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Abstract— Action and gesture recognition is essential in computer vision because of their multiple and potential applications. Nowadays, 

in the literature, dramatic advances have been reported regarding recognizing gestures and actions under uncontrolled scenarios with 

significant appearance and motion variations. Nevertheless, much of these approaches still require manual segmentation of temporal 

action boundaries and complete processing of whole sequences to obtain a prediction. This work introduces a novel motion description 

that can recognize actions and gestures over partial sequences. The approach starts by representing video sequences as a set of key-

point trajectories. Such trajectories are then hierarchically represented from a local and regional perspective, following a statistical 

counting process. Firstly, each trajectory is defined as a binary occurrence pattern that allows for standing out critical motions by 

neighborhood densities from a local perspective. Such occurrence patterns are involved in a regional bag-of-words representation of 

actions. Both representations could be obtained for any interval inside the video, achieving a partial recognition of motion, and regional 

representation is mapped to a support vector machine to obtain a prediction. The proposed approach was evaluated on academic action 

recognition datasets and a large gesture dataset used for sign recognition. Regarding partial video sequence recognition, the proposed 

approach achieves an accuracy rate of 63% using only 20% of frames. The proposed strategy achieved a very compact description, 

with only 400 scalar values, which ideal for online applications. 
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I. INTRODUCTION

Recognizing human actions is a fundamental task in many 

areas and applications, such as surveillance and crowd control 

[1], automatic annotation of human actions in videos [2] and 
video indexing [3], analysis of sports videos [4], HCI 

applications [5] and gesture-based video games interaction [6], 

among other examples [7]. Nevertheless, such applications 

hardly offer ideal conditions concerning environmental 

factors, which difficult the action characterization. The 

typical challenges are reported because of scene variations 

such as different shapes and clothing, scale changes, and 

background movement. Substantial variations of the object of 

interest concerning the geometry, appearance, and motion 

patterns can also difficult the task of identification and 

recognition. 
Action recognition has been approached with strategies 

such as representation with human silhouettes, Spatio-

temporal patches, motion primitives, and exhaustive learning 

strategies that aim to comprehend motion patterns using 

significant amounts of data. These approaches have reached 

significant results regarding predicting and modeling actions, 

even in complex scenarios and with abrupt changes of 

dynamic modeling of activities. Nevertheless, these 

approaches are dependent on a temporal segmentation of 

activities, which strongly restrict their use on streaming 

activity prediction and online applications [8]. 
Classical approaches model actions from geometric 

primitives are computed from temporal silhouettes [9] to local 

representations that deal with occlusion problems [10]. These 

approaches are generally limited to describing global or 

appearance-based changes along time, losing dynamic 

representation that could be determinant to differentiate 

among comparable actions. A set of kinematic primitives 

have been explored to represent activities to overcome such 

limitations, which include optical flow descriptors [11], [12], 

tracking approaches, and current strategies based on long 

motion trajectories [13]–[15]. These trajectories and motion-

based approaches include deep local representations that 
allow facing with complex real-life action datasets. However, 
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such representations require a complete motion sequence 

characterization to explore the coding activities. 

Currently, exhaustive, deeply, and in some cases, recurrent 

learning strategies have emerged to represent activities in 

videos robustly. These approaches report state-of-the-art 

results regarding the accuracy of predicting and recognizing 

actions in very complex and large datasets [16]. Nevertheless, 

these approaches still require extensive training data and 

demand many hyper-parameters to represent the actions with 

a proper performance [17]. A significant limitation of these 

approaches is the dependency of temporal boundary priors 
that delimit actions to learn and predict activities. In such 

cases, deep and convolutional architectures require complete 

video-sequences to learn spatial and temporal patterns that are 

associated with actions of interest [18]. Some recent 

approaches have used recurrent structures to exploit temporal 

relationships but still require large datasets to detect and 

identify actions [8] virtually. Also, one-shot strategies have 

emerged from such deep architectures allowing to predict and 

anticipate action [19]. This recent approach is, however, 

limited to very controlled and motion structured datasets. 

This work introduces a robust and compact action 
recognition strategy with the capability to predict high-level 

instances at frame level or partial video-sequences. The 

approach is based on an occurrence model of key-motion 

points that are tracked as long trajectories along with the video. 

Such trajectory points serve as support to locally quantify 

critical motion density around each trajectory. A binary 

Spatio-temporal point process is then defined as an 

occurrence measure of key-points around each trajectory and 

following a circular grid to perform the process. According to 

a local occurrence threshold, each cell inside the circular grid 

is discretized on a binary base. Such bit-vector representation 
constitutes a local motion descriptor that allows forming a 

dictionary of bit-vectors to code each of the video sequences. 

Then, for any video sequence interval, the computed bit-

occurrence-vectors are mapped to the previously trained 

dictionary to obtain a frame occurrence descriptor 

representing the action or gesture present on a particular 

sequence. This frame-occurrence-descriptor is mapped to a 

previously trained machine learning algorithm to obtain an 

automatic prediction. The strategy is very compact and usable 

on online recognition applications. 

