

Vol.9 (2019) No. 4

ISSN: 2088-5334

Modified Particle Swarm Optimization Based PID for Movement
Control of Two-Wheeled Balancing Robot

Nurul Hasanah#1, Alrijadjis#2, Bambang Sumantri#3
#Electronic Engineering, Politeknik Elektronika Negeri Surabaya, Indonesia

E-mail: 1nurul.hasanah024@gmail.com; 2alrijadjis@pens.ac.id; 3bambang@pens.ac.id

Abstract— Two-wheeled balancing robot is a mobile robot that has helped various human’s jobs such as the transportations. To
control stability is still be the challenges for researchers. Three equations are obtained by analyzing the dynamics of the robot with
the Newton approach. To control three degrees of freedom (DOF) of the robot, PIDs is tuned automatically and optimized by
multivariable Modified Particle Swarm Optimization (MPSO). Some parameters of the PSO process are modified to be a nonlinear
function. The inertia weight and learning factor variable on PSO are modified to decreasing exponentially and increasing
exponentially, respectively. The Integral Absolute Error (IAE) and Integral Square Error (ISE) evaluate the error values. The
performances of MPSO and PSO classic are tested by several Benchmark functions. The results of the Benchmark Function show
that Modified PSO proposed to produce less error and overshoot. Therefore, the MPSO purposed are implemented to the plant of
balancing robot to control the angle, the position, and the heading of the robot. The result of the simulation built shows that the
MPSO – PID can make the robot moves to the desired positions and maintain the stability of the angle of the robot. The input of
distance and angle of the robot are coupling so MPSO needs six variable to optimize the PID parameters of balancing and distance
control.

Keywords— modified PSO; balancing robot; PID; IAE; ISE; benchmark function.

I. INTRODUCTION

Nowadays, researchers have developed various kind of
robots to help human’s jobs, from wheeled robot to
humanoid [1]. Many controllers and methods have been
made to make a robot dynamically stable and robust solution.
One kind of robots is a two-wheeled balancing robot. This
robot still become a popular topic because of movement
control development [1]. Because the number of actuators
are less than the number of degree of freedom, the robot is
categorized as an underactuated system.

One of the most widely applied methods for balancing
robot is the PID method [1]–[3]. However, how to tune the
PID parameter is still a major problem for researchers. That
is because usually the system has a nonlinear system and
there are unknown disturbances, such as friction, slip, and
external force. The performance of the motor also has a lot
of effects on the PID tuning value due to the nonlinearity of
the motor itself [4]. One of the Artificial Intelligence tuning
methods is Particle Swarm Optimization (PSO).

PSO was introduced by Kennedy and Eberhart in 1995 [5]
and became one of the modern heuristic algorithms [6]. This
algorithm is inspired by the behavior of birds flocking, such
as sharing internal and global information about food
between individuals. PSO has been implemented in various

fields because of high-speed computation [7] and simple
operations [8]. However, the classic PSO algorithm has a big
problem, namely premature convergence. This problem
causes a rapid loss of diversity during evolutionary
processing [9]. The classic PSO is easy to be trapped into
local optimum in high dimensional space [7]. To improve
the convergence characteristics of the PSO algorithm, the
modifications are made in this research.

One of the most effect on the evolution process by PSO is
inertia weight value w. Inertia weight in PSO is introduced
by [10]. Inertia weight value has to be tuned in order to the
process of exploration and exploitation to be able to achieve
the optimal value. Many studies have described the best
method how to choose inertia weight value, and one of the
most method used is based on time-varying, such as linear
decreasing law [11], sigmoid [12], logarithm decreasing law
[13] and function [14]. In this research, the inertia weight
will be modified to another function.

The plant used in this research is a two-wheeled balancing
robot. After the dynamic equation is obtained, the PID
controls are designed to control the balancing, the heading,
and the position of the robot to keep the robot stands upright
and move to the desired position. PID parameters values are
obtained by tuning them using the Modified PSO that is
designed later.

