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Abstract— Computer-aided process planning systems are used to assist human planners in producing better process plans. New
artificial intelligence techniques play a significant role in CAPP. CAPP research includes neural network approaches, knowledge-
based techniques, Petri nets, agent-based, fuzzy set theory, genetic algorithm, Standard for the Exchange of Product model data
(STEP)-Compliant CAPP, and Internet-based techniques. This study deals with the application of the Artificial Neural Network
techniques (ANN) in CAPP because of their learning ability and massive potential toward dynamic planning. This study focuses on
the usage of artificial neural networks machining operation selection and sequences of operations for prismatic components. The
intelligent CAPP system suggests the best machining operation and its sequences for the prismatic components using tolerances,
material requirements, and surface finish details. The process planning of machining features in part is the starting point. An
enormous amount of knowledge is required for part feature process planning, like selecting proper material, size, stock, dimensional
tolerance, and surface finish. In thiswork, various prismatic features, such as a hole, sot, pocket, boss, chamfer, fillet, and face are
taken and details like material, size, stock, dimensional tolerance and surface finish are properly normalized and given as input to
neural networksto find the required sequence of machining operation. L evenbergM ar quidt algorithm was used to train the networks
and was found very effective in operation sequence selection. A sample prismatic component with nine features have been analyzed
and found to be more productive. Levenberg Marquidt algorithm is then compared with the conjugant space algorithm, and it is
found that the former produceslesserror in outputs compared to them later.

Keywords— computer -aided process planning; artificial neural networks; machining operation sequencing; prismatic parts.

it computes the weighted sum of its input, subtracts its
[. INTRODUCTION threshold from the amount, and sends the results through the
transfer function [1]. The inputs and the desired outputs are

Process planning is vital in bridging the gap between
P g ging gap Aearned carefully, so the actual output gets very close to the

design and manufacturing. Manual process planning has ired
huge drawback because it requires process planningd€Sired outputs.

knowledge, such as a handbook, manufacturing resources, Based on past training experienc_e, the prediction process
model shape, and decision making. Moreover, humantakes,'npm anq produces the requ|r_ed outputs. Trammg .of
ANN is a crucial step because altering the connection will

designing tools and fixture equipment, selecting raw cause the neural network to learn the solution, and it is

materials, and choosing the manufacturing process. The)generally carried out using gupervised and unsupervis_ed
should also possess the ability to understand engineerin earning methods. Deep Learning has been currently getting

drawings and perform computations on machining time and “?F“?O” in _Computer-Aided Process Elanning (CAPP)'
cost. Artificial Intelligence (Al) technology applies to the entire

Neural networks are more advantageous than any othef@nge of manufacturing activities, where here we focused on

method because of their tolerance towards small errors fromfPPYiNg it to CAPP. Tp_vvard_s the automaﬂon,_the expert
the input. Artificial Neural Network deals with simple systems are broadly utilized in the manufacturing domain

mathematical calculations and does not involve any logical oveRr two decdades. . . h h th
rule, and it is faster. It can deal with a large amount of data, ecent advancement in computing power through the

especially in situations where rules are unknown. A neuralgraphiCS processing unit (GPU), deep learning algorithms

