
Vol.13 (2023) No. 2

ISSN: 2088-5334

Botnet Detection Model in Encrypted Traffics Software-Defined

Network (SDN) Using Deep Neural Network (DNN)

Rio Suneth a, Heru Sukoco a,*, Shelvie Nidya Neyman a
a Department of Computer Science, Faculty of Mathematics and Natural Sciences (MIPA), Bogor Agricultural University (IPB),

Bogor, 16680, West Java, Indonesia

Corresponding author: *hsrkom@apps.ipb.ac.id

Abstract— The presence of network technology eliminates regional boundaries that become obstacles in communicating and exchanging

data and information to the public. The wider the zone of a network, the network infrastructure will increase in size. The bigger the

network infrastructure, the higher the level of management complexity. The Software Defined Network (SDN) concept is a new network

concept that provides a solution for managing large infrastructure networks and has a wide service zone. SDN architecture is different

from traditional networks. The SDN architecture is divided into three: the data plane, control plane, and application plane. Whereas

in the traditional network architecture, the three are combined into one. Besides, in maintaining network security. SDN offers a security

system, namely the OpenFlow Protocol. The OpenFlow Protocol security system works to regulate the packet traffic that passes.

Forwards registered packet data traffic and performs down the action for unknown packet traffic. The weakness is that the OpenFlow

Protocol must always be updated with SDN network packet traffic, and the system cannot detect the threat of attacks on encryption

traffic. Nowadays, the frequency of attacks on network traffic is relatively high. The attack techniques used also evolved. The techniques

used are also evolving. Botnets have been able to use several encryption protocols such as TLS / HTTPS, Tor, and P2P as loopholes to

attack a network. SDN's presence as a management solution for large infrastructure networks is not directly proportional to its security

system that undoubtedly have a bad impact on SDN network users. Therefore, this study aims to develop an SDN Network Intrusion

Detection System (IDS) model to detect botnets in encryption traffic. The model was developed using the Deep Neural Network (DNN)

approach. The SDN network botnet detection model developed can detect encryption traffic botnets with an accuracy rate of 94.78%,

93.28% precision, and a recall of 99.11%.

Keywords— Botnet; deep neural network; encrypted traffic; software-defined network.

Manuscript received 25 Jul. 2019; revised 12 Apr. 2022; accepted 28 Feb. 2023. Date of publication 30 Apr. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Approximately 16-25% of computer devices connected to

public networks are infected with botnets. Therefore, in

securing information traffic. Network administrators utilize
the encryption protocol, however, in carrying out attacks on

the network. The botnet uses several encryption protocols

such as TLS / HTTPS, Tor, and P2P as loopholes to attack

and steal information in network traffic [1]. To overcome

botnet attacks in network traffic, administrators take

advantage of the Software-Define Network (SDN) network

concept.

SDN is a new paradigm in the world of networking. The

basic concept of SDN networks in managing networks is by

separating control plane devices and data planes. The SDN

structure is divided into three main layers: application, control
plane, and data plane. Plane and application controls are

associated with the Application Programming Interface (API).

Data plane and control plane are connected to the OpenFlow

protocol.

OpenFlow is a necessary forwarding switch device that

forwards packets according to the flow table rules. Flow

tables contain a set of rules consisting of matching fields,

counters, and instructions. Matching header fields (Ethernet,

IPV4, IPV6, or MPLS). Calculation by collecting flow
statistics for the number of packets, bytes, and duration of

flow. The instruction is an action command against the

package. OpenFlow protocol has many versions, and each

version has a difference in the set of flow table rules.

OpenFlow version 1.0 is the most used, and in October 2013

version 1.4 was released as the latest version. For improving

the SDN protocol, OpenFlow security system must always be

updated. If the OpenFlow version used is an old version, and

744

the controller is attacked, the attacker will quickly master the

SDN network infrastructure [2].