1154

A. Dynamic Model of Balancing Robot

To obtain the dynamic system from balancing robot
modeling, this research use force analysis [15], [16] and the
dynamic mathematical model on this system. Two-wheeled
balancing robot structure is consist of two main parts; they
are wheels (Fig.1) and body robot (Fig.2). Each wheel is
actuated by separating motors, with the assumption that
parameter of quality of inertia moment and the radius of
wheels are the same.

1) Force Analysis on Wheels of Robot

This robot balancing has two wheels with each force
analysis, as shown in Fig. 1.

Fig. 1 Force Analysis of the Robot Wheels

According to the force analysis, the dynamic equations

are obtained based on Newton's law and the torque formula
for the right and the left wheel. Assuming that there is no
slippage between the wheels and the ground, the balancing
force and moment acting on the right wheel produce the
following equations:

 ����� � ��� 	 ��
 �� (1)

 ���� � �� 	 ��� . � (2)

Similarly, for the left wheel:

 ����� � ��� 	 ��
 �� (3)

 ���� � �� 	 ��� . � (4)

Considering Eq. (1)–(4) we obtained the Eq. (5).

 2 ���
 ��
��� �� � �����

� 	 ���
 ���
 ���
 ��� (5)

2) Force Analysis on Body of Robot

Body of the robot is modeled as an inverted pendulum.
The body of the robot’s force analysis is shown as Fig. 2.

Fig. 2 Force Analysis of Robot Body

The movement on x-axis:

 ��� � ��
 cos�� � 	 sin�� & ' (6)

Balancing force acting on the pendulum of the robot on x-
axis:

 (� � () 	 ()�
 (�

 � 	��� 	 � cos���
 � & ' sin�� (7)

Balancing forces acting on the platform of the robot along
the x-axis:

 ���� � ��
 ��
 (+ (8)

Substitute the Eq. (7) with Eq. (8) we obtained:

��
 �� � ���
 ����
 � ,-.��� 	 � & ' ./0�� (9)

By substituting Eq. (9) into Eq. (5) we obtain the first
dynamic equation:

�� ���
 �
 2��
 2 ��
���
 � 1� cos 	 & ' sin 2 �

3
� ���
 ���
 ���
 ��� (10)

The total of torque from the center of mass of the robot
body is expressed as Eq. (11).

 �� � � '�
 � cos���� 	 �4 sin�� (11)

Moment of robot about the z-axis is:

 �5� � 	�� (12)

By substituting Eq. (11) into Eq. (12) we obtain the second
dynamic equation:

 ��5
 � '�� � 	� cos����
 �4 sin�� (13)

3) Heading of Robot Analysis

A moment acting on pendulum and platform in the z-axis
is:

 ��6� � 7��� 	 ��� (14)

Considering Eq. (1) – (4) and by substituting Eq. (14) into
them we obtain the third dynamic equation:

 �86� � 9
� ��� 	 ���
 7�:� 	 :�� (15)

where �8 � ��
 7'���
 ��
���

From the three analyzes, we obtained three dynamic

equations for 3 movements (3 DOF) on Eq. (10), (13) and
(15). By specifying �3 � �; �' � �& ; �< � ; �= � &; �> �6; and �? � 6& so the state space equation can be written as:

�&3 � �'

1155

�&' � @ ABC)D�E�� FGH�)DI�EJ��ED��IE�ED)K�HLC�)D��EJED@ ABC)D
E�� FGH�)DI�EJ��ED� 	

ED
��E�� FGH�)DI�EJ��ED�� M3 	 ED

�E�� FGH�)DI�EJ��ED�� ���
 ���

�&< � �=

�&= �
�E���)K�HLC�')D�I�'EJEK @ HLC)D�

'�E�� FGH�)DI�EJ��ED��
 E� FGH)D
��E�� FGH�)DI�EJ��ED�� M3

E� FGH)D
�E�� FGH�)DI�EJ��ED�� ���
 ��)

�&> � �?