network consists of many numbers of nodes interconnected®' € 9a&ning more and_ more recognition anq have been
to each other by layers such as input, output, and hiddensucce.ssfully a.ppl|ed. In-various .manufacturlng process
layers. Each neuron will do any mathematical operation (i.e.)selec'uon. In this section, we explained a few among them.
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Prismatic part machining features were recognized usingthe integration of neural network and fuzzy logic for
Artificial Neural Network (ANN), and the method also predicting the hardness and wear rate of specific alloy
proposes a 12-node vector representation of machiningspecimens. Izabela Rojek[15] did a comparative analysis
features, which varies in geometry and topology. utilizing MLP, RBF, and Kohonen systems for the machine
On successive vector representation on Boundarychoice, tool choice, and machine parameter choice. A
Representation (B-Rep) of CAD models, ANN is used for complex genuine issue was tried utilizing these neural
making the final prediction [2]. Rule-based STEP-based systems. These neural systems have given modern quality to
feature modeler introduced for the integration of CAPP systemsAmaitik[16] used a backpropagation neural
CAPP/CAD systems [3]. Through the two cascaded neuralnetwork to minimize the total sum of square error. He
networks, they were able to achieve nearly 0.02 Root Meantrained the various drilling and milling tools. Many training
Square Error with 38 epochs. A 3 layer feed-forward experiments were performed to select the optimal structure.
network based on Radial Basis. Function (RBF) as anRecently radial basis function-based models have been used
activation function is proposed to represent the information for modeling [17]. Techniques like Fuzzy logic and radial
about adjacent edges and constituent faces [4]. This methodbasis function has also been used for modeling the response
reports considerable computation speed and performanceof welded and processed plates. Wang et al. [18] discussed a
The geometric model-based neural network on generatingdynamic process planning in modern manufacturing and
part-programs for milling, drilling, and similar operations on manufacturing sustainability in terms of energy consumption,
machining centers was developed without the operatorproductivity, and production quality for process planning
intervention [5]. and scheduling optimization. Analysis based on the
A process planning methodology based on a combinationBackpropagation algorithm, gradient descent, and gradient
of radial basis function (RBFNN) and granular computing descent with momentum, utilizing the sigmoidal and
(Grc) was proposed by Danchen Zhou et al. [6]. A hole hyperbolic tangent activation functions, combined with pre-
feature was taken to illustrate the proposed work, and it wasprocessing techniques, were executed and compared [19].
found that GRC-RBFNN produces accurate process routing The backpropagation gradient descent with the adaptive
of part features compared to RBFNN. Ding et al. [7] used learning rate (BPGD-AL)was improved by modifying a few
Genetic Algorithm to find optimal sequence plans for values locally in the learning rate. The dataset results show
machining and applied (ANN) to allocate relative weights that the modified and improved learning rate improved the
for different evaluation factors of variant components for learning efficiency of the Back-Propagation Algorithm [20].
process sequencing. Least manufacturing cost, leasfThe input parameters used to analyze the end milling process
manufacturing time, and satisfaction of manufacturing for Al2024-T4 were cutting speed, feed per tooth, depth of
sequence rules are the main considerations taken as input. cut, and the cutting fluid flow rate, and the response
Sankha Deb et al. [8] proposed a feed-forward back parameters used are surface roughness, cutting force, and
propagation neural network for the rotational component. MRR. MATLAB was used to perform a Regression analysis
Thumb rules (if then) were used for training the neural in an Artificial neural network, and optimized results were
network. The simulation was done using a software packageobtained [21]. The cutting parameters in CNC milling
named Neuframe Version 4. Amaitik et al. [9] introduced an operations were optimized using an Artificial neural network
intelligent CAPP system. Fuzzy logic, artificial neural to reduce the cost of production in face milling operation.
networks, and rule-based techniques were used to create Wlatlab 2011 software was used to train a Multilayer
digital process plan .Sankab et al. [10] tried to automate twoperceptron using the Levenberg Marquidt algorithm along
main important components of process planning, machiningwith Edgeworth-Pareto methods [22]. Feedforward neural
operation selection, and set-up planning. Catia V5 R13networks were used to predict machining responses. Feed,
software was used for feature recognition and input. depth of cut, and speed were taken as Input and surface
Software stores the part data, and it is accessed using aoughness, cutting forces, and the temperature was the
macro tool in the VBA module, which stores information required output. The output values were very close to the
such as bodies, feature shape, and sketches, parameteirgput values. A hard turning component was taken as an
collection, and annotation set collections. example [23].
Ouyang Hua bing [11] dealt with ANN, GA, and fuzzy
logic. Solid works adopted by VB.NET was employed for Il. MATERIALS AND METHOD

feature recognitiqn. Intelligent process planning S_T—CAPP Machining of parts includes drilling, boring, reaming,
was deployed to integrate process planning and using STEPg,jing etc. Milling is considered the best destructive type

NC sftandardfs, Wh'Chf t”ransZ)rtr)ns h.the design lent|.t|es to machining process because of its ability to produce a good
manu acgure (Eatures,h_o_owe y this %Oielsshp adnmng Walssurface finish and machine to its closest tolerance range. It
converted to the machining operation. Gokulchandran et al..o, - giart with simple surface machining to complex
[12] did a tool life prediction using both regression and ANN machinin

