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Abstract— The presence of network technology eliminates regional boundaries that become obstacles in communicating and exchanging 

data and information to the public. The wider the zone of a network, the network infrastructure will increase in size. The bigger the 

network infrastructure, the higher the level of management complexity. The Software Defined Network (SDN) concept is a new network 

concept that provides a solution for managing large infrastructure networks and has a wide service zone. SDN architecture is different 

from traditional networks. The SDN architecture is divided into three: the data plane, control plane, and application plane. Whereas 

in the traditional network architecture, the three are combined into one. Besides, in maintaining network security. SDN offers a security 

system, namely the OpenFlow Protocol. The OpenFlow Protocol security system works to regulate the packet traffic that passes. 

Forwards registered packet data traffic and performs down the action for unknown packet traffic. The weakness is that the OpenFlow 

Protocol must always be updated with SDN network packet traffic, and the system cannot detect the threat of attacks on encryption 

traffic. Nowadays, the frequency of attacks on network traffic is relatively high. The attack techniques used also evolved. The techniques 

used are also evolving. Botnets have been able to use several encryption protocols such as TLS / HTTPS, Tor, and P2P as loopholes to 

attack a network. SDN's presence as a management solution for large infrastructure networks is not directly proportional to its security 

system that undoubtedly have a bad impact on SDN network users. Therefore, this study aims to develop an SDN Network Intrusion 

Detection System (IDS) model to detect botnets in encryption traffic. The model was developed using the Deep Neural Network (DNN) 

approach. The SDN network botnet detection model developed can detect encryption traffic botnets with an accuracy rate of 94.78%, 

93.28% precision, and a recall of 99.11%. 

Keywords— Botnet; deep neural network; encrypted traffic; software-defined network. 

Manuscript received 25 Jul. 2019; revised 12 Apr. 2022; accepted 28 Feb. 2023. Date of publication 30 Apr. 2023. 

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

Approximately 16-25% of computer devices connected to 

public networks are infected with botnets. Therefore, in 

securing information traffic. Network administrators utilize 
the encryption protocol, however, in carrying out attacks on 

the network. The botnet uses several encryption protocols 

such as TLS / HTTPS, Tor, and P2P as loopholes to attack 

and steal information in network traffic [1]. To overcome 

botnet attacks in network traffic, administrators take 

advantage of the Software-Define Network (SDN) network 

concept. 

SDN is a new paradigm in the world of networking. The 

basic concept of SDN networks in managing networks is by 

separating control plane devices and data planes. The SDN 

structure is divided into three main layers: application, control 
plane, and data plane. Plane and application controls are 

associated with the Application Programming Interface (API). 

Data plane and control plane are connected to the OpenFlow 

protocol. 

OpenFlow is a necessary forwarding switch device that 

forwards packets according to the flow table rules. Flow 

tables contain a set of rules consisting of matching fields, 

counters, and instructions. Matching header fields (Ethernet, 

IPV4, IPV6, or MPLS). Calculation by collecting flow 
statistics for the number of packets, bytes, and duration of 

flow. The instruction is an action command against the 

package. OpenFlow protocol has many versions, and each 

version has a difference in the set of flow table rules. 

OpenFlow version 1.0 is the most used, and in October 2013 

version 1.4 was released as the latest version. For improving 

the SDN protocol, OpenFlow security system must always be 

updated. If the OpenFlow version used is an old version, and 
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the controller is attacked, the attacker will quickly master the 

SDN network infrastructure [2]. 

Previous research was conducted by Wijesinghe, Tupakula, 

and Varadharajan [3] on OpenFlow protocol version 1.4 for 

detecting botnets on SDN networks. Furthermore, Chi et al [4] 

studied the integration of intrusion detection system (IDS) in 

SDN for the security of the advanced metering infrastructure 

(AMI) system. In this case, Li, Meng, and Kwok [5] proposed 

specifications for OpenFlow. According to him, OpenFlow 

missed the TLS protocol's security, which is often used as a 
botnet loophole to carry out attacks such as spoofing, piracy, 

DoS, and several other attacks. Neu et al [6] developed a new 

IDS instead of traditional IDS and firewall detected attacks on 

encrypted data. Research by Jing et al [7] develops detection 

of real-time botnets called bot-guards. The method used is 

graph theory by giving the lens imaging graph (CLI-graph) 

convex to the controller to describe the botnet's characteristics. 