�&? � 9
��N M'
 9

�N ��� 	 ���

where :

O3 � ��
 �
 2��
 '��
��

O' � � O< � � '
 �5 O= � �4 M3 � ��
 �� M' � �� 	 ��

Before linear controllers are designed, the linearization
models have to be obtained. For the linearization of system,
this research uses Taylor series about equilibrium point [15].
The state-space of balancing robot equation can be written as:

 �& � ���, M�

Q � R�

where � ∈ ℝ?, M ∈ ℝ', and Q ∈ ℝ?
Equilibrium point is defined (x0,u0) = (0,0). Taylor series

expansion about equilibrium point is written as:

�& � ���, M�

� ���U, MU�
 V WX
W)J ��3 	 �U3�
 ⋯
 WX

W)Z ��> 	 �U>�

WX

W[J �M3 	 MU�
 WX
W[� �M' 	 MU'�\
 3

'! ^ W�X
W)J� ��3 	

�U3�'
 ⋯
 W�X
W)Z� ��> 	 �U>�'
 W�X

W[J� �M3 	 MU�'

W�X
W[�� �M' 	 MU'�'_
 ⋯

The partial derivative is evaluated about the equilibrium
point by neglecting the high order terms of its expansion:

�& 	 ���U, MU� � ^ `�
`�3

��3 	 �U3�
 ⋯
 `�
`�>

��> 	 �U>�

 `�

`M3
�M3 	 MU�
 `�

`M'
�M' 	 MU'�_

Linearization form can be written as:

a& � ba
 cd

e � fa

Where A and B are the constant matrix that are obtained by
using the Jacobean formula.

b �
⎣⎢
⎢⎢
⎡`�3`�3 ⋯ `�3`�?⋮ ⋱ ⋮`�?`�3 ⋯ `�?`�?⎦⎥

⎥⎥
⎤

 c �
⎣⎢
⎢⎢
⎡`�3`M3⋮`�?`M3

`�3`M'⋮`�?`M'⎦⎥

⎥⎥
⎤

f �
⎣⎢
⎢⎢
⎢⎡
100000

010000

001000

000100

000010

000001⎦⎥

⎥⎥
⎥⎤

So, the linearization model’s state space form can be written
in form:

⎣⎢
⎢⎢
⎢⎡
�&3�&'�&<�&=�&>�&?⎦⎥

⎥⎥
⎥⎤ �

⎣⎢
⎢⎢
⎢⎡
000000

100000

0q0r00

001000

000000

000010⎦⎥

⎥⎥
⎥⎤

⎣⎢
⎢⎢
⎢⎡
�3�'�<�=�>�?⎦⎥

⎥⎥
⎥⎤

⎣⎢
⎢⎢
⎢⎡

0s'0s=00

00000s?⎦⎥
⎥⎥
⎥⎤ VM3M'\

where :

 q � 	 t�@u�
1=t��tv�t2�w�1=t��tv2tu� (16)

 r � 1=t��tv�t2t@u
1=t��tv�t2�w�1=t��tv2tu� (17)

 s' � 3
�

��w�tu��
1=t��tv�t2�w�1=t��tv2tu� (18)

 s= � 	 3
�

tu
1=t��tv�t2�w�1=t��tv2tu� (19)

 s? � 3
�

9
�'9�t���v� (20)

TABLE I
THE PARAMETERS OF BALANCING ROBOT

τ�, τx Motor torque

f�, fx External force to wheels

θ�, θx Rotational angle of wheels

x�, xx Displacement of wheels on x-axis

 Tilt angle of robot

φ Heading angle of robot

my Mass of the wheels 0.12 kg

� Radius of the wheels 0.06 m

m Mass of pendulum 0.55 kg

g Gravitation acceleration 9.8 m/s2

l Distance of COG 0.2 m

D Distance between two wheels 0.3 m

mp Mass of platform 0.01 kg

IM
Moment of inertia of platform about Y-
axis

0.03 kg.m2

Ip
Moment of inertia of platform and
pendulum about z-axis

0.004 kg.m2

4) Controllability and Observability

A system is controllable if input u can control the system
from x(0) into x(T) in finite time. A linear system is entirely
controllable if the controllable value fz has full rank [15].
The controllability matrix z is defined as

1156

 z � {c bc b|c … b~I�c� (21)

where n is order of the system.
By using Eq.(21), the controllability matrix z and

controllable value fz of balancing robot can be obtained as
Eq. (22) and (23).

 z � �c bc b|c b�c b�c b�c� (22)

 fz � rank�z� (23)

From Eq. (23), the rank of the controllable matrix fz is 6
which is equal to the order of the system, n = 6, that means
the linearized model of balancing robot is completely
controllable.

