Binary Particle Swarm Optimization Structure Setatof
Nonlinear Autoregressive Moving Average with Exoges Inputs
(NARMAX) Model of a Flexible Robot Arm

lhsan Mohd Yassfi, Azlee Zabidf? Megat Syahirul Amin Megat Aff, Nooritawati Md Tahif*, Husna
Zainol Abidin™, Zairi Ismael Rizmar
#*Faculty of Electrical Engineering, Universiti Tekogi MARA, 40450 Shah Alam, Selangor, Malaysia

E-mail: lihsan.yassin@gmail.corfg_lee_82@yahoo.co.uknegatsyahirul@gmail.corfiporita_tahir@yahoo.com,
Salong_husna@yahoo.com

"Faculty of Electrical Engineering, Universiti Tekngi MARA, 23000 Dungun, Terengganu, Malaysia
E-mail: "zairi576 @tganu.uitm.edu.my

Abstract— The Nonlinear Auto-Regressive Moving Average with Eagenous Inputs (NARMAX) model is a powerful, effieént and
unified representation of a variety of nonlinear malels. The model's construction involves structure $ection and parameter
estimation, which can be simultaneously performed sing the established Orthogonal Least Squares (OLS)gorithm. However,
several criticisms have been directed towards OLS foits tendency to select excessive or sub-optimakrins leading to
nonparsimonious models. This paper proposes the aligation of the Binary Particle Swarm Optimization (BPSO) algorithm for
structure selection of NARMAX models. The selectioprocess searches for the optimal structure using bary bits to accept or reject
the terms to form the reduced regressor matrix. Costruction of the model is done by first estimatingthe NARX model, then
continues with the estimation of the MA model basedn the residuals produced by NARX. One Step Ahea@SA) prediction, Mean
Squared Error (MSE) and residual histogram analysis were performed to validate the model. The proposed dimization algorithm
was tested on the Flexible Robot Arm (FRA) datasefResults show the success of BPSO structure seleatifor NARMAX when
applied to the FRA dataset. The final NARMAX model ombines the NARX and MA models to produce a model ith improved
predictive ability compared to the NARX model.
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Many S| models exist. Among them, the NonlineardAut

[. INTRODUCTION Regressive Moving Average with Exogenous Inputs
(NARMAX) [20] model is a powerful, efficient and ified
representations of a variety of nonlinear model§-[30]. A
rich literature is available regarding its success/arious
electrical, mechanical, medical and biological &ztlons
[31]-[33].

Simultaneous structure selection and parametenastn

System ldentification (SI) is a control engineering
discipline concerned with the inference of matheécaht
models from dynamic systems based on their inpdican
output measurements [1]-[5]. It is fundamental $ystem
control, analysis and design where the resulting

representation of the system can be used for utaaeling - .
the properties of the system as well as predictbrthe of NARMAX and derivative models are achievable tigh

: : : : the Orthogonal Least Squares (OLS) algorithm [335].
t future beh d t dlaput:
[sg/]s eM'S 1Ullire behavior tnder given Inpits an uts The OLS algorithm has since been widely accepted as

standard [36] and has been used in many works [{&]]-
due to its simplicity, accuracy and effectiveness.

OLS structure selection depends on evaluation ef th
Error Reduction Ratio (ERR) criterion score. Desfii_S’s

Sl is a significant research area in the field arfitcol and
modeling due to its ability to represent and qugntariable
interactions in complex systems. Several applicatiof SI

in literature are for understanding of complex naltu . :
phenomena [7]-[11], model-based design of control effectiveness, several criticisms have been didetievards

engineerina aoplications [121-116]1 and proiect niorin its tendency to select excessive or sub-optimahdeased
anglplanlnigg [E%I_[lgl] [12)-{16] pro) g on ERR. It has been proven that OLS has a tendency



selected incorrect terms when the data is contdaednby
certain noise sequences or when the system inpguadgy
designed. The suboptimal selection of regressonddeads
to models that are inaccurate or non-parsimoniougture.
This study proposes the Binary Particle Swarm
Optimization (BPSO) algorithm to perform structure
selection for the NARMAX. Using the BPSO approaitte
structure selection problem is considered as a rpina
optimization problem to minimize an objective fuoat

Unlike OLS (which uses ERR to rank regressors that 2.

significantly reduce the error variance in orders&ect the
best regressors for the model), no preferenceviangio any
regressor. Rather, BPSO treats the regressorslydadl
regressors have an equal chance of being seleatetjhe
model structure is defined towards minimizing certa
objective criteria.