Previous research was conducted by Wijesinghe, Tupakula,

and Varadharajan [3] on OpenFlow protocol version 1.4 for

detecting botnets on SDN networks. Furthermore, Chi et al [4]

studied the integration of intrusion detection system (IDS) in

SDN for the security of the advanced metering infrastructure

(AMI) system. In this case, Li, Meng, and Kwok [5] proposed

specifications for OpenFlow. According to him, OpenFlow

missed the TLS protocol's security, which is often used as a
botnet loophole to carry out attacks such as spoofing, piracy,

DoS, and several other attacks. Neu et al [6] developed a new

IDS instead of traditional IDS and firewall detected attacks on

encrypted data. Research by Jing et al [7] develops detection

of real-time botnets called bot-guards. The method used is

graph theory by giving the lens imaging graph (CLI-graph)

convex to the controller to describe the botnet's characteristics.

The result is a high accuracy of 90%.

According to Hadianto and Purboyo [8], SDN as a new

concept that offers ease of centralized SDN security

management, needs to be improved. As a programmable
network, SDN can easily accept innovative ideas, especially

the improvement in the security system it has. Therefore, this

study aims to build a botnet detection model on traffic

encryption for SDN network traffic. The research's scope is to

recognize the pattern of botnet attacks on encryption traffic in

SDN network traffic collected from secondary data CTU-

malware-capture-botnet datasets (CTU-13). Then build a

botnet detection model using the deep neural network (DNN)

approach.

II. MATERIAL AND METHOD

A. Software-Define Network (SDN)

According to Su et al. [9] and Rana, Dhondiyal, and

Chamoli [10], conceptually, SDN network architecture is

divided into three layers: application plane, control plane, and

data plane. Between the application plane and the control, the

plane is connected to the application program interface (API).

In the control plane layer, there are many and various network

topology mappings. The control plane maps topology on

network devices and simultaneously regulates packet traffic

routing in the network. SDN access control plane using
application web dashboard API [6]. The control plane is a

very programmable device because the control plane can use

any programming without being limited by specific vendors.

This layer is a collection of network routing devices such as

routers and switches for a data plane. Between the data plane

and the control, the plane is connected to the OpenFlow

protocol [11].

B. Botnet

The botnet is a massive and organized collection of
computers (zombies). The botnet is controlled by a botmaster

or herder, both an attacker and a botnet manager [10]. The

purpose of a botnet made by an attacker is to obtain financial

benefits. Among various forms of malware, botnets are the

most severe and dangerous attacks. It is a serious and

dangerous attack because botnets can carry out attacks

without being detected. Where botnets use encrypted

protocols to hide in carrying out attacks and malicious

activities such as sending spam e-mails, phishing, click fraud,

DDos, and spreading other malicious software [12], [13], [14].

C. Encrypted Traffic

Encrypted traffic is a protocol that provides confidentiality

or better known as the encryption protocol. Encryption

protocols usually offer communication authentication, data

integrity, data protection, and none-repudiation. In general, all
encryption protocols' working principle is the same and is

divided into several phases, namely, in the first phase,

connection initialization and encrypted data transportation are

carried out. The first phase can still be divided into several

phases, namely initial handshake, authentication, and creating

a secret key. The secret key is used to encrypt the data

transferred in the second phase. Protocols that are classified

as encryption protocols include internet protocol security

(IPsec), transport layer security (TLS), secure shell protocol

(SSH), BittToren HTTPS, SSL and Skype [9].

D. Deep Learning

Deep learning is a complicated version of machine learning.

It is said to be complicated because it has a level of abstraction

in every hidden layer. Deep learning is one method that is

considered appropriate enough to be used to read the structure

of complex datasets. Deep learning is often known as

hierarchical learning or deep structural learning in order to

read the structure of complex datasets. Deep learning

architecture that is commonly used is the sincere belief

network (DBN), deep neural network (DNN), and recurrent
neural networks (RNN). The architecture has been widely

used in the field of research, namely: speech recognition,

computer vision, audio recognition, machine translation, and

social network filtering [15].