The result is a high accuracy of 90%. 

According to Hadianto and Purboyo [8], SDN as a new 

concept that offers ease of centralized SDN security 

management, needs to be improved. As a programmable 
network, SDN can easily accept innovative ideas, especially 

the improvement in the security system it has. Therefore, this 

study aims to build a botnet detection model on traffic 

encryption for SDN network traffic. The research's scope is to 

recognize the pattern of botnet attacks on encryption traffic in 

SDN network traffic collected from secondary data CTU-

malware-capture-botnet datasets (CTU-13). Then build a 

botnet detection model using the deep neural network (DNN) 

approach.  

II. MATERIAL AND METHOD 

A. Software-Define Network (SDN) 

According to Su et al. [9] and Rana, Dhondiyal, and 

Chamoli [10], conceptually, SDN network architecture is 

divided into three layers: application plane, control plane, and 

data plane. Between the application plane and the control, the 

plane is connected to the application program interface (API). 

In the control plane layer, there are many and various network 

topology mappings. The control plane maps topology on 

network devices and simultaneously regulates packet traffic 

routing in the network. SDN access control plane using 
application web dashboard API [6]. The control plane is a 

very programmable device because the control plane can use 

any programming without being limited by specific vendors. 

This layer is a collection of network routing devices such as 

routers and switches for a data plane. Between the data plane 

and the control, the plane is connected to the OpenFlow 

protocol [11]. 

B. Botnet 

The botnet is a massive and organized collection of 
computers (zombies). The botnet is controlled by a botmaster 

or herder, both an attacker and a botnet manager [10]. The 

purpose of a botnet made by an attacker is to obtain financial 

benefits. Among various forms of malware, botnets are the 

most severe and dangerous attacks. It is a serious and 

dangerous attack because botnets can carry out attacks 

without being detected. Where botnets use encrypted 

protocols to hide in carrying out attacks and malicious 

activities such as sending spam e-mails, phishing, click fraud, 

DDos, and spreading other malicious software [12], [13], [14]. 

C. Encrypted Traffic 

Encrypted traffic is a protocol that provides confidentiality 

or better known as the encryption protocol. Encryption 

protocols usually offer communication authentication, data 

integrity, data protection, and none-repudiation. In general, all 
encryption protocols' working principle is the same and is 

divided into several phases, namely, in the first phase, 

connection initialization and encrypted data transportation are 

carried out. The first phase can still be divided into several 

phases, namely initial handshake, authentication, and creating 

a secret key. The secret key is used to encrypt the data 

transferred in the second phase. Protocols that are classified 

as encryption protocols include internet protocol security 

(IPsec), transport layer security (TLS), secure shell protocol 

(SSH), BittToren HTTPS, SSL and Skype [9]. 

D. Deep Learning 

Deep learning is a complicated version of machine learning. 

It is said to be complicated because it has a level of abstraction 

in every hidden layer. Deep learning is one method that is 

considered appropriate enough to be used to read the structure 

of complex datasets. Deep learning is often known as 

hierarchical learning or deep structural learning in order to 

read the structure of complex datasets. Deep learning 

architecture that is commonly used is the sincere belief 

network (DBN), deep neural network (DNN), and recurrent 
neural networks (RNN). The architecture has been widely 

used in the field of research, namely: speech recognition, 

computer vision, audio recognition, machine translation, and 

social network filtering [15]. 

According to Dong, Wang, and He [16], the deep learning 

method's core is its ability to automatically extract features in 

many inner layers. Deep learning algorithm provides 

excellent performance in solving complex problems. 

However, even though the deep learning algorithm for getting 

excellent performance requires configuration and accurate 

parameter determination. Without the right selection of 
parameters, a model built using the deep learning algorithm 

produced poor performance. 