; . o g of parts.
analysis. A regression model was proposed for predicting the

remaining tool life, whereas the ANN model was used for A. Knowledge Gathering:

tool life prediction. _ The selection of best manufacturing operations and its
Gokulchandran et al. [13] used Matlab to train a neural gequence is based on the geometry of features, dimensions of
network to predict the tool life in which 70 % of the data \arious features, material properties, dimensional tolerance
was used for measurement, 15 % for testing, and remaining,nges and surface finish details. The feature geometry
for validation purposes. S.lllangovan et al. [14] implemented ;cjudes types of prismatic features like a pocket, face, hole,
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step, etc. The feature dimensions include diameter, lengthtaken into consideration. The fillet feature does not disturb
depth angle, and radius. The material properties include thegeometry and is used for safety purposes, and it includes
type of material, its hardness values and Aluminum is radius dimensions. The radius and length are the dimensions
selected for the research work. Dimensional toleranceswhich interpret the round feature. The machining process
indicate the allowable upper and lower limits of the includes end milling. The length of the part, its depth, and
dimensions, and it is represented in IT grades. The surfaceangle are the important dimensions considered in the
finish indicates how smooth the feature is. It is representedchamfer feature, and end milling is the machining operation
by a numerical value usually represented in N grade. Theto produce it. Face features involve dimensions such as
hole feature has dimensions diameter and depth. The procedength, depth, and width. Face milling is the machining
selection of the holéeature includes drilling, rough reaming, operation considered. Pocket and Slot feature considered
finish reaming, rough boring, or finish boring. For instance, length, depth, and width dimensions for pocket milling and
if the diameter of the hole is taken as 40 mm, the processslot milling, respectively.The prismatic blank shape is
route will be rough drilling, reaming or boring a hole. The selected to machine all the basic features mentioned above.
boring operation produces a better surface finish thanTable 1 illustrates the Ranges of tolerances and surface
drilling. The step features include length, depth, width, and finish for various features, and it represents the machining
angle. Finish milling is chosen in case of close tolerances.sequence for each feature. The tolerances and surface finish
The process selection of Boss features includes diameter andalues are referred from various Engineering handbooks and
length dimensions because only the circular boss network ishest manufacturing practices [24].

TABLE |
RANGESOF TOLERANCESAND SURFACEFININSHFOR PRISMATIC FEATURES

Feature | Parameters Used Tolerance Range|isurface Finish Machining Process sequence
type mm Range in pum
Hole Diameter, Depth IT11-13 5-80 Drill

IT7-1T8 1.6-3.2 Drill-Rough Reaming

IT7 0.8-1.6 Drill-Rough Reaming-Finish Reaming

IT12-13 5-20 Drill-Rough Boring

IT7-9 0.62-2.5 Drill-Rough Boring-Finish Boring
Fillet Radius IT11-17T13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Step Length,Depth,Width ~ 1T11 - IT13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Rounded | Radius IT11-1T13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Boss Diameter, Length IT11-1T13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Slot Length,Depth,Width| 1T11 -1T13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Pocket Length,Depth,Widthy  1T11 - IT13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Face Length,Depth,Widthh 1711 - IT13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling
Chamfer | Angle, Distance IT11-17T13 5-20 Rough Milling

IT8 -1T11 1.25-10 Rough Milling-Semi Finish Milling

IT3 -1T8 0.32-1.25 Rough Milling-Semi Finish Milling-Finish Milling

mapping issues well, given consistent knowledge and
B. NetworkTopology enough neurons in its hidden layer. The detailed explanation
The network topology, which uses a feed-forward neural of the selection of various Inputs and outputs for different
network, is shown in Figure 1. A two-layer feed-forward prismatic features are discussed in the following section.
neural network is employed with hidden sigmoid neurons
and linear output neurons, which matches dimensional
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Fig.1 Machining operation selection