According to Dong, Wang, and He [16], the deep learning

method's core is its ability to automatically extract features in

many inner layers. Deep learning algorithm provides

excellent performance in solving complex problems.

However, even though the deep learning algorithm for getting

excellent performance requires configuration and accurate

parameter determination. Without the right selection of
parameters, a model built using the deep learning algorithm

produced poor performance.

E. Deep Neural Network (DNN)

Deep neural network (DNN) is one of the classification

methods found in deep learning [17]. DNN is an artificial

neural network that has more than one layer of hidden layer

units. Some hidden layer layers can solve the problem of

calcification with complex data. Each hidden layer can learn

features at different levels of abstraction. [18], in addition to
being able to overcome the limitations of the hidden layer

Neural Network (NN), the core of a deep neural network

(DNN) can also extract features through the hidden layer

automatically. In general, DNN architecture is the same as the

architecture of the Neural Network (NN), which has three

main layers: input, hidden, and output layer. The input layer

includes the number of input parameters. The hidden layer is

the number of neuron sets used. The output layer is the output

of the process carried out by the hidden layer. The number of

neurons and the number of hidden layers in the DNN model

architecture do not have a maximum limit, which

745

distinguishes DNN from NN. The depth of the DNN

architecture is seen from the number of hidden layers used and

the type of hidden layers and linear or non-linear functions

[19].

F. Methods

The development of the detection model focuses on botnet

attack patterns on encrypted traffic on the SDN network. The

development process is divided into several different stages:

data acquisition, Deep neural network consisting of Data

Model Transformation, Data Distribution model,

development of model architecture, model training, model

testing, and model evaluation. Several stages in the research

are shown using a flow diagram in Figure 1.

Fig. 1 Research methods

G. Data Acquisition

The process of acquiring network traffic uses secondary

data, namely CTU-malware-capture-botnet datasets. Capture
Lab results. Czech Network Technical University (CTU) in

2011. The data is published publicly and can be downloaded

at https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-

dataset-with-botnet-normal -and-background-traffic.html.

The CTU-malware-capture-botnet dataset is a collection of

traffic data with 13 capture scenarios of PCAP file types. The

acquisition of botnet traffic data and regular is only made on

10 PCAP capture scenarios. The acquisition process is carried

out using the Wireshark application's help and the information

provided on the download address. The results of the

acquisition of botnet traffic data and standard ten scenarios
are converted to CSV files. The amount of traffic data

obtained is 52,701 records and 49 features.

H. Preprocess

The preprocess stages carried out are data cleaning,

labelling, and feature selection. Data cleaning is the stage of

cleaning data from a missing value (NA), noisy or outlier, and

data inconsistencies. The number of traffic obtained in the

cleaning data process is 28,681 records and 17 new features

from 49 features. Labeling is the process of grouping data into
several class targets or categories [20]. Labeling is needed for

the classification process of supervised learning to label the

target class as output data. There are two target classes as

output that were sent, namely botnet and normal. Next, the

next step is to select 17 new features obtained during the data

cleaning process. Feature selection aims to get the best

features and influence in reflecting the target class datasets.

Therefore, feature selection is essential, and in this case,

feature selection is carried out based on the info gain value on

the decision tree algorithm defined in equation (1).

 infogain�class,attribute� � �������� 	 �������|����
����� (1)

Where H represents the entropy of class and attributes defined

in equation (1), before calculating the info gain of the 17 new

features, the calculation is first made of the entropy value of

the 17 features, where H represents the entropy of class and

attribute defined in equation (2) [7].

 ���� � 	 ∑ �����. ��� 2 . ��������
��� (2)

Attribute or feature entropy probability of representing Y's

appearance in the sample (Qian and Qiu 2014). The info gain

of each feature in Table 1 illustrates the influence of a feature

on the target class.