E. Deep Neural Network (DNN) 

Deep neural network (DNN) is one of the classification 

methods found in deep learning [17]. DNN is an artificial 

neural network that has more than one layer of hidden layer 

units. Some hidden layer layers can solve the problem of 

calcification with complex data. Each hidden layer can learn 

features at different levels of abstraction. [18], in addition to 
being able to overcome the limitations of the hidden layer 

Neural Network (NN), the core of a deep neural network 

(DNN) can also extract features through the hidden layer 

automatically. In general, DNN architecture is the same as the 

architecture of the Neural Network (NN), which has three 

main layers: input, hidden, and output layer. The input layer 

includes the number of input parameters. The hidden layer is 

the number of neuron sets used. The output layer is the output 

of the process carried out by the hidden layer. The number of 

neurons and the number of hidden layers in the DNN model 

architecture do not have a maximum limit, which 
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distinguishes DNN from NN. The depth of the DNN 

architecture is seen from the number of hidden layers used and 

the type of hidden layers and linear or non-linear functions 

[19]. 

F. Methods 

The development of the detection model focuses on botnet 

attack patterns on encrypted traffic on the SDN network. The 

development process is divided into several different stages: 

data acquisition, Deep neural network consisting of Data 

Model Transformation, Data Distribution model, 

development of model architecture, model training, model 

testing, and model evaluation. Several stages in the research 

are shown using a flow diagram in Figure 1. 

 

 
Fig. 1  Research methods 

 

G. Data Acquisition 

The process of acquiring network traffic uses secondary 

data, namely CTU-malware-capture-botnet datasets. Capture 
Lab results. Czech Network Technical University (CTU) in 

2011. The data is published publicly and can be downloaded 

at https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-

dataset-with-botnet-normal -and-background-traffic.html. 

The CTU-malware-capture-botnet dataset is a collection of 

traffic data with 13 capture scenarios of PCAP file types. The 

acquisition of botnet traffic data and regular is only made on 

10 PCAP capture scenarios. The acquisition process is carried 

out using the Wireshark application's help and the information 

provided on the download address. The results of the 

acquisition of botnet traffic data and standard ten scenarios 
are converted to CSV files. The amount of traffic data 

obtained is 52,701 records and 49 features. 

H. Preprocess 

The preprocess stages carried out are data cleaning, 

labelling, and feature selection. Data cleaning is the stage of 

cleaning data from a missing value (NA), noisy or outlier, and 

data inconsistencies. The number of traffic obtained in the 

cleaning data process is 28,681 records and 17 new features 

from 49 features. Labeling is the process of grouping data into 
several class targets or categories [20]. Labeling is needed for 

the classification process of supervised learning to label the 

target class as output data. There are two target classes as 

output that were sent, namely botnet and normal. Next, the 

next step is to select 17 new features obtained during the data 

cleaning process. Feature selection aims to get the best 

features and influence in reflecting the target class datasets. 

Therefore, feature selection is essential, and in this case, 

feature selection is carried out based on the info gain value on 

the decision tree algorithm defined in equation (1).  

 infogain�class,attribute� � �������� 	 �������|����
����� (1) 

Where H represents the entropy of class and attributes defined 

in equation (1), before calculating the info gain of the 17 new 

features, the calculation is first made of the entropy value of 

the 17 features, where H represents the entropy of class and 

attribute defined in equation (2) [7].  

 ���� � 	 ∑ �����. ��� 2 . ��������
���   (2) 

Attribute or feature entropy probability of representing Y's 

appearance in the sample (Qian and Qiu 2014). The info gain 

of each feature in Table 1 illustrates the influence of a feature 

on the target class. 

TABLE I 

INFO GAIN NEW ATTRIBUTE 

No Attribute Info Gain 

1 Frnum 0.089242981 
2 Frlength 0.529487080 
3 Frtimerelative 0.121711681 
4 Frtimedelta 0.345625732 
5 Timesincefirstfr 0.274410177 
6 Ipsrc 0.637844970 
7 Ipdst 0.777239369 
8 Ipid 0.054491906 

9 Ipchecksum 0.024829787 
10 ip_len 0.555283767 
11 ip_flags 0.007087164 
12 Srcport 0.767573656 
13 Dstport 0.772748199 
14 Checksum 0.000000000 
15 Tcpflags 0.025942096 
16 Tcpanalysispushbytessent 0.567903101 
17 Windowsize 0.727264948 

 

Table 1 shows how good and high the influence of 17 

features on the target class. Then a selection of 17 features 
based on info gain values was carried out. Selection is made 

by cracking. Infogain 17 features were cracked with a limit 

value of ≥ 0.1. The value of 0.1 is the optimal value for 

cracking. Features with info gain ≥ 0.1 were selected as the 

best feature in Figure 2. 
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Fig. 2  Feature info gain cracking results 

 

In Figure 2. The ipdst feature with the highest value 

0.777239369 is the highest info gain feature placed as the root 

node feature. Furthermore, the root node feature is followed 

by ten other best features: dstport, srcport, windowsize, ipsrc, 

tcpanalysispushbytesent, ip_len, frlength, frtimedelta, 
timesincefirst, and frtimereltive. 