) ) Hole includes diameter and depth as input and outputs are

C. Selection of Input and Desired Outputs operation sequences such as Drill, Dril-Rough Reaming,

The Inputs are selected in such a way that one neuron i$rill-Rough Reaming-Finish Reaming, Drill-Rough Boring,
allocated for each feature type. The values of Inputs areand Drill-Rough Boring-Finish Boring. The machine
normalized using proper scaling factors, and it lies betweenoperation sequence is given values between 0 and 1, O
0 and 1. The input parameters selected for various prismatiaepresents a particular sequence is not selected, and 1
features such as chamfer, fillet, face, rounded, hole, slot, stepepresents a particular sequence is selected. An example of a
face, and pocket are shown in table 1. In the inputs, thetraining sample for the hole feature is shown below in Table
Tolerances ranges, surface finishes, and material2,
requirements are common parameters for all the features.

TABLE I
TRAINING SAMPLES FORHOLE FEATURE AFTERNORMALIZATION

Inputs Desired output Process Route

HFT MT BL DI DP DA SF

0.85 0.5 0.6 0.15 0.08 0.6 0.016 1 1 0 0 0 D RR - - -
0.85 0.5 0.6 0.18 0.09 0.6 0.016 1 1 0 0 0 D RR - - -
0.85 0.5 0.6 0.28 0.22 0.5 0.016 1 1 0 0 0 D RR - - -
0.85 0.5 0.6 0.2 0.1 0.1 0.016 1 1 1 0 0 D| RR FR - -
0.85 0.5 0.6 0.19 0.09 0.1 0.016 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.18 0.08 0.2 0.014 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.16 0.1 0.5 0.006 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.16 0.1 0.5 0.005 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.15 0.1 0.1 0.005 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.15 0.1 0.1 0.006 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.15 0.08 0.2 0.008 1 1 1 0 0 D RR FR - -
0.85 0.5 0.6 0.41 0.08 0.6 0.032 1 0 0 1 0 D - - RB -
0.85 0.5 0.6 0.42 0.09 0.6 0.004 1 0 0 1 0 D - - RB -
0.85 0.5 0.6 0.45 0.17 0.5 0.008 1 0 0 1 0 D - - RB -
0.85 0.5 0.6 0.6 0.18 0.2 0.032 1 0 0 1 1 D - - RB FB
0.85 0.5 0.6 0.78 0.12 0.1 0.032 1 0 0 1 1 D - - RB FB
0.85 0.5 0.6 0.8 0.08 0.1 0.032 1 0 0 1 1 D - - RB FB

For instance, hole feature of diameter 15 mm and depth 8machining sequence will be Drilling, Rough Boring, and
mm, surface finish 1.6, and dimensional tolerance IT 7 hasFinish Boring. The neural network Inputs and outputs are
an output sequence of Driling and Rough reaming. trained according to these criteria. A sample training
Similarly, a hole of diameter 80 mm, depth 20 mm, surface samples of slot features is shown in Table 3.
finish 0.6, and dimensional tolerance IT7 -IT9, the
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TABLE IlI
TRAINING SAMPLES FOR PRISMATIC SLOT FEATURE AFTER NORMALIZATION

INPUTS PROCESS ROUTE

SLT MT L D w DA SF DESIRED OUTPUTS RM SFM FM
0.75 0.5 0.51 0.15 0.25 0.6 0.05 1 0 0 RM - -

0.75 0.5 0.54 0.12 0.23 0.6 0.07 1 0 0 RM - -

0.75 0.5 0.57 0.1 0.22 0.5 0.09 1 0 0 RM - -

0.75 0.5 0.66 0.08 0.29 0.5 0.02 1 1 0 RM SFM -

0.75 0.5 0.68 0.09 0.28 0.4 0.04 1 1 0 RM SFM -

0.75 0.5 0.68 0.14 0.25 0.4 0.08 1 1 0 RM SFM -

0.75 0.5 0.8 0.03 0.13 0.5 0.1 1 1 0 RM SFM -

0.75 0.5 0.45 0.09 0.17 0.1 0.0032 1 1 1 RM SFM FM
0.75 0.5 0.45 0.09 0.17 0.1 0.0032 1 1 1 RM SFM FM

The inputs selected are depth, length, width, blank size,step, face, pocket, chamfer, rounded, fillet, and boss are
and material type. Apart from this, tolerances ranges andselected.
surface finishes are taken as inputs and outputs would beéD. Training and Validation of Neural Networks:
their corresponding machine operation sequences like rough The neurons are trained with the Levenberg-Marquidt
Milling, semi-finish milling, and finish milling. For example  packpropagation algorithm. Evethough it needs more
in a prismatic part with slot feature, for the length 50 mm, memory, this algorithm was found to be more effective. The
depth 15 mm, width 25 mm, Dimensional tolerance range IT | yenberg-Marquidt ~ algorithmic ~ program  (LMA),