Il. THENARMAX MODEL

The NARMAX model output is dependent on its past
inputs, outputs and residuals [44], [45]. Consiarcf the
model can employ various methods such as polynsmial
[46]-[49], Multilayer Perceptrons (MLP) [50]-[52] nd
Wavelet ANNs (WNN) [53], [54] although the polynaahi
approach is the only method that can explicitlyirefthe
relationship between the input/output data.

The identification method for NARMAX is performed i
three steps. Structure selection is performed tectiehe
underlying structure of a dataset. This is followbg
parameter estimation to optimize some objectivection
(typically involving the difference between the diéed
model and the actual dataset). The NARMAX model
recursively adds residual terms to the NonlineartoAu
Regressive with Exogenous Inputs (NARX) model to
eliminate the bias and improve the model prediction
capability [55]. Structure selection and parametimation
for NARMAX are recursively repeated on the resideat
until a satisfactory model is obtained. Finallye tmodel is
validated to ensure that it is acceptable.

A major advantage of NARMAX and its derivatives is
that it provides physically interpretable resulsttcan be
compared directly, thus providing a way to validated
enhance analytical models where first principle aiedack
the completeness because of assumptions and ongssio
during derivations. Furthermore, among all the ni®de
studied, it is the only model that embeds the dyoarof
nonlinearities directly into the model [56]. Othaatvantages
include model representativeness [57], flexible siod
structure, reliability over a broad range of apgiicns as
well as reasonable parameter count and computaiosts
(for reasonably-sized model structures) [58].

I1l. PARTICLE SWARM OPTIMIZATION AND ITS APPLICATION
FOR NARMAX STRUCTURE SELECTION

A. Particle Swarm Optimization

Optimization is generally defined as a task to cledor
an optimal set of solutions for a parameter-depende
problem, typically by minimizing a cost functionlated to
the problem [59].

The PSO algorithm is a global stochastic optimarati
algorithm based on the swarming behavior of aninials

nature. The algorithm defines particles as agesgpansible
for searching the solution space. The movementadigbes

is directed by the particles’ best individual aslement, as
well as the best swarm achievement [60], [61]. ifbmtive
search process continues until the objective is onethe
number of iterations is exhausted. Among the achget of
PSO are:

1. Usage of simple mathematical operators makes it eas
to implement [62]-[69].

It is computationally inexpensive and fast compated
other more complex optimization algorithms [70].73

It has a successful track record in solving complex
optimization problems [74], [75].

It is versatile: can be easily adapted to solveinaous,
binary or discrete problems. No requirement of gmaid
information thus can be used for a wide range of
problems otherwise non-optimizable by gradient-dase
algorithms.
It requires
adjustments.
It is robust in solving complex optimization probie
[76].

It can be implemented in a true parallel fashiof].[7

3.

4.

o

a minimum amount of parameter

B. Binary PSO for Structure Selection

The polynomial representation of the NARMAX model
for a given input—output series is:

()
where is the number of terms in the polynomial
expansion, is the -th regression term with , and

is the -th regression parameter. is formed by a
combination of input, output and residual terms.matrix
form, identification involves the formulation andlgtion of
the Least Squares (LS) problem:

(2)

where is a regressor matrix, is a

coefficient vector, is the vector of actual
observations, is arranged such that its columns represent
the lagged regressors ands the white noise residuals.

The NARMAX model construction is performed in two
steps, namely model structure selection and pasmet
estimation. Structure selection involves selectiwbich
columns in that best describes the observationsifter a
subset of has been selected, the parameter estimation step

estimates the parameters of the function that gives
the best fit for (Equation (3)):
!
! " ! " #
s % % (3)
The most common method for solving binary

optimization problems is to represent particle sohs as
probabilities of change. These values indicateptiodability
of a bit flip occurring from the initial binary stg. This type
of representation is adopted in this work.



The use of BPSO for model structure selection is
described. Consider the identification problem iqué&tion
(2) defined in an LS matrix form. The BPSO algarith
defines a binary string of length so that each column
in has a bit assigned to it. A value of 1 indicatest the
column is included in the reduced regressor mafrix ,
while the value of 0 indicates that the regressmuron is
ignored. The initial binary string is a predefinpdrameter
prior to optimization.

The BPSO algorithm is directed by two equationsnelg
the velocity update equation and the position updat
equation. The velocity update equation is givefit®}:
I

012 * 54,

(4)

Next, the value of is then used to modify the particle
positions/  :
N

(1)
where' (= particle velocity/ ( = particle position, , . =
particle’s best fitness so fat,_ = best solution achieved
by the swarm so far, = cognition learning raté; = social
learning rate and12 , 0124 uniformly-distributed
random numbers between 0 and 1.