TABLE I

INFO GAIN NEW ATTRIBUTE

No Attribute Info Gain

1 Frnum 0.089242981
2 Frlength 0.529487080
3 Frtimerelative 0.121711681
4 Frtimedelta 0.345625732
5 Timesincefirstfr 0.274410177
6 Ipsrc 0.637844970
7 Ipdst 0.777239369
8 Ipid 0.054491906

9 Ipchecksum 0.024829787
10 ip_len 0.555283767
11 ip_flags 0.007087164
12 Srcport 0.767573656
13 Dstport 0.772748199
14 Checksum 0.000000000
15 Tcpflags 0.025942096
16 Tcpanalysispushbytessent 0.567903101
17 Windowsize 0.727264948

Table 1 shows how good and high the influence of 17

features on the target class. Then a selection of 17 features
based on info gain values was carried out. Selection is made

by cracking. Infogain 17 features were cracked with a limit

value of ≥ 0.1. The value of 0.1 is the optimal value for

cracking. Features with info gain ≥ 0.1 were selected as the

best feature in Figure 2.

Data Acquisition Preprocess

Model Evaluation

Deep Neural Network (DNN)

Data Transformation

Data Distribution

Model Building

Model Training

Model Testing

D
a
ta

 T
ra

in
in

g

D
a
ta

 T
e
stin

g

746

Fig. 2 Feature info gain cracking results

In Figure 2. The ipdst feature with the highest value

0.777239369 is the highest info gain feature placed as the root

node feature. Furthermore, the root node feature is followed

by ten other best features: dstport, srcport, windowsize, ipsrc,

tcpanalysispushbytesent, ip_len, frlength, frtimedelta,
timesincefirst, and frtimereltive.

III. RESULTS AND DISCUSSION

A. Data Model

TABLE II

DATASETS OF THE BOTNET AND NORMAL TRAFFIC

Scenario Class Botnet Class Normal Total

1 613 738 1351

2 582 1431 2013

3 400 619 1019

4 33 38 71

5 94 144 238

6 12 13 25

7 19 48 67

8 1852 2547 4399

9 838 894 1732

10 5589 12177 17766

Total 10032 18649 28681

The data model is traffic data that is used in the deep neural

network (DNN) model. The data has 11 input and target class

parameters as outputs. The model data used amounts to

28,681 traffic records consisting of 10,032 botnet classes and

18,649 standard record classes. The number of the botnet and

normal class data from each scenario is shown in Table 2.

B. Model building environment

The DNN model is built using the R-Studio application
with a robust framework. Hard is one of the quite popular

frameworks from several other DNN frameworks such as

Thano, Tensorflow, and H2O. Hard itself is a high-level

neural network Application Programming Interface (API),

which was developed with a focus on activating fast

experiments [13]. The DNN model is built on the Asus

A442U mobile PC, with Intel Core i5-7200U CPU

specifications up to 3.1GHz, 4GB memory, and 1TB HDD.

C. Model data transformation

Before the data is used, the data was transformed first. The
transformation process carried out is two, namely

normalization, and matrix byte factor transformation.

1) Normalization: Normalization is done because the

data distribution is very diverse, so it is necessary to do data

uniformity. The normalization process is carried out on 11

new features that have been selected using the min-max

method defined in equation (3).

 

)min()max(

min'

xx

xx
x

i






(3)

To show the results of normalization require showing the

maximum value of data, and shows the minimum value of

each attribute [21]. The min-max method provides data values

with a range of values 0 and 1. Where 0 for data with

minimum values and 1 for data that values maximum.

2) Matrix byte factor: The matrix byte factor process

transforms categorical data into bytes, namely 0 and 1 [4].

Data factors are variables in the R-studio application to

represent categorical data. Categorical data is used to
categorize data as level or class data. In botnet encryption

datasets, categorical data are data classes with two choices,

namely botnet classes and standard classes. The data was

transformed into byte form where 0 was for botnet class, and

1 was for standard class. Furthermore, the data is transformed

into a matrix.