A system is observable if the observable value �z has full
rank [15]. The observable matrix � is defined:

 � � {f bf b|f … b~I�f�� (24)

By using Eq.(24), the observability matrix � and
observable value �z of balancing robot can be obtained as
Eq. (25) and (26).

 � � �f bf b|f b�f b�f b�f��
 (25)

 �z � rank��� (26)

From Eq. (26), the rank of an observable matrix �z is 6
which is equal to the order of the system, n = 6, that means
the linearized model of balancing robot is completely
observable.

5) Stability

The stability of the system uses Lyapunov’s equation to
test stability. The equivalent characterization of stability is
obtained using Eq.(27).

 b��
 �b � 	� (27)

where Q matrix is defined as the identity matrix. By
verifying that ���� � a��a is positive definite, this system
can be asymptotically stable if and only if P matrix is
positive definite.

The open-loop of the system is analyzed by using this
method and the results show that the system is unstable
because P matrix is not positive definite. So the controllers
are required to make the system stable on the desired
positions.

6) PSO

Particle Swarm Optimization (PSO) is one of
evolutionary algorithm which every potential solution called
‘particle’ can change their position and velocity [17]. During
looping, every particle can manage their position to the best
position, which is obtained from the group of particles.

Neighbor particle association and the history of their
experience establish the directions of particles during
exploring the best position. The position of nth particle ��
and the velocity of nth particle �� change based on ith

iteration. The previous best positions will be stored as ���
and the best particle among the group is represented as s�.
The velocity and position of particles are expressed as:

�����3� � y ∗ ���
 ,3�3 ∗ 1���� 	 ���2
 ,'�' ∗ �s� 	 ����
 (28)

 �����3� � ���
 �����3� (29)

where:
��� : Velocity of nth particle on ith iteration y : Inertia weight ,3,' : learning acceleration factor �3,' : Random value [0,1]
��� : Position of nth particle on ith iteration ���� : The best position of nth particle on ith iteration s� : The best position of the particle

II. MATERIALS AND METHOD

Control system in this system is designed such as Fig. 3.
This system uses three main controllers to control three DOF
of the robot movement: MPSO-PID control for balancing
control itself, for heading control, and for forwarding
movement control.

Fig. 3 Overall Control Design of Balancing Robot

Fig. 3 shows that an angle error for balancing control

input is obtained by combining the tilt feedback and the
output from distance control [2], [3], [18]. The output from
balancing MPSO-PID would be combined with the output of
heading MPSO-PID control and given to the both of motor
on the right and left-side of the robot.

Distance control is used to make the robot moves to the
desired position. As stated by [2] the equation of
combination errors feedback are Eq.(30) and Eq.(32).

 ���� � R� 	 ��� (30)

 ���� � ����
 ���� (31)

where:
δ(k) : Angle error of robot’s center balance
CB : Constant value of robot’s center balance
θ(k) : Actual angle of the robot’s body
α(k) : Overall angle error of the system
γ(k) : Angle; output from distance PID controller

A. Balancing MPSO-PID Control

Balancing control is the main control for a two-wheeled
balancing robot. This control is used to maintain the

1157

standing position of the robot by controlling the tilt feedback
from IMU sensor.

Fig. 4 Balancing Control Design

The input of balancing control is the sum of angle error

from IMU (here using MPU) and the result of distance
control, namely overall angle error (α(k)). Balancing control
can be calculated as :

 ����� � ��� ∗ ����
 �/� ∗ ∑ ����t��3
 �:� ∗����� 	 ���� I3� (32)

where:
����� : velocity of balance control
��� : Proportional constanta for Balancing PID �/� : Integral constanta for Balancing PID
�:� : Derivative Constanta for Balancing PID
���� I3 : Previous overall angle error

The PID parameters value are obtained based on
simulation using modified PSO to maintain the robot
balance.