On the one hand, the local bit-vector occurrence has an 

average size of 51 scalar values, while the frame-occurrence-
descriptor has 400 values. For online action recognition, the 

proposed approach achieved 63% and 64% accuracy using 

only the 20% and 15% of the elapsed video for KTH and 

Weizmann's public datasets, respectively. Regarding gesture 

recognition, the proposed approach achieved an average score 

of 89%, using a total of 64 signs, recorded in a total of 3200 

sequences. The proposed approach achieved an accuracy of 

66% for partial video-sequence recognition using 65% of the 

elapsed video in such gesture dataset. A preliminary version 

of this article has appeared in Garzón et al. [20]. This paper is 

organized as follows: Section II consists of an in-depth review 
of a set of strategies that focused on local binary patterns to 

describe several images and video primitives in action 

classification and recognition tasks. Then, Section III 

introduces the proposed approach that model the occurrence 

of key-motion points as LBP patterns to code developed 

actions, with the capability to code information at frame-level, 

which results in useful for online applications. Then, in 

Section IV, the proposed approach is widely evaluated using 

several actions and gesture recognition public datasets. 

Finally, some final conclusions are developed in Section V. 

II. MATERIALS AND METHOD 

It has been widely demonstrated that local features achieve 
a more robust characterization of non-trivial objects during 

years, like humans developing complex actions. Among these 

descriptors, the Local Binary Patterns (LBP) have 

demonstrated relevant results on many different applications, 

ranged from texture classification, object detection, and video 

analysis [21], [22]. The principle of LBP is to measure local 

differences around central interest points and to code such 

differences in a bit-string vector. This binary vector 

representation, generated from a bit-vector quantification, 

allows robustly describing each key points information as a 

signature within a bounded space. For doing so, it was defined 
as a metric to compare neighborhood points, where positive 

differences concerning the center points are marked as one, 

and otherwise, the bit (of differences) is fixed as zero. 

Specifically, for action recognition strategies, the LBP 

descriptors represent complex action dynamics by coding 

texture difference patterns and kinematic primitives computed 

from optical flow fields. A modification of this descriptor, the 

local ternary patterns (LTP), was proposed to compute coded 

human shapes over orthogonal planes in video sequences. 

This approach allowed a temporal analysis of shapes 

representing actions but resulted in the sensible to occlusion 

and limited to static camera captures [23]. The local trinary 
patterns, proposed by Yeffet et al. [24], are locally built 

Spatio-temporal texture descriptors that robustly represented 

complex sequences, even over challenging light conditions. In 

such a strategy, a high-level representation is achieved by 

occurrence histograms of these trinary patterns. Nevertheless, 

such an approach required complete video sequences to 

achieve a proper representation of the recorded phenomenon. 

Complementary, Nguyen et al. [25] integrated LBP and 

LTP descriptors, allowing to follow patches along time. This 

strategy codified velocity and texture descriptors from local 

positions but was limited to static backgrounds. In this last 
case, with challenging scenes, the descriptor could be focused 

only on background patterns. These LBP strategies have been 

extended and integrated on RGBD sequences regarding depth 

information, as Depth Motion Maps (DMMs). The LBP has 

also been integrated on CNN’s deep architectures for texture 

recognition, achieving complementary deep representation 

and enhancing image classification results [26]. Besides, the 

deep learning strategy, named TEX-Nets, was proposed to 

approach the dense expression of texture patterns by starting 

with a projection of LBP codes into a 3D metric space [27]. 

This work introduces a novel approach that spatially 
models motion key-points by considering local occurrence 

measures. As visual systems that codify spatial distribution of 

points to represent and identify complex actions, the proposed 

approach stands out with a dense local representation and 

coherent global distribution at each frame. These points are 

taken from the decomposition of motion trajectories that 

followed the main object of interest into a video sequence. 

Then, such points are described according to the occurrence 
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motion trajectory in the neighborhood. The shape distribution 

of such issues is coded into a circular grid and binarized 

according to a particular threshold. An additional 

modification was herein presented that considered each 

spatial distribution of key-points by weighting the occurrence 

with the sum of norm velocities of points inside the circular 

grid. Such local occurrence descriptors are projected to a 

dictionary to obtain a partial mid-level representation of 

actions at each frame. Then, at any video sequences interval, 

the resulting descriptor is projected to a machine learning 

strategy to achieve an automatic action recognition. The 
pipeline of the proposed approach is represented in Figure 1. 

A preliminary version of this work appeared in Garzón et al. 

[20]. 

 

 
Fig. 1 General outline of the proposed approach: (a) For any frame �� motion 

trajectories are obtained. (b) In order to perform an LBP-based analysis for 

motion vector codification, a concentric circular grid is defined. (c) A 

regional dictionary-based representation is created from a vector of motion 

density, and (d) a label ������ for each frame �� of the sequence is assigned to 

obtain a prediction. 

A. Motion Trajectories Representation 

Dense motion trajectories have become a reference point 

on video analysis to locally represent and stand out points 

with motion coherence along a particular period of a video 

sequence [15]. These primitives are a set of motion 

trajectories that densely follows velocity patterns computed 

from a Farneback dense optical flow field �� 	 �
� , ��� . 

Hence, it is defined as a regular grid in a particular frame, 

from which is taken velocity pixel patterns. These selected 

velocity vectors point out to the next position that will be 

tracked. Then, each motion trajectory is computed by 

concatenating these spatial-points �
� , 
���, 
���, . . . , 
���� 
according to the corresponding velocity vectors. These 

motion trajectories are bounded in a fixed interval of N frames 

to prevent corrupt motion incoherence along the codified 

paths. These problems could occur because video sequences 

are captured under changing illumination conditions, with 

additional partial occlusion or abrupt changes of perspective. 