D. Data Model Distribution (Data Training and Data Testing)

TABLE III

DATA TRAINING AND DATA TESTING MODEL

No Data Training (%) Data Testing (%)

1 90 10

2 80 20

3 70 30

4 60 40

5 50 50

The process of distributing model data into training data

and test data is carried out using a random sampling approach.

So, each data has the chance to be selected as a subset of

training data and test data. The data distribution process

747

model is made of five groups of data for training and testing,

as shown in Table 3.

E. Model Architecture

The DNN model architecture is built using a hard library

and the TensorFlow library in the R-Studio application. As

explained in the model building environment, the hardness is

one framework that is quite popular in the construction of
DNN model architecture. The DNN model architects'

construction process uses several parameters such as the input

layer as input parameters, hidden layers, the number of

neurons in each hidden layer, the activation function to

activate input values in the hidden layer, and output values in

the output layer. The DNN model architecture is built using

the Rectified Linear Unit (ReLu) input activation function

defined in equation (4) [3]. Meanwhile, the output layer using

the sigmoid activation function is defined in equation (5) [18].

The DNN model architecture that is built is shown in Figure

3.

 ������� � ��!0, �$ (4)

 
e

x



1

1
xfy

(5)

Fig. 3 Deep Neural Network (DNN) model architecture

F. Model Training

The DNN model architecture is built using a hard library

and the TensorFlow library in the R-Studio application. As
explained in the model building environment, the hardness is

the training process uses the 0.01 learning rate model and five

data group models in Table 3. Models are trained with nine

scenarios. Each scenario uses a different number of params in

each scenario, and the number of iterations in each param is

also different. Params are the number of active neurons (input)

multiplied by the number of weights plus the number of biases

(biased in DNN even though they are not visible, but they

remain) on each neuron in the hidden layer. The number of

params used in the training model is 328, 653, and 1733

params shown in Table 4.

TABLE IV

PRAMS DEEP NEURAL NETWORK (DNN) MODEL

Layer Input Weight Bias Output
Number of

Params

1-Hidden 11 11 11 (11,11,11)
(11*11) + 11 =

132

2-Hidden 15 15 15 (15,15,15)
(11*15) + 15 =

180

1-Output 15 1 1 (15,1,1) (15*1) + 1 = 16

Total
132 + 180 + 16

= 328

3-Hidden 15 20 20 (15,20,20)
(15*20) + 20 =

320

Output 20 1 1 (20,1,1) (20*1) + 1 = 21

Total
132 + 180 +

320+ 21 = 653

4-Hidden 20 50 50 (20,50,50)
(20*50) + 50 =

1050

1-Output 50 1 1 (50,1,1) (50*1) + 1 = 51

Total

132 + 180 + 320

+ 1050 + 51 =

1733

The Iterations used are 5, 10, and 20 epochs. The

framework is popular in the construction of DNN model

architecture. The DNN model architects' construction process

uses several parameters such as the input layer as input

parameters, hidden layers, the number of neurons in each
hidden layer, the activation function to activate input values

in the hidden layer, and output values in the output layer. The

DNN model architecture is built using the Rectified Linear

Unit (ReLu) input activation function defined in equation (4)

[4]. Meanwhile, the output layer using the sigmoid activation

function is defined in equation (5) [18]. The DNN model

architecture that is built is shown in Figure 3. In some training

scenarios, the model accuracy increases rapidly (see Table 5).

