation on balancing robot, the MPSO – PID be able to 
control 3 DOF movement of the robot (balancing, distance, 
and heading) with less oscillation and faster responses 
(verified by simulations) than PSO – PID. By using the 
Integral Square Error (ISE) for evaluating the error, the 
results are better than using the Integral Absolute Error 
(IAE). 
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