In this work, the set of motion trajectories P, computed 

from a video, constituted a primary kinematic action 

representation. These trajectories are additionally filtered out 

to remove paths without relevant dynamic information. For 

instance, the static trajectories (small ��, �� displacement) or 
trajectories with sudden motion patterns between consecutive 

frames are removed from the representation. The resulting 

filtered paths then mainly represent the dynamic of the object 

of interest (see Figure 2), whose density allows to highlight 

local and regional signatures of the actions statistically. In this 

work, we consider that motion trajectories have sufficient 

information about the kinematics of activities, and therefore 

they are used exclusively to code descriptors. Additional 

appearance patterns could restrict the flexibility of 

representation on particular actions and gestures herein 

evaluated. 

 

 
Fig. 2 Top row: a collection of frames related to six different actions from 

KTH dataset. Middle row: motion trajectories associated with six different 

actions. Bottom row: red pixels were demonstrating active trajectories over a 

high-contrast background frame. 

B. Kinematic Occurrence Binary Patterns (ToBPs) 

A set of significant local kinematic patterns are herein 

coded around each point, at the frame level, of motion 

trajectories to represent video sequences activities. Each 

motion point is then described by the density of motion 

information around its neighborhood and coded into a circular 

grid. This occurrence coding is technically defined as a spatial 

point process composed of spatial point trajectories that fall 

inside a bounded local region. Hence, each active trajectory, 

in a particular frame t, is modeled as a random variable  � 	
������, �����, . . . , ������, whose density defined a particular 
signature of the point on the study. 

For doing so, the trajectory counting process is 

implemented by fixing a set of circles, split up at several 

angles. This configuration allows increasing resolution of 

occurrence process into the defined circular region. 

Specifically, the sub-regions ��  bounded by �  concentric 

circles and � angular divisions stored occurrence patterns of 

spatial kinematic patterns. These patterns could be fixed by 

merely coding the number of point trajectories but eventually 

could store such points' velocity norm to recover high 
kinematic levels. A more detailed description of two 

alternatives for representing actions is described as follows:  

1)  Occurrence Motion Patterns (ToBPs):  A first 

approximation of local occurrence-based representation, 

around each spatial point trajectory, was herein carried out by 

considering the spatial distribution of spatial motion points. 

Spatial distribution of points is measured as occurrences at 

each segment of a grid circle, following an operator like LBP 

(ToBPs). Additionally, to form binary information, a Minimal 

Number of Trajectories (MNT) threshold � is defined to fix 

each grid segment with a value one or zero, according to the 

occurrence pattern. Then, the set of points � �
����� ��,��� ��, . . . ,��� !��  where a function �� 

compares each value  � with � to form the bit-vector string. 

The coding of this feature vector is defined as: 

 
:	 ∑ 2�%���� ���&�&'⋅)  (1) 

2)  Speed-based Motion Patterns (SBPs):  A second 
scheme calculates the amount of motion (speed) inside each 

bounded subregion ��. This amount of motion is obtained by 
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accumulating the total displacement of each neighboring 

trajectory inside each subregion ��. That is, for each trajectory 

��* occurring inside ��, total displacement is defined as +���*� 

and speed inside each bounded region �� as: 

 ,���� 	 ∑ +���*��-*
∈/0

 (2) 

Such accumulation is compared with a given threshold 

using a function that evaluates if there is a minimal quantity 

of motion (MQM) and then, a feature vector will carry out the 
binary-codified values representing each atomic signature. 

Then, any temporal interval 1�  representation is herein 

achieved by considering a boundary 2 composed of a set of l-

dimensional ToBPs points �
�, 
�, . . . , 
3�, code from any of 

two previously defined configurations for each motion point. 

This 2  representation locally code actions from occurrence 

kinematic patterns coded in ToBPs. The bit-string 

representation achieved a compact and robust model that 

allows a fast computation of action variations. 
 

 
Fig. 3 Explained LBP-based scheme: delimited subregions �� associated with 

motion density  �  are translated to a value of 1 (when  � 4 � ) or 0 

alternatively. If the amount of trajectories is not acceptable, subregions are 

removed from the scheme. 

C. Bag of Local Occurrence Binary Patterns 

Bag-of-visual-words is a natural strategy to codify local 
patches, images, and videos and obtain mid-level 

representations. This strategy allows representing high-level 

concepts by computing occurrence histograms of local key 

descriptors regarding a previously learned dictionary. This 

mid-level representation scheme was herein adopted by using 

the set of motion-words as the local representation of ToBPs 

patterns, captured over a specific boundary interval 2. From 

such ToBPs is computed a dictionary of more representative 

motion words, and then a mid-level occurrence histogram is 

computed for any interval of frames into the video sequence. 

Firstly, It was recovered a ToBPs dictionary with more 
relevant motion patterns from a training set. For doing so, a 

K-means algorithm was herein implemented to compute 

principal K-centroids over the set of training ToBPs patterns, 

which correspond to the mean samples of corresponding k-

clusters. Mainly, the set of k centroids 2 	 56�, 6�, . . . , 6!7 ∈

ℜ9:! are extracted by an iterative function that tried to group 
each of the points in the respective k group, which represent 

the minimal distance, to the centroid 2�;�, following the next 

objective function: 

 2�;� 	 �< =* 	∑>
?@� ∑ ‖
���? B 6!‖�

�C
!@�  (3) 

This dictionary coded the main ToBPs motion patterns 

across all activities and the whole set of training videos. Under 

this assumption, activities are defined as maximal occurrences 

of a particular set of centroids, flexible enough to obtain other 

patterns into the representation. Hence, for a particular frame 

(or set of frames Δt) it is computed the ToBPs motion patterns 

and is projected to the learned ToBPs dictionary. Each of the 

projected points is measured w.r.t. each centroid, to define the 

centroid's contribution in the representation concerning 

Euclidean distance s. The centroid i with minimal distance is 

counted in the respective bin of an occurrence histogram. 