III. RESULTS AND DISCUSSION 

A. Data Model 

TABLE II 

DATASETS OF THE BOTNET AND NORMAL TRAFFIC 

Scenario Class Botnet Class Normal Total 

1 613 738 1351 

2 582 1431 2013 

3 400 619 1019 

4 33 38 71 

5 94 144 238 

6 12 13 25 

7 19 48 67 

8 1852 2547 4399 

9 838 894 1732 

10 5589 12177 17766 

Total 10032 18649 28681 

 

The data model is traffic data that is used in the deep neural 

network (DNN) model. The data has 11 input and target class 

parameters as outputs. The model data used amounts to 

28,681 traffic records consisting of 10,032 botnet classes and 

18,649 standard record classes. The number of the botnet and 

normal class data from each scenario is shown in Table 2. 

B. Model building environment 

The DNN model is built using the R-Studio application 
with a robust framework. Hard is one of the quite popular 

frameworks from several other DNN frameworks such as 

Thano, Tensorflow, and H2O. Hard itself is a high-level 

neural network Application Programming Interface (API), 

which was developed with a focus on activating fast 

experiments [13]. The DNN model is built on the Asus 

A442U mobile PC, with Intel Core i5-7200U CPU 

specifications up to 3.1GHz, 4GB memory, and 1TB HDD. 

 

 

C. Model data transformation 

Before the data is used, the data was transformed first. The 
transformation process carried out is two, namely 

normalization, and matrix byte factor transformation. 

1) Normalization: Normalization is done because the 

data distribution is very diverse, so it is necessary to do data 

uniformity. The normalization process is carried out on 11 

new features that have been selected using the min-max 

method defined in equation (3).  
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xx
x

i






 
(3) 

To show the results of normalization require showing the 

maximum value of data, and shows the minimum value of 

each attribute [21]. The min-max method provides data values 

with a range of values 0 and 1. Where 0 for data with 

minimum values and 1 for data that values maximum.  

2) Matrix byte factor: The matrix byte factor process 

transforms categorical data into bytes, namely 0 and 1 [4]. 

Data factors are variables in the R-studio application to 

represent categorical data. Categorical data is used to 
categorize data as level or class data. In botnet encryption 

datasets, categorical data are data classes with two choices, 

namely botnet classes and standard classes. The data was 

transformed into byte form where 0 was for botnet class, and 

1 was for standard class. Furthermore, the data is transformed 

into a matrix. 

D. Data Model Distribution (Data Training and Data Testing) 

TABLE III 

DATA TRAINING AND DATA TESTING MODEL 

No Data Training (%) Data Testing (%) 

1 90 10 

2 80 20 

3 70 30 

4 60 40 

5 50 50 

 

The process of distributing model data into training data 

and test data is carried out using a random sampling approach. 

So, each data has the chance to be selected as a subset of 

training data and test data. The data distribution process 
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model is made of five groups of data for training and testing, 

as shown in Table 3. 

E. Model Architecture 

The DNN model architecture is built using a hard library 

and the TensorFlow library in the R-Studio application. As 

explained in the model building environment, the hardness is 

one framework that is quite popular in the construction of 
DNN model architecture. The DNN model architects' 

construction process uses several parameters such as the input 

layer as input parameters, hidden layers, the number of 

neurons in each hidden layer, the activation function to 

activate input values in the hidden layer, and output values in 

the output layer. The DNN model architecture is built using 

the Rectified Linear Unit (ReLu) input activation function 

defined in equation (4) [3]. Meanwhile, the output layer using 

the sigmoid activation function is defined in equation (5) [18]. 

The DNN model architecture that is built is shown in Figure 

3. 