B. Distance MPSO-PID Control

As mentioned before, this control is used for the
movement of robot to go to the desired position. The result
of distance control can affect the angle setpoint of robot. To
make robot moves forward, the angle setpoint is set not
equal to zero [19]. The input for distance control is distance
feedback from rotary encoder.

Fig. 5 Distance Control Design

The distance control can be calculated as in the following
formula[2]:

 ¡: � �¢ 	 ���� (33)

���� � ��9 ∗ ¡:
 �/9 ∗ ∑ ¡:t��3
 �:9 ∗ �¡: 	¡: I3� (34)

where: �¢ : Distance setpoint ���� : Distance from the rotary encoder ���� : Angle offset, distance PID control output ��9 : Proportional constanta for Distance PID

�/9 : Integral constanta for Distance PID �:9 : Derivative Constanta for Distance PID ¡: : Distance error ¡: I3: Previous distance error

The PID parameters value are obtained based on
simulation using modified PSO to make the robot moves to
the desired position.

C. Heading MPSO-PID Control

Orientation of robot is obtained from IMU sensor.
Diagram block for this control is shown in Fig.6

Fig. 6 Heading Control Design

Heading error and the input control can be calculated as:

 ¡ℎ � 6¤ 	 6��� (35)

�¥��� � ��¥ ∗ ¡ℎ
 �/¥ ∗ ∑ ¡ℎt��3
 �:¥ ∗ �¡ℎ 	¡ℎ I3� (36)

where: 6¤ : Heading setpoint 6��� : Heading value from sensor �¥��� : Velocity for steering ��¥ : Proportional constanta for Heading PID �/¥ : Integral constanta for Heading PID �:¥ : Derivative constanta for Heading PID ¡ℎ : Heading error now ¡ℎ I3: Previous Heading error

Result from this control �¥ will be combined with the

result of balancing control �� for steering the orientation of
robot. The velocity of left and right motor can be calculated
using equation:

 �� � �� 	 �¥ (37)

 �� � ��
 �¥ (38)

The PID parameters value are obtained based on
simulation using modified PSO to steer the orientation of
robot.

D. Modified PSO (MPSO)

Modified PSO is used to set the PID parameters value on
a two-wheeled balancing robot. The error value is controlled
by MPSO–PID to obtain the speed that will be sent to both
motors on the left and right side of the robot. The error
values in MPSO use Integral Absolute Error (IAE) or

1158

Integral Square Error (ISE) to get the value of the fitness
function.

The modification is done on PSO by changing the value
of the parameter on the weight formula (y�), value of ,3
and,' . The value of weight (y�) of each generation are
modified to Eq. (39) and Eq. (40). This parameter
modification aims to widen the particles range in the
beginning generation (global optimum) and to reduce the
area when they are in the last generation (local optimum), so
the PID parameters value obtained are more mature.

 y� � yt¦) § ¨��©ª«
�©¬ � ��©¬

�©ª«� ®¯J ° (39)

 ,3,' � ±�²
®��

 (40)

The Eq. (39) shows that the y� value is changed
exponentially from yt¦) to yt��, while in PSO classic the y� value is constant. The Eq. (40) also shows that the ,3,'
value is changed exponentially, while in PSO classic the ,3,' value is constant. The classic algorithm process keeps
exploring the best position but the convergence is delayed if
the y� value is large while the algorithm needs exploitation
in the last iterations [20].