TABLE V
MODEL TRAINING ACCURACY AND LOSS

Param Iteration
Data Training 90% Data Training 80% Data Training 70% Data Training 60% Data Training 50%

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss

328 5 epoch 84.03 0.3927 88.93 0.3011 93.13 0.2418 85.21 0.355 68.6 0.6234

653 5 epoch 93.21 0.2354 93.14 0.2375 68.18 0.6259 68.37 0.6244 68.6 0.6229

1733 5 epoch 89.51 0.2403 93.06 0.1715 68.18 0.6262 68.37 0.6245 93.09 0.2524

328 10 epoch 90.04 0.2334 89.95 0.2408 92.98 0.2609 68.37 0.6238 68.6 0.6216

653 10 epoch 93.27 0.2307 90.01 0.232 93.11 0.2361 68.37 0.6242 93.22 0.157

1733 10 epoch 93.3 0.2318 88.98 0.2456 93.1 0.1564 93.06 0.1815 92.95 0.1789

328 20 epoch 90.02 0.2378 89.95 0.234 89.94 0.2649 88.38 0.2596 89.94 0.2342

653 20 epoch 93.78 0.2098 89.82 0.2341 93.04 0.1588 93.18 0.2354 89.95 0.2333

1733 20 epoch 88.97 0.2461 93.63 0.142 89.42 0.2408 68.37 0.4966 93.20 0.2147

Training data 90% accuracy increased from 84.03 - 93.78%.

Training data model 80% accuracy 88.93 - 93.63%. Parameter

iteration training data 90% increase significantly. Accuracy

training data is 90% between 84.03-93.78%. Parameter

iteration of the training data 90% increases significantly. The

accuracy training data model is 80% between 88.93 - 93.63%.

The number of params and iterations in each training

scenario also influences the model's accuracy from the two-

748

training data. Therefore, the accuracy of the second model of

training data increases significantly in each training scenario.

90% and 80% of the training data did not show a significant

decrease in inaccuracy. Conversely, it is different from the

model on training data 70%, 60%, and 50%. The accuracy of

the three-training data looks inconsistent. However, in

specific scenarios with some params and different iterations,

the models' average accuracy from the three-training data still

looks relatively high. By the training model's objectives, the

best accuracy models from the five training data groups in
Table 4 was taken as the best model. The best model selection

is taken based on the accuracy of the highest model and the

smallest loss value, as shown in Table 6.

TABLE VI

BEST TRAINING MODEL

Data

Training (%)
Param Iteration

Accuracy

(%)
Loss

90 653 20 epoch 93.78 0.2098
80 1733 20 epoch 93.63 0.142

70 1733 10 epoch 93.1 0.1564
60 1733 10 epoch 93.06 0.1815
50 653 10 epoch 93.22 0.157

The best training model in Table 6 is the model with the

best accuracy and small loss. The five best models were taken

from five different training data groups used in the model

training process. Furthermore, the five models were tested and

evaluated. The testing process uses test data divided in Table
3, and then the model was evaluated using matrix confusion

in Figure 4.

 Prediction

 Normal Botnet

Actual
 Normal TN FP

 Botnet FN TP

Fig. 4 Matrix confusion

G. Model Analysis and Evaluation

Using matrix confusion in Figure 4, the model was

evaluated for the accuracy of detecting botnets using equation

(6). Furthermore, the model was evaluated for the precision

model level using equation (7) and the proportion of attacks

that can be recovered or the ability of the model to rediscover

botnet attacks on encryption using equation (8).

 Accuracy � TP . TN

TP.TN.FP.FN
× 100% (6)

 Precision � TP

TP.FP
× 100% (7)

 Recall � TP

TP.FN
× 100% (8)

True-Positive (TP) botnet class, correctly classified as a

botnet class. False-negative (FN) botnet class, incorrectly

classified as a normal class. True-negative (TN) normal class,

correctly classified as a normal class. False-positive (FP)

normal class, incorrectly classified as botnet class. Model

evaluation is done by entering test data in matrix confusion

showing the accuracy of detecting botnets on encryption

traffic is relatively high. The model accuracy of each data
testing in conducting botnet detection is relatively high (see

Table 7).