During optimization, each particle in the swarmriees a

vector of solutions5 . This vector contains the

change in probability defined in Equation (6):

678079
678079 ;7 > ?;<= (2)

During optimization, the5 values change and alter
which regressor column is selected. The lineart lsqgares
solution ( g) for the reduced regressor matrix) can then
be estimated using the QR factorization method:

& & (3)
g GeAe (4)
% @& ()
Ae & 9 (6)

Alternatively, methods such as the Newton-Rhapson
algorithm can also be used [79].

IV. MATERIAL AND METHODS

A. Experiment Hardware

All experiments were performed on a personal coemput
with 3.10GHz Intel Xeon E3-1220 v3 microprocessad a
4GB RAM. The operating system was Linux Mint XFCE
version 17.1 with MATLAB 2014a as the development
platform.

B. Methodology

A general overview of the methodology is presented
Fig. 1, and a description of each process is pteden the
following sections.

Fig. 1 Structure selection experiment overview

Pre-processing is an important step for data cimmility
prior to identification. In experiments conductadhis work,
the division for the Flexible Robot Arm (FRA) dagasvas
50% for training set and 50% for testing set basadhe
recommendation by [51].

C. Create Regressor Matrices

This process constructs the full regressor matrixf{fom
which BPSO can choose candidate terms to form the
reduced regressor matrixg. After the first-level structure
selection process, a second-level MA structurectele was
performed recursively using lagged residual terms.
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D. Find Optimal Parameters for Structure Selection

Squared Error (NSSE) of the model residuals witipeet to

After the regressors matrices have been constructedthe model parameters;

BPSO was applied to evaluate the candidate stestand
determine the best structure.

BPSO convergence depends on several parameterd) whi
need to be tested to determine their optimal values
Therefore, experiments were done by performing
optimization under various combinations of paramsete
swarm size, maximum iterations and several randeeds
Table 1 shows the tested parameter values.

TABLE |
BPSOPARAMETER SETTINGS FOR STRUCTURE SELECTION
EXPERIMENTS

Parameter Value
Swarm size 10, 20, 30, 40, 50
Fitness criterion AIC, FPE, MDL
Max iterations 500, 1000, 1500
Initial seed 0, 10 000, 20 000
5 0
5¢cp 1
E, -1
Eco +1
* 2.0
* s 2.0

The choice of swarm size and maximum iterationsewer
based on preliminary test to balance between speed
solution quality. These values were consideredwgdtgiven
the limited computational hardware resources alkla

cL _ L 3

i (10)

' LMM?

Theoretically, the values Ofgy, 'por @nd' xyn are
minimum when' | yun O" at which2 is irrelevant.
However, this never happens in real modeling siemanus
the value oR must be taken into account. With the inclusion
of 2, the values of' gy ' por @and' xyy are minimum when
"umn OY T: and2” . Models with the lowestegy
' por and' xyy scores obey the principle of parsimony as the
least amount of parameters were required to praviddoest
fit for the data.

E. Model Validation and Analysis

After structure selection has been performed, ¢iselting
candidate models need to be validated and analyzed
determine the best model. One Step Ahead (OSA) and
residual tests were performed to select the bestehibat
fulfills the validation criteria. Several tests,maly the OSA
prediction, Mean Squared Error (MSE) and residual
histogram analysis were performed to validate tbheeh

OSA is a test that measures the ability of a maddel
predict future values based on its previous dattakies the
form of [82]:
@c

st (11)

where@ is the estimated nonlinear model, and are the

Three random seeds were chosen for the Mersennetegressors. Representationcof for the NARMAX model

Twister Algorithm. The seeds are used to generatzable
random numbers to ensure repeatability of experisnen
performed. The values are arbitrary, but importanénsure
that the experiments are repeatable.

The values of particle minimum valug(  and particle
maximum value §.p were set to 0 and 1 respectively.
They are within the range of probability values forbit
change to occut andEcp represent the movement
range of the particles. Since the valuebpfis between the
range of 0 and 1 (based 6p and5¢p ), the values of
E( andEcp were set to -1 (whef moves from 1 to 0)
and +1 (wherb, moves from 0 to 1) respectively. The
values of* and*; were both set to 2.0. This parameter is
well-accepted as optimal based on literature [80].