Fig. 7 Flowchart of Modified PSO

The steps for implementing the Modified PSO are

presented in this study. Firstly, set the parameters of the
learning factors ,3,', the maximum inertia weight yt¦), the
minimum inertia weight yt�� , the number of iterations ³,
the number of particles � , and the dimension of particle :/� . Secondly, initialize the positions and velocities of
particles of PID parameters in a given range. Thirdly,
calculate the inertia weight y� with the Eq. (39) and the

learning factor ,3,' with the Eq. (40). Fourthly, evaluate
errors and the finesses of every particle of PID parameters
and compare them with the previous optimal fitness to get
the best local position Pb and best global position Gb.
Fifthly, update the velocities and positions of particles of
PID parameters.

III. RESULTS AND DISCUSSION

This section will give the results of modified PSO tests
using the benchmark functions and test the modified PSO
proposed at the robot balancing plant. The Benchmark
functions are used to test the performances of the
optimization.

A. Benchmark Function Testing

The testing of optimization use several Benchmark
Function, they are the Multivariable Sphere Function, the
Rosenbrock Function, the Griwank Function, the Beale
Function, and the Booth Function. Those functions use two
variables ��, Q� with function equations respectively are
expressed as follow:

1. �3��, Q� � �10 	 ��'
 �15 	 Q�'; 	30 ≤ �, Q ≤ 30 (41)

2. �'��, Q� � 10 ∙ ��' 	 Q�'
 �� 	 1�' ; 	10 ≤ �, Q ≤ 10 (42)

3. �<��, Q� � 1
)��¸�
3UU 	 cos��
 Q� ; 	20 ≤ �, Q ≤ 20 (43)

4. �=��, Q� � �1.5 	 �
 �Q�'
 �2.25 	 �
 �Q'�';
 	20 ≤ �, Q ≤ 20 (44)

5. �>��, Q� � �x
 2y 	 7�'
 �2x
 y 	 5�' ;
 	20 ≤ �, Q ≤ 20 (45)

The number of the population used are 20 with a total of
iterations are 100 times. The number of population is not too
big because it considers the computation speed of the
microcontroller used to do the optimization. Based on 100
attempts, the results of the Benchmark Function tests with
some modifications to the PSO are presented. The SR values
show the Success Rate of the 100 attempts conducted.

TABLE II
BENCHMARK FUNCTION RESULT OF PSO CLASSIC

PSO Classic

Function f Mean of f Minimum of f SR (%)

f1 2.31E-16 3.57E-21 100

f2 4.48E-08 2.00E-14 100

f3 2.00E-03 2.22E-16 99

f4 3.00E-03 6.55E-16 98

f5 2.00E-15 4.98E-19 100

The results of testing with the Benchmark Function on the

Classic PSO method are shown in Table II. The inertia

1159

weight and learning factor used respectively are 0.6 and 1.5.
The testing using the Griwank function f3 and the Beale
Function f4 show that the SR are not 100% success. From all
Benchmark function, the smallest error is the Sphere
Function f1 wih the value is 3.57E-21.

TABLE III
BENCHMARK FUNCTION RESULT OF SIGMOID FUNC.

PSO (w = Sigmoid Decreasing Function)

Function f Mean of f Minimum of f SR (%)

f1 5.27E-22 0 100

f2 7.62E-07 5.93E-15 100

f3 5.09E-08 0 100

f4 2.00E-03 5.08E-17 99

f5 3.00E-13 1.85E-26 100

The results of testing with the Benchmark Function on the

PSO using the sigmoid function when updating the inertia
weight are shown in Table III. The testing using Beale
Function f4 shows that the SR value is not 100% success.
From all Benchmark function, the smallest error are the
Sphere Function f1 and the Griwank Function f3 wih the value
are 0.

TABLE IV
BENCHMARK FUNCTION RESULT OF LDPSO

PSO (w = Linear Decreasing Function)

Function f Mean of f Minimum of f SR (%)

f1 1.6E-12 6.7E-17 100

f2 4.69E-08 4.82E-13 100

f3 3.51E-10 6.22E-15 100

f4 1.E-03 5.03E-14 99

f5 1.52E-12 2.93E-17 100

The results of testing with the Benchmark Function on the

PSO using the linear decreasing function when updating the
inertia weight are shown in Table IV. The testing using
Beale Function f4 shows that the SR value is not 100%
success. From all Benchmark function, the smallest error is
the Booth Function f5 wih the value is 2.93E-17.