TABLE VII

MODEL TEST AND EVALUATION RESULTS

Data

Testing

(%)

Total

Data

Testing

Class

Target TN FP FN TP
Accuracy

(%)

Recall

(%)

Precision

(%)
Normal Botnet

10 2819 1036 1783 940 96 73 1710 94 95.91 94.68

20 5726 1996 3730 1730 266 33 3697 94.78 99.11 93.28

30 8569 2969 5600 2680 289 233 5367 93.91 95.83 94.89

40 11505 4043 7462 3655 388 294 7168 94.07 96.06 94.86

50 14472 5111 9361 5107 4 1146 8215 92.05 87.75 99.95

Table 7 shows that the accuracy and precision model levels

detect botnets are high. However, the five models in

separating botnet classes and standard information are still

incompatible with the model produced by the model, seen in

several models that detect botnet classes as standard classes

and standard classes as botnet classes. Several test data model,

namely 30%, 40%, and 50%, have a high degree of accuracy

and precision, reaching 99.95%. However, errors in detecting

botnet classes as standard classes are counted, namely 233,

294, and 1146 records. Because the error rate allows the
model cannot be used as a good detection model. Contrast 10%

test data model has the model 94-94.78% accuracy, and the

precision is between 93.28-94.68%. In detecting botnet

classes as standard classes, there are a few, namely 73 and 33

records. Compared with the three models, the model in the

test data is 10%, and 20% is still quite good.

IV. CONCLUSION

The botnet detection model on encrypted traffic using the
deep neural network (DNN) successfully detects botnets on

well-encrypted traffic. The botnet detection model in the test

data group of 20% is reasonably good in separating botnet

classes with an accuracy of 94.78%.

REFERENCES

[1] R. Prasad and V. Rohokale, Cyber Threats and Attack Overview. 2020.

doi: 10.1007/978-3-030-31703-4_2.

[2] F. Laurene, Fundamentals of Neural Network, Architectures,

Algorithm And Applications. 1994. Accessed: Feb. 08, 2023. [Online].

Available: https://dl.matlabyar.com/siavash/Neural

Network/Book/Fausett L.-Fundamentals of Neural Networks_

Architectures, Algorithms, and Applications (1994).pdf

[3] S. Chen, W. Sun, and W. Hu, “On dynamic hypervisor placement in

virtualized software defined networks (vSDNs),” International

Conference on Transparent Optical Networks, vol. 2020-July, pp. 1–

5, 2020, doi: 10.1109/ICTON51198.2020.9203137.

[4] C.-L. L. Po-Wen Chi, Chien-Ting Kuo, He-Ming Ruan, Shih-Jen Chen,

“An AMI threat detection mechanism based on SDN networks,”

SECURWARE 2014 - 8th International Conference on Emerging

Security Information, Systems and Technologies, no. c, pp. 208–211,

2014, [Online]. Available:

http://www.thinkmind.org/index.php?view=article&articleid=securw

are_2014_9_30_30142.

749

[5] W. Li, W. Meng, and L. F. Kwok, “A survey on OpenFlow-based

Software Defined Networks: Security challenges and

countermeasures,” Journal of Network and Computer Applications,

vol. 68, pp. 126–139, 2016, doi: 10.1016/j.jnca.2016.04.011.

[6] C. V. Neu, A. F. Zorzo, A. M. S. Orozco, and R. A. Michelin, “An

approach for detecting encrypted insider attacks on OpenFlow SDN

Networks,” 2016 11th International Conference for Internet

Technology and Secured Transactions, ICITST 2016, pp. 210–215,

2017, doi: 10.1109/ICITST.2016.7856698.

[7] H. L. Chen Jing, Cheng Xi, Du Ruiying and W. Chiheng, “BotGuard:

Lightweight real-time botnet detection in software defined networks,”

Wuhan University Journal of Natural Sciences, vol. 22, no. 2, pp. 103–

113, 2017, doi: 10.1007/s11859-017-1223-8.