The optimization is guided by Akaike Information
Criterion (AIC), Final Prediction Error (FPE) andoilel
Descriptor Length (MDL) [81] criteria:

"Fot | J—K' e C (")

"pgr S U8y J [V' e C (8)
[

" XYN Z—]\‘_ ot Ch 9)

where 2 is the number of estimated parameteksjs the
number of data points,yuy O & is the Normalized Sum

is shown in Equation (16):

c C [
! . ! ] (12)
s 0

MSE is a standard method for testing the magnitafdke
residuals for regression and model fitting problermbe
MSE equation for a residual vectoof length is given by:
(13)

efg ¢ (h

where ( is the observed value aagis the estimated value
at point7. As MSE values are calculated from the magnitude
of the residuals, low values indicate a good mdielThe
ideal case for MSE is zero (thna 0 7 ).
However, this rarely happens in actual modelingnades
and a sufficiently small value is acceptable.

The third test is the histogram test to measure the
whiteness of the residuals. A histogram is a gEghi
method to present a distribution summary of a uat@
data set [83]. It is drawn by segmenting the data eéqual-
sized bins (classes), then plotting the frequencieslata
appearing in each bin. The horizontal axis of tistolgram
plot shows the bins, while the vertical axis depitte data
point frequencies.

In Sl, the prediction model can only be acceptedmthe
residuals are randomly distributed (appears asewidise).
This type of residuals indicates that the dynanmiésa



system has been fully captured by the SI modeljrgeonly
un-modeled white noise as the residuals. The permis dij;

histogram analysis is used to view the distributafnthe mnkl i j 5=n
residuals. The histogram exhibits white noise #aassian <N m; j <=
distribution, with symmetric bell-shaped distritmrti with i<jik; il

most of the frequency counts grouped in the miduite i i =ik
tapering off at both tails [83]. ek j

V. RESULTS ANDDISCUSSION

A. NARX Modeling Results

The NARX model produced by BPSO selected five terms
of the generated following equation to represelt BRA
system:

I i<
j =5k i i k= (14)

The OSA plots for the training and testing sets ewer
generated based on Equation (18) (Fig. 3). The liresl
indicates the predicted output of the model, wiiile blue
line indicates the actual FRA system output. Basedhe
low MSE between the system output and the predicted

(15)

model, it was concluded that the model managedtesent Fig. 4 Residual histogram of the FRA NARX model

the system well.

Fig. 5 MA OSA results for FRA dataset

Fig. 3 NARX OSA results for FRA dataset

However, another important criteria of system
identification is the whiteness of the residualdhisTis
because non-random residuals indicate model biastaasl|
dynamics in the original system is sufficiently tmed by
the model. As shown in the histogram plots in Hgthe
distribution appears as a Gaussian indicating #siduals
are random similar to white noise. The addition tbé
Moving Average (MA) terms described in the nexttiecis
presented to improve the prediction accuracy oftbelel.

B. MA Modeling Results

The second experiment produced the MA model
presented here. The result of the NARX residualseisig
fed back to the model in order to improve its pcédn. The
MA model obtained is defined in Equation (19):

Fig. 6 NARX OSA result for FRA dataset



estimation of the MA model based on the residusetsipced
by NARX. The final NARMAX model combines the NARX
and MA models to produce a model with improved
predictive ability compared to the NARX model.
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Fig. 7 NARMAX OSA result for FRA dataset

The OSA results of the MA model are presented @ 5i
The selection of higher-order terms in Equation) (&gs (5]
above 2) indicates the complexity of the un-modeled
dynamics still present in the system. The OSA mtéuh of
the MA model indicates that the model managed to [€]
approximate the residuals well. The MA results wiarally
combined back into the NARX model to form the final 7
NARMAX model (described in the next section).

C. NARMAX Modeling Results

The final NARMAX model was constructed by
combining the results from the NARX and MA models
(Equation 20):

(8]

19

ok pasip i<;jo L

ji=ko L isj;0 b ;kj=io

i <l b <=lig b

<mnkigb i j<=ng b qb j e

<nmgbj ;<=9 b pb

<jk,g bi pb <nnmilg b i pb

iossikg B Ppk o skig k

jot ot Hy
The OSA for the NARMAX model and a histogram of [12]

residuals are shown in Fig. 6 and Fig. 7 respegtitecan

be seen that the introduction of the MA terms hambsitive

effect on the model as the MSE was smaller comptoed [13]

NARX. The model was also considered valid as tis&al

histogram also shows a Gaussian distribution, which

signifies that the residuals are randomly distelolut 4]

VI. CONCLUSIONS 5

A BPSO-based structure selection method for NARMAX (o]

model was successfully implemented in this papdre T

selection process searches for the optimal streictising [16]

binary bits to accept or reject the terms to foha teduced
regressor matrix. Construction of the model is dbwydirst
estimating the NARX model, then continues with the
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