7 and surface finish range 50 pm the machining route aqgitionally called the damped least-squares (DLS), the

selected is Rough Milling and for the same parameters formethodology provides a numerical answer to the matter of

dimensional tolerance IT 3 and surface finish of 0.32 um the yinimizing a perform, usually nonlinear, over an area of

process route selected by neural network would be Roughyarameters of the function. These step-down issues arise,

milling, semi finish milling and finish milling. In a similar  harticularly in  statistical procedure curve fitting and

way, the inputs and outputs of the various other features likeprogramming. The flowchart of the process planning based
on LMBPNN is shown in Figure 2.

I

Decide number of neurons <

L in input, output, and hidden
« layers

Neural network model
selection

A4

Determine the transfer function, number of
iterations, chose small weights NO

v

Compare output values with
desired input values

v

Fig. 2 Flowchart of process planning for prismatic part features based on LMBPNN
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IIl. RESULTS ANDDISCUSSION
Supervised learning is one in which both the input and pu

output data are provided, the network processes the inpu Jfo M @ |j ™ ‘_I' | o
data and compares with the required output data. Errors art M/q =] ﬁ/@} |4
propagated back through the system to adjust the weight: 2 :
which control the network. MATLAB 2018a software was
used for training. The input vectors and target vectors were
randomly divided 70 % of the data set were used for training,
15% for validating the networks and to stop training before  The training of the network was done by changing the
overfitting, and the remaining 15% used as completely number of hidden layers and performing many iterations.
independent testing of network generalization. The training Around 172 training samples of various dimensions,
continued until the validation stopped. For each process, thedimensional accuracy, and tolerances ranges were selected
input layers, output layers, and hidden layers are differentas input. The best performance of the slot feature is shown in
for different features. Figure 4, and the best architecture selected is 9-30-3 at

epoch 9, as shown in Table4

Hidden Output

30 2
Fig. 3 The neural network structure of the slot

1) NN for slot feature:The input, output, and hidden
layer selected using MATLAB is shown in Figure 3. The
slot features have nine inputs and three outputs.

TABLE IV
TRAINING EXPERIMENTS FOR VARIOUS FEATURES USINGM NEURAL NETWORK
Feature type Network structure Training error Validation error Testing error Epochs Gradient
Slot 9-10-3 0.00166 0.005300 0.00978 11 0.0000384
9-20-3 0.000300 0.003347 0.000648 11 0.0000212
9-30-3* 0.000008 0.001285 0.0066 15 0.00000013
Boss 8-5-3 0.0007 0.02 0.000030 14 0.00007
8-10-3* 0.00000001 0.00005 0.000833 63 0.0000015
8-13-3 0.000008 0.0128 0.00111 13 0.0000074
Hole 8-10-5 0.00269 0.0040 0.00288 12 0.0012177
8-20-5 0.00130 0.00689 0.00525 10 0.000428
8-30-5* 0.000006 0.00133 0.00406 32 0.0007133
Chamfer 9-10-3 0.00000049 0.00947 0.0414 15 0.00001266
9-20-3* 0.000000014 0.00689 0.104 12 0.000000005
9-7-3 0.0038 0.0388 0.00323 10 0.000000002
Pocket 9-10-3 0.00054 0.0067 0.00143 8 0.000123
9-25-3* 0.0000013 0.00038 0.00031 19 0.0000267
9-27-3 0.00029 0.0069 0.00291 10 0.000143
Step 10-10-3 0.00000841 0.00004189 0.0146 14 0.00001003
10-20-3* 0.000000011 0.00000804 0.0167 49 0.0000023
10-25-3 0.000000157 0.0000713 0.00018 29 0.00000398
Face 9-20-3 0.0069 0.0135 0.0139 8 0.00000009
9-10-3* 0.000000023 0.003725 0.08433 20 0.00000002
9-14-3 0.002145 0.004938 0.0211 10 0.00000143
Fillet 7-5-3 0.000967 0.0077 0.0161 13 0.001
7-10-3* 0.0000000235 0.000005196 0.00088 24 0.000007
7-20-3 0.0000048 0.0014 0.0035 44 0.0006
Rounded 8-7-3 0.0000589 0.000916 0.000696 13 0.000075
8-5-3* 0.0000043 0.00014128 0.00103 17 0.0000094
8-10-3 0.00089 0.00098 0.0012 20 0.00048
chosen for training using various diameter values,