Once all points are projected and measured, the resulting 

histogram is normalized, resulting in the current action 

representation for this interval of time. 

This mid-level representation is robust to noisy scenarios, 
problems with occlusion and complex backgrounds 

containing a remaining dynamic of other activities. Besides, 

once the dictionary is trained, the occurrence histogram 

representation can operate at any interval of time, ranging 

from the simple frame-level representation to the complete 

video sequence representation. 

D. Action Classification and Recognition of ToBPs 
Occurrence Histograms 

The resulting ToBPs occurrence histograms are herein used 

to predict a particular action label, a relationship that it is 

modelled from a high-level machine learning algorithm. In 

such a case, we use a classical scheme of supervised machine 

learning strategies, being the occurrence histograms ��  the 

features and the corresponding action ��  the label to be 

predicted. In this case, the set of training video sequences, are 

also herein used to compute a set of  ��� , ���  occurrence 

histograms that, together with labels allowed to fix boundaries 
into the machine learning strategies. We aimed to attain a 

favorable balance between accuracy and prediction time, and 

following such lines, the Random Forest classification (RF), 

and the Support Vector Machine (SVM) were considered to 

perform this analysis. Particularly, Random Forest 

classification (RF) reaches stable results outperforming much 

of the other machine learning alternatives. This RF strategy 

tried to model action representation space as a tree-based 

partition but learned from a set of decision tree classifiers 

(DT). Because the Gini-algorithm that optimize the branches 

of these trees can change abruptly from one representation to 

the other, the set of trees mitigate such fact by considering the 
confidence of the results as a voting approach of a group of 

DT classifiers. Also, the multi-class adaptation of Support 

Vector Machines (SVM) was evaluated using two different 

kernel configurations: the linear and Radial Basis Function 

(RBF) [28]. The linear kernel allows a fast performance on 

prediction task but assuming non-linear dependencies among 

ToBPs descriptors. In contrast, the RBF deal with non-linear 

representations, allowing a more accurate boundary definition 

theoretically but requiring a significant time on prediction to 

define the region of classes. 

 

 
Fig. 4 Suggested classification strategies, namely: (a) Support Vector 

Machines, (b) Random Forest and (c) Decision Trees. 
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E. Data 

An exhaustive evaluation was performed over four 

academic datasets of labeled video sequences to validate the 

proposed strategy. Three of these datasets are compiled for 

action recognition in general, while the last dataset is 
specialized in the task of gesture recognition. The used 

datasets are described as follows: 

1) Twenty-five different subjects execute the KTH dataset 

[29], featuring six human actions. The experimental setup was 

considered as training (760 sequences), testing (863 

sequences), and validation (768 sequences). The videos were 

recorded on open scenarios, with some variations in 

background and camera transformations. The resolution of 

each frame is 160x120 with a temporal resolution of 24 fps. 

On average, for these videos were captured 908 trajectories. 

2) The Weizmann dataset [30] contains ten actions spread 
over 90 sequences with an evaluation using a leave-one-out 

strategy. These videos were captured with a common 

background, but the action dynamics are more challenging 

w.r.t to the previous dataset. Each of the videos has a spatial 

resolution of 180x144 with a temporal resolution of 50 fps. In 

average, for these videos were captured 457 trajectories. 

3) The UT-Interaction dataset [31] includes surveillance 

sequences that were captured in uncontrolled scenarios and 

separated into two sets of 60 video sequences, containing 6 

actions. A 10-fold leave-one-out method was performed, as 

suggested by the authors. This dataset has important 

variations in background and high variability on developed 
actions. One of the sets was recorded with camera jitters, and 

the background has other actions. A spatial resolution of 

720x480 with 30 fps is featured. 

4) The LS64 gesture recognition dataset was included in 

order to assess the robustness of the proposed method. The 
LSA64 dataset [32] features 64 gestures performed by ten 

subjects in 5 different scenarios. LSA64 features 3200 videos 

starting with a motionless segment. These videos were 

recorded with colored markers that better shape hands that 

develop the gestures. Nevertheless, the proposed approach 

only takes the dynamic information captured on dense motion 

trajectories. Handshape modeling is beyond the scope of this 

work. The video sequences have an original resolution of 

1920x1080 with 60 fps. On average, for each video sequence 

was captured, 518 motion dense trajectories. 

III. RESULTS AND DISCUSSION 

The entire components of the proposed strategy were 

herein widely evaluated on four public datasets. This 

evaluation's main objective was to analyze the performance of 

motion occurrence patterns in modeling dynamic actions. The 

proposed approach was evaluated in two different tasks: 1) for 

action classification, using the whole video sequence and 2) 

for action recognition using a frame-level representation and 

varying the temporal intervals of representation. Also, for 
each of these tasks, the two occurrence representations were 

evaluated, i.e., the ToBPs (trajectory occurrence binary 

patterns) and the SBPs (speed occurrence binary patterns). In 

the next subsections, the developed experiments are fully 

described. 