TABLE V
BENCHMARK FUNCTION RESULT OF PSO PROPOSED

Modified PSO Proposed

Function f Mean of f Minimum of f SR (%)

f1 0 0 100

f2 7.57E-06 6.97E-18 100

f3 2.54E-12 0 100

f4 7.64E-05 5.87E-19 100

f5 1.65E-23 0 100

The results of testing with the Benchmark Function on the
Modified PSO purposed are shown in Table V. All of the
testing using Benchmark Function shows that the SR are
completely 100% success. From all Benchmark function, the
smallest error are the Sphere Function f1 , the Griwank
Function f3, and the Booth Function f5 wih the value are 0.
The Modified PSO proposed show the improvement of the
error and success rate produced.

B. Results of Simulation

Simulations are built in the Matlab Simulink program by
describing the balancing robots dynamic. The experiments
are done by implementing the PSO and MPSO proposed to
three PIDs that will control the angle, the distance, and the
heading of balancing the robot.

1) Simulation with IAE

For the simulation, the desired position is set 10 meters
with the balancing setpoint is 0 degree and the heating
setpoint is 30 degree. The errors would be calculated by
Integral Absolute Error (IAE) to evaluate the fitness function.
The results of optimization using PSO–PID and MPSO–PID
are shown as Fig.8.

(a)

(b)

(c)

Fig. 8 Angle Response (a), Distance Response (b), and Heading response (c)
of Balancing Robot with PSO and MPSO – PID – IAE

1160

Fig. 8 shows the comparison between the responses using
PID with PSO and MPSO. The results using both MPSO-
PID and PSO-PID are the system of balancing robot can
move to the desired position (x=10) and be able to be stably
balanced. Both of them also be able to steer the plant to the
desired heading (6=30). The value of PID parameters are
optimized by PSO (line: blue) and MPSO proposed (line:
red). The responses using MPSO–PID have less overshoot
and oscillation and reach stability faster than using PSO –
PID.

2) Simulation with ISE

For comparison, the errors would be calculated by
Integral Square Error (ISE) to evaluate the fitness function.

For the second simulation, The desired position also is set 10
meters with the balancing setpoint is 0 degree, and the
heading setpoint is 30 degree. The errors would be
calculated by Integral Square Error (ISE) to evaluate the
fitness function. The results of optimization using PSO–PID,
and MPSO–PID are shown as Fig.9.

(a)

(b)

(c)

Fig. 9 Angle Response (a), Distance Response (b), and Heading response (c)
of Balancing Robot with PSO and MPSO – PID – ISE

Fig. 9 shows the comparison between the responses using
PID with PSO and MPSO. The results using both MPSO -
PID and PSO – PID using ISE are similar to the results using
IAE, but the responses using ISE have better performances
than using IAE. These happen because if the system uses
ISE, the error of system will be squared, so the value of error
which is bigger than 1 then it will be bigger, and the values
which is less than 1 then it will be smaller.

IV. CONCLUSIONS

The conclusion from this research is that Modified PSO
proposed is capable enough to optimize multivariable
function (verified by Benchmark Function test). For
simulation on balancing robot, the MPSO – PID be able to
control 3 DOF movement of the robot (balancing, distance,
and heading) with less oscillation and faster responses
(verified by simulations) than PSO – PID. By using the
Integral Square Error (ISE) for evaluating the error, the
results are better than using the Integral Absolute Error
(IAE).

REFERENCES
[1] D. Pratama, F. Ardilla, E. H. Binugroho, and D. Pramadihanto, “Tilt

set-point correction system for balancing robot using PID controller,”
in ICCEREC 2015 - International Conference on Control,
Electronics, Renewable Energy and Communications, 2015, pp. 129–
135.

[2] D. Pratama, E. H. Binugroho, and F. Ardilla, “Movement control of
two wheels balancing robot using cascaded PID controller,” in
Proceedings - 2015 International Electronics Symposium: Emerging
Technology in Electronic and Information, IES 2015, 2016, pp. 94–
99.