2) NN for BosdeatureThe Boss feature has eight inputs

dimensional

tolerances, and surface finishes. The best

and three outputs, and the best validation network is found toperformance for the hole feature was found to be at epoch 26
be 8-10-3. The best performance curve is shown in Figure 5, '
which produces less error at epoch 57. The number of

training patterns selected was 49.

4) NN for chamfer: The chamfer feature training
samples include nine inputs and three outputs. The number
of training samples was 54, and the best performance was at
epoch four as shown in Figure 7. The number of the hidden
layer which gave the best performance was 20. The table

3) NN for Hole: The number of inputs selected for the
hole feature is eight, and the output is 5. The best validation
is shown in Figure 6. The best network for the hole was
found to be 8-30-5. Around 129 training samples were
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shows the various experiments conducted and the bestepoch 14, and as shown in Figure 10. The best selected
selected one. hidden layer is 10.

5) NN for pocket:The training sample selected for the 8) NN for Fillet: The neural network is trained with
pocket feature was 202 with nine inputs and three outputs.seven inputs and three outputs, and the best validation
The best validation curve shown in Figure 8 is achieved atperformance is achieved at epoch 18, and the best network
epoch 13. The best structure for the pocket feature is 9-25-3.was found to be 7-10-3. The performance graph is shown in

6) NN for STEP:The training sample selected was 165 Figure 11.
for the step feature. The number of hidden layers selected 9) NN for RoundedThe rounded feature network was
was 20. The best performance was at epoch 43 as shown itrained using 43 samples, each having eight inputs and three
Figure 9 outputs. The best validation is achieved at epoch 11, as

7) NN for Face:The face feature network uses 9 inputs shown in Figure 12 with hidden layer 5.

for training, and its outputs are 3. The best validation is at

Best Validation Performance is 0.0012855 at epoch 9 Best Validation Performance is 5.2783e-05 at epoch 57

10° s Train

Train

—glidation 10 —— \falidation
— Test
- Best -

Test

:D-'I-'i

Mean Squared Error (mse)
Mean Squared Error (mse)

15 Epochs o 10 20 30 40 50 G0

63 Epochs
Fig.4 Slot NN Fig.6 Hole NN
Best Validation Performance is 0.0068956 at epoch 4 Best Validation Performance is 0.0013327 at epoch 26

10°

s Triainy Train

e Validation Vakdation

= Tesl 107 Test
o Best Best

-
=

Mean Squared Error {mse)
=]
ha

Mean Squared Error (mse)

0 5 10 15 20 25 30
10 Epochs 32 Epochs
Fig.5 Boss NN Fig.7 Chamfer NN
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Best Validation Performance is 0.00038005 at epoch 13

Train
Walidation
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Fig.8 Pocket NN

Best Validation Performance is 8.0451e-06 at epoch 43
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m—\/alidation
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=
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=
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a 5 10 16 20 25 30 35 40 45
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Fig.9 Step NN
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=
[

m

Mean Squared Error (mse)
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Best Validation Performance is 0.0037251 at epoch 14

0 Train
10 Validation
s T25E =
-~ Best
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Fig.10 Face NN

Best Validation Performance is 5.1961e-06 at epoch 18

10°
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o 5 10 15 20
24 Epochs
Fig.11 Fillet NN

Best Validation Performance is 0.00014128 at epoch 11

Train
Walidation
—Test
i Pt

G 8 10
17 Epochs

Fig.12 Rounded NN

Fig 4-12. Best performances by the various neural networks

625



The number of hidden layers used for each feature issample component with different prismatic features like
consolidated in Figure 13, which depicts that a total of nine chamfer, boss, pocket, face, slot, and hole was considered to

features and the best-hidden layers for each network check the working of the neural networks. The part has 12
35 features.