 ������� �  ��!0, �$ (4) 
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Fig. 3  Deep Neural Network (DNN) model architecture 

F. Model Training 

The DNN model architecture is built using a hard library 

and the TensorFlow library in the R-Studio application. As 
explained in the model building environment, the hardness is 

the training process uses the 0.01 learning rate model and five 

data group models in Table 3. Models are trained with nine 

scenarios. Each scenario uses a different number of params in 

each scenario, and the number of iterations in each param is 

also different. Params are the number of active neurons (input) 

multiplied by the number of weights plus the number of biases 

(biased in DNN even though they are not visible, but they 

remain) on each neuron in the hidden layer. The number of 

params used in the training model is 328, 653, and 1733 

params shown in Table 4.  

TABLE IV 

PRAMS DEEP NEURAL NETWORK (DNN) MODEL 

Layer Input Weight Bias Output  
Number of 

Params 

1-Hidden 11 11 11 (11,11,11) 
(11*11) + 11 = 

132 

2-Hidden 15 15 15 (15,15,15) 
(11*15) + 15 = 

180 

1-Output 15 1 1 (15,1,1) (15*1) + 1 = 16 

Total    
132 + 180 + 16 

= 328 

3-Hidden 15 20 20 (15,20,20) 
(15*20) + 20 = 

320 

Output 20 1 1 (20,1,1) (20*1) + 1 = 21 

Total   
132 + 180 + 

320+ 21 = 653 

4-Hidden 20 50 50 (20,50,50) 
(20*50) + 50 = 

1050 

1-Output 50 1 1 (50,1,1) (50*1) + 1 = 51 

Total   

132 + 180 + 320 

+ 1050 + 51 = 

1733 

 

The Iterations used are 5, 10, and 20 epochs. The 

framework is popular in the construction of DNN model 

architecture. The DNN model architects' construction process 

uses several parameters such as the input layer as input 

parameters, hidden layers, the number of neurons in each 
hidden layer, the activation function to activate input values 

in the hidden layer, and output values in the output layer. The 

DNN model architecture is built using the Rectified Linear 

Unit (ReLu) input activation function defined in equation (4) 

[4]. Meanwhile, the output layer using the sigmoid activation 

function is defined in equation (5) [18]. The DNN model 

architecture that is built is shown in Figure 3. In some training 

scenarios, the model accuracy increases rapidly (see Table 5). 
 

TABLE V 
MODEL TRAINING ACCURACY AND LOSS 

Param Iteration 
Data Training 90% Data Training 80% Data Training 70% Data Training 60% Data Training 50% 

Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss 

328 5 epoch 84.03 0.3927 88.93 0.3011 93.13 0.2418 85.21 0.355 68.6 0.6234 

653 5 epoch 93.21 0.2354 93.14 0.2375 68.18 0.6259 68.37 0.6244 68.6 0.6229 

1733 5 epoch 89.51 0.2403 93.06 0.1715 68.18 0.6262 68.37 0.6245 93.09 0.2524 

328 10 epoch 90.04 0.2334 89.95 0.2408 92.98 0.2609 68.37 0.6238 68.6 0.6216 

653 10 epoch 93.27 0.2307 90.01 0.232 93.11 0.2361 68.37 0.6242 93.22 0.157 

1733 10 epoch 93.3 0.2318 88.98 0.2456 93.1 0.1564 93.06 0.1815 92.95 0.1789 

328 20 epoch 90.02 0.2378 89.95 0.234 89.94 0.2649 88.38 0.2596 89.94 0.2342 

653 20 epoch 93.78 0.2098 89.82 0.2341 93.04 0.1588 93.18 0.2354 89.95 0.2333 

1733 20 epoch  88.97 0.2461 93.63 0.142 89.42 0.2408 68.37 0.4966 93.20 0.2147 

 

Training data 90% accuracy increased from 84.03 - 93.78%. 

Training data model 80% accuracy 88.93 - 93.63%. Parameter 

iteration training data 90% increase significantly. Accuracy 

training data is 90% between 84.03-93.78%. Parameter 

iteration of the training data 90% increases significantly. The 

accuracy training data model is 80% between 88.93 - 93.63%. 

The number of params and iterations in each training 

scenario also influences the model's accuracy from the two-
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training data. Therefore, the accuracy of the second model of 

training data increases significantly in each training scenario. 