A. Action Classification from Motion Occurrence-Based 
Descriptors 

In this evaluation, a complete description of activities was 

captured by coding all possible ToBP and SBP descriptors, 

which are mapped to a dictionary to obtain a complete 
histogram occurrence descriptor of the actions. The 

evaluation is explained for each local descriptor, as follows: 

1) Action ToBPs Classification:  An evaluation of 

different parameters was carried out to adjust the proposed 

descriptor in other datasets to assess ToBPs motion 

descriptor's performance. Firstly, a spatial circular grid 

analysis was carried out to find the best configuration to 

describe the recorded actions. Tables 1 to 4 shows the 

performance obtained for the different action’s classification 

datasets, namely KTH, Weizmann and UT (in both subsets), 

respectively. Initially, in Table 1, the KTH dataset's obtained 
results were reported by varying the tuple (γ,r) and measuring 

the performance concerning the accuracy in the classification 

task. As observed in Table 1, the best configuration was 

acquired with the tuple (γ=8,r=6), which suggests that it is 

required a major spatial domain to describe motion points. In 

contrast, such radial space only needed a six-pixel radial 

partition because of the sparse nature of trajectories to 

represent these activities. 

TABLE I 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR KTH DATASET 

γ 
r (px) 

6 8 10 

4 87.40 89.11 89.11 
5 89.57 88.54 88.20 
6 89.46 88.77 87.28 
7 87.74 86.71 86.48 
8 90.03 87.51 87.06 

 

Also, in Table 2 is reported the same analysis for 
Weizmann dataset. It should be noted that in this dataset, the 

best configuration was described in a tuple: (γ=5,r=10).  

TABLE II 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR WEIZMANN 

DATASET 

γ 
r (px) 

6 8 10 

4 76.67 76.67 73.33 
5 73.33 72.22 78.88 
6 74.44 72.22 72.22 
7 75.56 73.33 71.11 
8 78.88 71.11 71.11 

 

Contrary to KTH, this dataset requires an increased 

resolution of occurrence descriptor (increased radial splitting) 

and because the density of trajectories required only 5 

concentric circles distributed spatially. Considering that this 

dataset's spatial resolution is slightly larger, the motion 

trajectories of actions are described more densely, and the 

result inside a circular grid is much more compact. 

The same analysis was carried out on the surveillance UT-

interaction dataset, which counts with two different subsets, 

shown in Table 3 and Table 4, respectively. In Table 3 is 
reported the different results obtained for different (γ,r) 

configurations. This dataset features activities with a 
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relatively static background, and therefore a major spatial 

circular grid configuration can help with local dynamic 

description. In this case, (γ=8, r=8) demonstrated the best 

configuration. In Table 4, it is reported the different (γ,r) 

configurations for sub-set two with a significant challenge on 

background representation. Subset two was recorded with 

camera jitters, and the background can contain other activities. 

In such a case, the best configuration was the tuple: (γ=4, r=6), 

showing that motion representation should be focused only on 

very near trajectories w.r.t. interest points. This fact is 

attributed to the major corrupted trajectories that correspond 
to the background. 

A second analysis evaluated the best value for the Minimal 

Number of Trajectories (MNT) threshold τ, which allows a 

more stable action representation. This value is related to the 

transformation of circular grid occurrences into a bit-vector 

descriptor. 

TABLE III 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR UT-INTERACTION 

(SET 1) DATASET 

γ 
r (px) 

6 8 10 

4 68.02 68.02 69.77 
5 68.02 71.51 73.26 

6 68.02 73.26 71.51 
7 69.77 73.26 73.26 
8 71.51 75.00 69.77 

TABLE IV 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR UT-INTERACTION 

(SET 2) DATASET 

γ 
r (px) 

6 8 10 

4 70.00 61.03 66.41 
5 64.62 57.44 64.62 
6 61.03 70.00 61.03 
7 66.41 62.82 57.44 
8 66.41 64.62 57.44 

 

The number of angles was fixed as α=9, while MNT values 

were ranged as  τ={2,3,4,5,6,7,8}. In such case, with larger τ 

values, a major amount of trajectories  � are admitted inside 

each region �� .Figures 5 and 6 illustrate the proposed 

approach's performance regarding the MNT values in all 

different action classification datasets. Figure 5 reported the 
impact of τ parameter for the KTH (blue bars) and Weizmann 

(orange bars) datasets, respectively. For the KTH dataset, a 

competitive state-of-the-art result with τ values ranging from 

2 to 8, and achieving an accuracy of 90%. The best 

configuration was achieved with τ=6 and a circular grid 

configuration of (γ=8, r=6). This dataset's periodic nature's 

recorded actions can justify this configuration that requires a 

spatial expansion and a lower τ to admit a rich trajectory 

representation. Figure 6 is reported the different accuracies 

obtained by changing the τ value in the Weizmann dataset. 

The best configuration was achieved with the same value of 

τ=6 and a spatial configuration of (γ=5, r=10). Using the same 
τ values for both datasets can result from a similar periodic 

dynamic of actions. Nevertheless, the Weizmann dataset has 

a major trajectory density and needs a more reduced space to 

assign importance to the trajectories. 

Figure 6 is reported a similar analysis but for UT video 

sequences. These video-sequences are challenging, and the 

dynamic description corresponds to activities that involved 

several motions. The best configuration on UT-1 was also 

achieved for a τ value of 6. This parameter could be related to 

the static background of the three different datasets. In 

contrast, sequence UT-2, which report backgrounds with 

human interactions, require a more restricted threshold of 

trajectories. In such a case, the descriptor is built under 

reduced parameters in both: reduced space (γ=4,r=6)  and  τ=2. 

 

 
Fig. 5 The overall score associated with distinct values of MNT over the 

proposed circular grid for KTH and Weizmann datasets. 

 

 
Fig. 6 The overall score associated with distinct values of MNT over the 

proposed circular grid for the UT-Interaction dataset. 