30 70

A ——MSE 1.Rounded
25 60 2.Boss
/\ 3.Fillet
20 30 4.Face
5.Chamfer
. N A
30 A 7.Pocket
Y B WA N
10
9.5lot
20
1 \/ v \

No of Hidden Layers
Epoch

rounded boss fillet face chamfer step pocket hole slot 1 2 3 4 5 6 7 8 ]

Fig.13 No of hidden layers used for each feature
Types of Feature

The epoch values for each feature are represented Fig .14 Epoch used for various features
graphically in Figurel4. The Boss feature neural network
took more iterations to give the best result, and features like The detailed dimensions details of the various machining
Chamfer, Pocket, and slot produced results in fewerfeatures are shown in Figure 15. The various features, their
iterations considerably dimensions, tolerance, and surface finishes are input to the

Selecting the best process routes of the different partbest selected neural network and the process routes are
features is the most important activity in Computer-aided automatically generated for the different features using the
process planning systems. To improve the quality of the best selected neural network, as represented in table 5.
process planning neural network approach is used. An
illustrative example is used to show the feasibility of the
proposed method of selecting machining operations. A

30
100.00 *
R2

1.All Dimensions are in mm
2.Surface Finish is 1.2um

Fig .15: A sample Prismatic Component
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TABLE V

PROCESSROUTE FOR THE PRISMATIC PART

V. CONCLUSION

The networks of the various prismatic parts were created
using Levenberg Marquidt algorithm and tested with sample

Feature Type of Process Route generated by components, and further, it's compared with Scaled
number Feature ANN ! . .
- — Conjugate Gradient, and it was found that almost all the
1 Chamfer R?I:Jgh Mill — Semi Finish neural networks developed using LM algorithm had the best
Mi performance compared to them later.
28 B Rough Mill — Semi Finish The comparison analysis of these algorithms is shown in
’ 0ss Mill Figure 16, which indicates clearly that the mean square error
. p—_ values in LM method are much closer to zero than the SC.
Rough Mill — Semi Finish
3 Pocket Mill 9 Only the Chamfer neural network shows almost the same
. — error values, or else other networks clearly show that LM
4 Face Rough Mill — Semi Finish method produces the least error than the scaled conjugated
Mill method. So the computer-aided process planning using these
5 Slot Rough Mill — Semi Finish networks proved to produce a better process plan. LM
0 Mill algorithm has a few disadvantages; it is not applicable when
_ the RMSE (Root Mean Square Error) is needed. LM
6,11,7,12,9,10 Hole Drill _ algorithm does not work well with large data since it cannot
Drill-Rough Reaming handle a lot of memory space.
0.000001
miM
WsC 1.Rounded
0.00001 2 BOSS
3.Fillet
4.Face
0.0001 5.Chamfer
6.5tep
w | 7.Pocket
g o001 8.Hole
9.5lot
0.01
01 4
1 -

Typesof Feature

Fig .16 Comparison of LM and SC neural network

LM algorithm is best suited for training a few thousand

and hundreds or fewer parameters, but many neural networl co:s
types are present. In our research, nine neural networks wer
trained using a few hundreds of settings under each network
Figure 17 shows the MSE error produced by LM and SC

method for the various number of hidden layers.
Artificial neural networks easily train a flexible CAPP. A

0.014 -

0.012

0.01

0.008 ——SsC

——LM

prismatic component was analyzed, and proper machining
operations have been identified, and the time taken to
process the plan component is very less. Future work shoulc
focus more on selecting the sub-features of the prismatic ooz
features, which is not considered here. Further tool selectior
and parameter selection should be considered. An Intelligen
feature recognition, Integrating CAD, CAPP, and CAM are

the future interest.

0.006

0.004
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5

10

10 10 20 20 25 30 30
No of hidden layers

Fig .17 MSE for different hidden layers
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