90% and 80% of the training data did not show a significant 

decrease in inaccuracy. Conversely, it is different from the 

model on training data 70%, 60%, and 50%. The accuracy of 

the three-training data looks inconsistent. However, in 

specific scenarios with some params and different iterations, 

the models' average accuracy from the three-training data still 

looks relatively high. By the training model's objectives, the 

best accuracy models from the five training data groups in 
Table 4 was taken as the best model. The best model selection 

is taken based on the accuracy of the highest model and the 

smallest loss value, as shown in Table 6. 

TABLE VI 

BEST TRAINING MODEL 

Data 

Training (%) 
Param Iteration 

Accuracy 

(%) 
Loss 

90 653 20 epoch  93.78 0.2098 
80 1733 20 epoch 93.63 0.142 

70 1733 10 epoch 93.1 0.1564 
60 1733 10 epoch  93.06 0.1815 
50 653 10 epoch  93.22 0.157 

The best training model in Table 6 is the model with the 

best accuracy and small loss. The five best models were taken 

from five different training data groups used in the model 

training process. Furthermore, the five models were tested and 

evaluated. The testing process uses test data divided in Table 
3, and then the model was evaluated using matrix confusion 

in Figure 4. 

 Prediction 

 Normal  Botnet  

Actual  
 Normal  TN FP 

 Botnet  FN TP 

Fig. 4  Matrix confusion 

G. Model Analysis and Evaluation 

Using matrix confusion in Figure 4, the model was 

evaluated for the accuracy of detecting botnets using equation 

(6). Furthermore, the model was evaluated for the precision 

model level using equation (7) and the proportion of attacks 

that can be recovered or the ability of the model to rediscover 

botnet attacks on encryption using equation (8). 

 Accuracy �  TP . TN

TP.TN.FP.FN
× 100% (6) 

 Precision �  TP

TP.FP
× 100% (7) 

 Recall � TP

TP.FN
× 100% (8) 

True-Positive (TP) botnet class, correctly classified as a 

botnet class. False-negative (FN) botnet class, incorrectly 

classified as a normal class. True-negative (TN) normal class, 

correctly classified as a normal class. False-positive (FP) 

normal class, incorrectly classified as botnet class. Model 

evaluation is done by entering test data in matrix confusion 

showing the accuracy of detecting botnets on encryption 

traffic is relatively high. The model accuracy of each data 
testing in conducting botnet detection is relatively high (see 

Table 7). 

TABLE VII 

MODEL TEST AND EVALUATION RESULTS 

Data 

Testing 

(%) 

Total 

Data 

Testing 

Class  

Target TN FP FN TP 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 
Normal Botnet 

10 2819 1036 1783 940 96 73 1710 94 95.91 94.68 

20 5726 1996 3730 1730 266 33 3697 94.78 99.11 93.28 

30 8569 2969 5600 2680 289 233 5367 93.91 95.83 94.89 

40 11505 4043 7462 3655 388 294 7168 94.07 96.06 94.86 

50 14472 5111 9361 5107 4 1146 8215 92.05 87.75 99.95 

 

Table 7 shows that the accuracy and precision model levels 

detect botnets are high. However, the five models in 

separating botnet classes and standard information are still 

incompatible with the model produced by the model, seen in 

several models that detect botnet classes as standard classes 

and standard classes as botnet classes. Several test data model, 

namely 30%, 40%, and 50%, have a high degree of accuracy 

and precision, reaching 99.95%. However, errors in detecting 

botnet classes as standard classes are counted, namely 233, 

294, and 1146 records. Because the error rate allows the 
model cannot be used as a good detection model. Contrast 10% 

test data model has the model 94-94.78% accuracy, and the 

precision is between 93.28-94.68%. In detecting botnet 

classes as standard classes, there are a few, namely 73 and 33 

records. Compared with the three models, the model in the 

test data is 10%, and 20% is still quite good. 

IV. CONCLUSION 

The botnet detection model on encrypted traffic using the 
deep neural network (DNN) successfully detects botnets on 

well-encrypted traffic. The botnet detection model in the test 

data group of 20% is reasonably good in separating botnet 

classes with an accuracy of 94.78%. 
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