 

Because the local proposed descriptors are dependent on 

trajectories, a length trajectory analysis was also carried out 

in this work. Length of trajectories was increased from 1 to 49 

frames, allowing the major description of actions but resulting 

in noisy dynamic descriptions. As illustrated in Figure 7, For 

Weizmann, the dataset was achieved a local maximum with 

length on l=15 and l=37, being much more efficient than the 

l=15 for recognition applications. In this configuration, the 

resulting descriptor size could be estimated as (α×γ×15). A 

similar analysis was carried out in state-of-the-art for KTH, 
resulting in an ideal configuration of length l=15 [13]. 

Following this published work, the posterior analysis of KTH 

was fixed with this configuration. 

 

 
Fig. 7  The overall score associated with distinct lengths of tracking under the 

Weizmann dataset. 
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Figure 8 shows the performance of the proposed approach 

facing different length trajectory configurations under the 

UT-Interaction dataset. Regarding the UT-1 subset, the 

maximum accuracy value was achieved with an l=37 but 

unstable for online action recognition tasks. Best performance 

in both tasks was found with l=22 with a resultant descriptor 

size of (α×γ×22). For UT-2 subset, the best configuration was 

achieved on trajectories with length l=49 but with relevant 

increasing on descriptor size, and only an extra accuracy of 

1%. 
 

 
Fig. 8  The overall score associated with distinct lengths of tracking under 

UT-Interaction dataset. 

 

Best configurations of proposed descriptors were used to 

evaluate different classifiers on action classification tasks. 

This approach evaluated the Random Forest (RF) and the 

Support Vector Machine (SVM) with two different kernel 

configurations. These classifiers have been successfully used 

on different tasks that required splitting complex training 

spaces with a reasonable computation time to obtain the 
learning models. An exhaustive grid search parameters for the 

classifiers were herein implemented to analyze the condition 

of the proposed occurrence descriptor's proper performance. 

 

 
Fig. 9 The classification methods for KTH, Weizmann and UT-Interaction 

datasets. Major overall scores are depicted. 

 

Best configuration was achieved with the SVM by using a 

radial basis kernel (RBF), which allows a non-linear partition 

of the feature space. As illustrated in Figure 9 in all datasets, 

this classifier outperforms the RF and linear SVM classifier. 

These results were obtained by training a dictionary of 400 
centroids, and therefore the resulting global histogram 

occurrences are very compact to represent a complete video 

sequence. Nowadays, motion descriptors require histograms 

with thousands or millions of parameters to achieve a proper 

classification performance, even for datasets with relatively 

static backgrounds. These descriptors reported in the literature 

can deal with more challenging scenarios but are limited to 

online recognition. 

2) Action SBPs classification: The second evaluation in 

the action classification task was performed by counting 

speed occurrence patterns counted in the circular grid, i.e., 

The SBPs patterns. Overall, this approximation looks more 

descriptive and for evaluated action classification datasets 

shows better accuracy scores. Additionally, a gesture 

recognition dataset evaluation was included for SBPs patterns, 

showing the robustness to represent different kinds of 

dynamics. This gesture recognition dataset, LSA64, was 

tested on ToBPs patterns but with negligible impact on the 

description. This fact could be explained because of the close 

representation of similar gestures that could be 

unrecognizable for this approach. As shown in the previous 
strategy, Support Vector Machines with an RBF kernel 

reported the best performance than other classification 

methods. Considering this fact, the same strategy is herein 

implemented to obtain a favorable tradeoff between accuracy 

and computation time. Hence all reported results for SBPs 

analysis were obtained using the SVM+RBF configuration. 

The parameter exploration and the analysis of obtained results 

for SBPs, are described as follows. 

TABLE V 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR KTH DATASET 

γ 
r (px) 

6 8 10 

4 89.91 88.99 88.87 
5 89.57 88.99 89.57 

6 88.41 89.33 89.45 
7 87.60 89.68 89.57 
8 90.73 88.64 88.87 

 

A first evaluation consists of exploring spatial circular grid 

resolution for SBPs local motion patterns. In Table 5 is 

reported the evaluation achieved for different circles and radii 

partitions. Like for ToBPs patterns, the best configuration was 

found in the tuple (γ=8, r=6). In this case, a complete spatial 

analysis is necessary to count related speed motion patterns 
and to obtain a significant statistical description on the 

circular grid descriptor. 

In contrast, the resulting spatial analysis for Weizmann 

dataset obtained the best configuration (γ=4, r=8) (see Table 

6). This fact could be associated with the spatial density of 

motion trajectories, that allows SBPs to focus only on near 

key-motion points. Because in this configuration, the 

kinematic occurrence is based on speed kinematic, a more 

restricted neighbourhood is sufficient to achieve a better score, 

concerning the configuration obtained for ToBPs  (γ=5, r=10). 

TABLE VI 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR WEIZMANN 

DATASET 

γ 
r (px) 

6 8 10 

4 75.55 81.11 76.66 
5 76.66 74.44 77.77 
6 75.55 77.77 74.44 
7 76.66 76.66 74.44 
8 77.77 74.44 75.55 

 

The same spatial configuration analysis was carried out for 

both subsets of the UT-interaction dataset. Table 7 and Table 

8 report the obtained results for UT in sequence 1 and UT in 

sequence 2, respectively.  For the first subset (UT-1) the best 

configuration was achieved by the tuple (γ=7,r=8), which 

followed a similar pattern w.r.t ToBPs (γ=8,r=8) 
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configuration. In such a case, because of the relatively static 

background, a broader neighborhood was adequately 

explored. Regarding the configuration of UT-2, the best 

configuration was found with the tuple (γ=6,r=8), that admits 

a larger spatial exploration w.r.t. ToBps patterns. However, 

this configuration could admit a significant number of 

background trajectories and could lead to the classification's 

limited performance in this kind of dataset. 