[8] R. Hadianto and T. W. Purboyo, “A Survey Paper on Botnet Attacks

and Defenses in Software Defined Networking,” International Journal

of Applied Engineering Research, vol. 13, no. 1, pp. 483–489, 2018,

[Online]. Available: http://www.ripublication.com

[9] S. C. Su, Y. R. Chen, S. C. Tsai, and Y. B. Lin, “Detecting P2P Botnet

in Software Defined Networks,” Security and Communication

Networks, vol. 2018, 2018, doi: https://doi.org/10.1155/2018/4723862.

[10] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software Defined

Networking (SDN) Challenges, issues and Solution,” International

Journal of Computer Sciences and Engineering, vol. 7, no. 1, pp. 884–

889, 2019, doi: 10.26438/ijcse/v7i1.884889.

[11] Manoj Kumar Putchala B.E., “Deep Learning Approach for Intrusion

Detection System (Ids) in the Internet of Things (Iot) Network Using

Gated Recurrent Neural Networks (Gru),” Thesis, vol. 1, no. 1, pp.

1188–1197, 2017, [Online]. Available:

https://corescholar.libraries.wright.edu/etd_all/1848/.

[12] P. K. Hamza Mutaher, Abdul Wahid, “Openflow Controller-Based

SDN:Security Issues and Countermeasures,” International Journal of

Advanced Research in Computer Science, vol. 9, no. 2, pp. 397–401,

2018, doi: http://dx.doi.org/10.26483/ijarcs.v9i1.5498.

[13] S. Singaravel, J. Suykens, and P. Geyer, “Deep-learning neural-

network architectures and methods: Using component-based models

in building-design energy prediction,” Advanced Engineering

Informatics, vol. 38, no. May, pp. 81–90, 2018, doi:

10.1016/j.aei.2018.06.004.

[14] P. Wang, F. Ye, X. Chen, and Y. Qian, “Datanet: Deep learning based

encrypted network traffic classification in SDN home gateway,” IEEE

Access, vol. 6, pp. 55380–55391, 2018, doi:

10.1109/ACCESS.2018.2872430.

[15] F. Chollet, Deep Learning with Python. 2018, Manning Publications,

2018. [Online]. Available:

http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep Learning with

Python.pdf.

[16] U. Wijesinghe, U. Tupakula, and V. Varadharajan, “Botnet detection

using software defined networking,” 22nd International Conference

on Telecommunications (ICT 2015), no. Ict, pp. 219–224, 2015, doi:

10.1109/ict.2015.7124686.

[17] S. Gnanambal, “Classification Algorithms with Attribute Selection :

an evaluation study using WEKA,” Int. J. Advanced Networking and

Applications, vol. 3644, pp. 3640–3644, 2018, [Online]. Available:

http://oaji.net/articles/2017/2698-1528114152.pdf.

[18] K. Kim and M. E. Aminanto, “Deep learning in intrusion detection

perspective: Overview and further challenges,” Proceedings - WBIS

2017: 2017 International Workshop on Big Data and Information

Security, vol. 2018-Janua, pp. 5–10, 2018, doi:

10.1109/IWBIS.2017.8275095.

[19] G. Vormayr, T. Zseby, and J. Fabini, “Botnet Communication

Patterns,” IEEE Communications Surveys and Tutorials, vol. 19, no.

4, pp. 2768–2796, 2017, doi: 10.1109/COMST.2017.2749442.

[20] S. Gaonkar, N. F. Dessai, J. Costa, A. Borkar, S. Aswale, and P.

Shetgaonkar, “A Survey on Botnet Detection Techniques,”

International Conference on Emerging Trends in Information

Technology and Engineering, ic-ETITE 2020, pp. 1–6, 2020, doi:

10.1109/ic-ETITE47903.2020.Id-70.

[21] C. Yin, Y. Zhu, J. Fei, and X. He, “A Deep Learning Approach for

Intrusion Detection Using Recurrent Neural Networks,” IEEE Access,

vol. 5, pp. 21954–21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

750