[3] E. H. Binugroho, D. Pratama, A. Z. R. Syahputra, and D.
Pramadihanto, “Control for balancing line follower robot using
discrete cascaded PID algorithm on ADROIT V1 education robot,”
in Proceedings - 2015 International Electronics Symposium:
Emerging Technology in Electronic and Information, IES 2015, 2016,
pp. 245–250.

[4] E. Sariyildiz, H. Yu, and K. Ohnishi, “A Practical Tuning Method for
the Robust PID Controller with Velocity Feed-Back,” Machines, vol.
3, no. 3, pp. 208–222, 2015.

[5] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, in IEEE
International Conference on Neural Networks, 1995, pp. 1942–1948.

[6] N. Jain, R. Gupta, and G. Parmar, “Intelligent Controlling of an
Inverted Pendulum Using PSO-PID Controller,” Int. J. Eng. Res.
Technol., vol. 2, no. 12, pp. 3712–3716, 2013.

[7] D. Yang, J. Chen, and N. Matsumoto, “Particle Swarm Optimization
with Adaptive Parameters,” in Eighth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2007, pp. 616–621.

[8] M. Li, W. Du, and F. Nian, An Adaptive Particle Swarm
Optimization Algorithm Based on Directed Weighted Complex
network, vol. 2014. 2014.

[9] H. Mehdi and O. Boubaker, “Stabilization and tracking control of the
inverted pendulum on a cart via a modified PSO fractional order PID
controller,” in The inverted pendulum in control theory and robotics,
2017, pp. 93–115.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
IEEE Congress on Evolutionary Computation, 1998, pp. 69–73.

[11] Y. Shi and R. Eberhart, “Empirical Study of Particle Swarm
Optimization,” in IEEE Congress on Evolutionary Computation
(CEC), 1999, pp. 1945–1950.

[12] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah, “New
Particle Swarm Optimizer with Sigmoid Increasing Inertia Weight,”
Int. J. Comput. Sci. Secur., vol. 1, pp. 35–44, 2007.

[13] Y. Gao, X. An, and J. Liu, “A Particle Swarm Optimization
Algorithm with Logarithm Decreasing Inertia Weight and Chaos
Mutation,” Int. Conf. Comput. Intell. Secur., vol. 1, pp. 61–65, 2008.

[14] K. Lei, Y. Qiu, and Y. He, “A New Adaptive Well-chosen Inertia
Weight strategy to Automatically Harmonize Global and Local

1161

Search Ability in Particle Swarm Optimization,” in First
International Symposium on Systems and Control in Aerospace and
Astronautics, Harbin, 2006, pp. 977–980.

[15] Z. Li, C. Yang, and L. Fan, Advanced control of wheeled inverted
pendulum systems, vol. 9781447129. 2013.

[16] J. Wu, X. Wang, and H. Wang, “Research on Two-Wheeled Self-
Balancing Robot Control Strategy Based on LQR-Fuzzy Algorithm,”
Int. J. Control Autom., vol. 9, pp. 31–40, 2016.

[17] K. Singh, “Modified PSO based PID Sliding Mode Control using
Improved Reaching Law for Nonlinear systems,” 2017, no. April.

[18] N. Hasanah, A. H. Alasiry, and B. Sumantri, “Two Wheels Line
Following Balancing Robot Control using Fuzzy Logic and PID on
Sloping Surface,” in 2018 International Electronics Symposium on
Engineering Technology and Applications, IES-ETA 2018 -
Proceedings, 2019, pp. 210–215.

[19] I. Dwisaputra, I. Sulistijono, and M. Nugraha, “Two Wheels
Balancing Line Tracer Robot Using Fuzzy Logic Control,” in The
13th Industrial Electronics Seminar (IES), 2011, pp. 188–194.

[20] S. Kessentini and D. Barchiesi, “Particle Swarm Optimization with
Adaptive Inertia Weight,” Int. J. Mach. Learn. Comput., vol. 5, no. 5,
pp. 368–373, 2015.

1162