TABLE VII 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR UT-INTERACTION 

(SET 1) DATASET 

γ 
r (px) 

6 8 10 

4 63.33 63.33 68.33 
5 68.33 73.33 70 
6 68.33 68.33 65 
7 68.33 75 73.33 
8 63.33 73.33 68.33 

TABLE VIII 

ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR UT-INTERACTION 

(SET 2) DATASET 

γ 
r (px) 

6 8 10 

4 51.66 55 55 
5 56.66 60 56.66 

6 58.33 63.33 55 
7 56.66 50 55 
8 60 58.33 56.66 

 

SBPs patterns were also fully analyzed the LSA64 dataset 

to evaluate the capability to recognize the deaf-mute 

community (see Table 9). 

TABLE IX 
ACCURACY FOR DIFFERENT (γ,r) CONFIGURATIONS FOR LSA64 DATASET 

γ 
r (px) 

14 19 24 

4 88.28 89.84 88.43 
5 89.53 89.68 88.75 

6 88.12 87.03 87.18 
7 88.43 88.59 88.12 
8 89.68 88.90 89.53 

 

In such a case, each of the gestures has a detailed dynamic 

description, but some gestures share very similar kinematic 

patterns. The best spatial configuration was achieved with a 

tuple (γ=4,r=19) that suggest a more extensive search space 

to code occurrence speed but requiring less concentric circles 
to obtain a proper motion descriptor. Nevertheless, similar 

scores are obtained for different configurations, which also 

justify the fact of motion density with local coherence 

A second analysis carried out on SBPs motion descriptors 

was the minimal quantity of motion (MQM) that stand out the 

dynamic representation of actions, activities and gestures. The 

analogy with ToBPs is the MNT (τ value) that is required to 

byte-vectorize the descriptor. Figure 10 shows the 

performance of the proposed approach by changing the MQM 

parameter. An MQM value of 10 looks to be adequate for this 

SBPs configuration. It is also worth noting that each dataset 

exhibited a distinct MQM value due to the different kinematic 
features. Especially for LS64, there is an abrupt decay for 

larger MQM values, which is justified on the dynamic nature 

of these gestures requiring a major description in small 

intervals. For action classification datasets, larger values have 

long-lasting results but resulted ineffective for online 

recognition task, from which intermediate or partial 

descriptions are much more sensible during prediction. 
 

 
Fig. 10 Best configuration for accumulated norm (subregional speed) over: 

LSA64 dataset (blue) a score of 89.84% is obtained with MQM=10; KTH 

dataset (red) featured 90.7% with MQM=100; Weizmann dataset (green) 

exhibit 81.1% for an MQM=50 and UT set 1 (olive solid) and set 2 (olive 

dashed) with MQM=200 for 75% and 63.3% respectively. 

 

Regarding the motion length, as analyzed on the ToBPs 

motion patterns, any length of tracking bigger than 20 frames 

will cause a significant increase in computation time of 

motion trajectories. Also, descriptor size is affected since the 
length of the track is one of the components, namely, the 

influence of l in (α×γ×l) number of elements. A fixed length 

of 16 was assumed, as suggested in the literature for different 

tasks.  

In summary, except for UT-Interaction dataset, the SBPs 

strategy outperformed the scores of ToBPs, namely: 89.8% 

for LSA64 dataset (γ=4,r=19), 90.7% for KTH dataset 

(γ=8,r=6), and 81.1% for Weizmann dataset (γ=4,r=8). It is 

worth mentioning that LSA64 dataset showed a particularly 

unfavorable performance with ToBPs scheme, with scores 

around 1-3%. Such behavior is explained by the degree of 
detail that speed norm offers, in contrast to simple motion 

trajectories, given the kinematic nature of shorthand gesture 

motion. The proposed approach in any two configurations 

(ToBPs and SBPs) shows favorable and competitive accuracy 

results with a proper balance with computational time. This 

fact results in the implementation of real-time scenarios or 

complements the strategy with much more dense descriptions 

of the actions.  

B. Action Recognition from Partial Sequences 

Nowadays, many computer vision applications require an 

instant prediction about the high-level class that is happening. 

Despite that in the state-of-the-art, some very accurate 

approaches to perform action classification still miss an 

effective prediction on time. Following such facts, an online 

recognition evaluation was herein performed to explore the 

capabilities of the proposed approach to predict and update an 

action prediction at each frame �� of the video sequence. In 

such a sense, the proposed approach in both configuration 

ToBPs and SBPs should predict actions, activities or gestures 

from partial representations or incomplete dynamics. The 
experiment was then designated by coding the motion 

descriptor using different incremental versions of the 

sequences and evaluating at each time the accuracy reported 

for all datasets. 
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An initial evaluation was performed by using local ToBPs 

motion configuration. Figure 11 reported the achieved results 

for KTH (blue line) and Weizmann (red line) datasets, using 

partial and online action recognition. For KTH, a competitive 

action prediction of 74% is achieved by using the 40% of the 

video sequences. Far better, for the Weizmann dataset, at only 

20% of the total number of frames is achieved a significant 

prediction, w.r.t. using the entire sequence. The periodic 

nature of the actions can explain the proposed approach's 

capability to recover action over incomplete sequences, but 

with some mistakes corresponding to challenging capture and 
image transformations. Also, both datasets' actions result very 

interestingly that using only 10% of the video is available a 

proper prediction. These facts justify the use of this strategy 

in a scheme of real-time recognition. 
 

 
Fig. 11 Simulating an online application streaming over KTH dataset (blue): 

an acceptable score is obtained with just 30% of the sequences' total length. 

Weizmann dataset (red dashed): a sufficient accuracy is acquired with only 

20% of the sequences' total length. 

 

A similar analysis was carried out to UT-interaction, as 

illustrated in Figure 12. In this case, online recognition is 

reported independently for UT-set 1 (blue line) and UT-set 2 

(red line). Despite that this dataset is dedicated to describing 

activities (composed of small motion actions), set 1 exposes 

promising results, requiring only 15% of the sequence to 

obtain a similar score to the average score achieved along the 

sequence. In this case, only the last part of the action, that 

defined the signature of the activity changed and incremented 
the proposed representation's performance. Additionally, 

different length trajectories l={15,22,37} were evaluated on 

this partial online recognition, showing that l=37 obtained a 

better performance for the overall classification but an 

inefficient representation for partial sequence recognition. As 

expected, the accuracy obtained for UT-2 is lower because of 

the complex background conditions.  
 

 
Fig. 12 Simulating an online application streaming over UT-Interaction 

dataset, acceptable results are acquired with only 15% of the total length of 

sequences for set 1. 

 
Fig. 13 Performance simulation for an online application over (blue) KTH 

dataset: our method achieves promising results with just 20% of the total 

number of frames. Weizmann dataset (red): promising results are obtained 

with just 15% of the total number of frames. 

 

Regarding SBPs motion descriptors, an extensive set of 

experiments were carried out to obtain action and gesture 
recognition from partial cumulative sequences, simulating a 

streaming application. As for KTH dataset, a right action 

prediction was achieved with just 20% of the total sequence.  

Similarly, Weizmann dataset features an acceptable forecast 

with only 15% of the sequences, as shown in Figure 13. In 

such two cases, the SBP motion patterns result much more 

descriptive that ToBPs descriptors, with a more coherent 

motion description using a much more partial and sparse 

representation. This result could be justified by using the 

speed kinematic information as input to build bit-vector 

descriptors. In such a sense, activities like running and 
jogging could be better differentiated. Also, both datasets 

showed an incremental accuracy on the representation of the 

action, a fact associated with recorded activities' periodicity. 

Figure 14 depicts the computed results for online action 

recognition for the UT-interaction dataset using the SBPs 

patterns. In this case, the activity prediction slightly decreased 

w.r.t. ToBPs, a fact associated with the initial exploration of 

parameters, from which the circular grid covers more 

trajectories. Much of the corrupted background trajectories 

can alter the local motion description of key-motion points in 

such a case. Additionally, the similar speed of actions featured 

on it makes the SBPs strategy less discriminant in action 
classification. Despite the comparison with ToBPs, the online 

recognition showed stable performance, being in general 

incremental accuracy after 15 frames. This start point of 15 

frames is related to an original length of motion trajectories. 

 

 
Fig. 14 Performance simulation for an online application over UT-Interaction 

dataset: sequence 1 (blue) achieved promising results, with only 15% of the 

total number of frames. As for sequence 2 (red), such score is obtained with 

40% of the total number of frames. 
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Fig. 15 Performance simulation for an online application over LSA64 dataset: 

our method achieves promising results with 60% of the total number of 

frames. The existence of motionless segments explains this at the beginning 

of each sequence. 

 

Finally, online recognition performance was also evaluated 

on the LSA64 dataset, which could be used to get ahead word 

prediction and obtain more fluent translations. Figure 15 

report the results associated with online recognition in this 

dataset. Notably, there is no gesture information in the first 

40% of all sequences. For this reason, the first part of the plot 

shows accuracies close to zero. Once the gesture start 

(approximately after 40% of the elapsed sequence), there is a 

significant increase in accuracy that demonstrates the 
robustness of the proposed approach requiring less than the 

middle of the sequence to obtain a stable gesture prediction. 

Despite the close dynamic description among some recorded 

gestures, the SBPs motion patterns achieve an accurate 

description and differentiation using partial gesture 

codification. 

IV. CONCLUSION 

This strategy introduced a compact descriptor capable of 
predicting human actions and gestures in video streaming 

using a set of statistics obtained from neighboring motion 

trajectories. A fixed bounded structure allows quantifying 

occurrences of said trajectories, and then a binary 

representation is acquired. An extension of this scheme 

accumulated the speed of trajectories (SBPs) inside bounded 

subregions, resulting in a motion description in terms of 

trajectory length. Both schemes featured 400 scalar values in 

a mid-level representation and an averaged size of 9x6x16 for 

online frame-level presentation. Our method was extensively 

validated through three action recognition datasets and a hand 
gesture recognition dataset. An overall improvement is 

reported for the SBPs scheme, which is explained by the 

richer kinematic information behind the accumulated speed. 

Also, modifying the fixed circular grid's external boundary 

allowed to capture more details associated with trajectories on 

other grids, that is, a better perspective of the amount of 

motion around the fixed grid. The proposed method 

demonstrated competitive results over three action 

recognition datasets and a gesture recognition dataset, proving 

the robustness on different scenarios of human-related motion. 

Further research will be developed adopting different 
architectures, more challenging datasets, and additional 

kinematic primitives. 
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