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Abstract— Computer-aided process planning systems are used to assist human planners in producing better process plans. New 
artificial intelligence techniques play a significant role in CAPP. CAPP research includes neural network approaches, knowledge-
based techniques, Petri nets, agent-based, fuzzy set theory, genetic algorithm, Standard for the Exchange of Product model data 
(STEP)-Compliant CAPP, and Internet-based techniques. This study deals with the application of the Artificial Neural Network 
techniques (ANN) in CAPP because of their learning ability and massive potential toward dynamic planning.  This study focuses on 
the usage of artificial neural networks machining operation selection and sequences of operations for prismatic components. The 
intelligent CAPP system suggests the best machining operation and its sequences for the prismatic components using tolerances, 
material requirements, and surface finish details. The process planning of machining features in part is the starting point. An 
enormous amount of knowledge is required for part feature process planning, like selecting proper material, size, stock, dimensional 
tolerance, and surface finish. In this work, various prismatic features, such as a hole, slot, pocket, boss, chamfer, fillet, and face are 
taken and details like material, size, stock, dimensional tolerance and surface finish are properly normalized and given as input to 
neural networks to find the required sequence of machining operation. LevenbergMarquidt algorithm was used to train the networks 
and was found very effective in operation sequence selection. A sample prismatic component with nine features have been analyzed 
and found to be more productive. Levenberg Marquidt  algorithm is then compared with the conjugant space algorithm, and it is 
found that the former produces less error in outputs compared to them later. 
 
Keywords— computer-aided process planning; artificial neural networks; machining operation sequencing; prismatic parts. 
 
 

I. INTRODUCTION 

Process planning is vital in bridging the gap between 
design and manufacturing. Manual process planning has a 
huge drawback because it requires process planning 
knowledge, such as a handbook, manufacturing resources, 
model shape, and decision making. Moreover, human 
process planners should be skilled in using reference books, 
designing tools and fixture equipment, selecting raw 
materials, and choosing the manufacturing process. They 
should also possess the ability to understand engineering 
drawings and perform computations on machining time and 
cost.  

Neural networks are more advantageous than any other 
method because of their tolerance towards small errors from 
the input. Artificial Neural Network deals with simple 
mathematical calculations and does not involve any logical 
rule, and it is faster. It can deal with a large amount of data, 
especially in situations where rules are unknown. A neural 
network consists of many numbers of nodes interconnected 
to each other by layers such as input, output, and hidden 
layers. Each neuron will do any mathematical operation (i.e.) 

it computes the weighted sum of its input, subtracts its 
threshold from the amount, and sends the results through the 
transfer function [1]. The inputs and the desired outputs are 
learned carefully, so the actual output gets very close to the 
desired outputs.  

Based on past training experience, the prediction process 
takes input and produces the required outputs. Training of 
ANN is a crucial step because altering the connection will 
cause the neural network to learn the solution, and it is 
generally carried out using supervised and unsupervised 
learning methods. Deep Learning has been currently getting 
attention in Computer-Aided Process Planning (CAPP). 
Artificial Intelligence (AI) technology applies to the entire 
range of manufacturing activities, where here we focused on 
applying it to CAPP. Towards the automation, the expert 
systems are broadly utilized in the manufacturing domain 
over two decades.  

Recent advancement in computing power through the 
graphics processing unit (GPU), deep learning algorithms 
are gaining more and more recognition and have been 
successfully applied in various manufacturing process 
selection. In this section, we explained a few among them. 
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Prismatic part machining features were recognized using 
Artificial Neural Network (ANN), and the method also 
proposes a 12-node vector representation of machining 
features, which varies in geometry and topology.  

On successive vector representation on Boundary 
Representation (B-Rep) of CAD models, ANN is used for 
making the final prediction [2]. Rule-based STEP-based 
feature modeler introduced for the integration of 
CAPP/CAD systems [3]. Through the two cascaded neural 
networks, they were able to achieve nearly 0.02 Root Mean 
Square Error with 38 epochs. A 3 layer feed-forward 
network based on Radial Basis. Function (RBF) as an 
activation function is proposed to represent the information 
about adjacent edges and constituent faces [4]. This method 
reports considerable computation speed and performance. 
The geometric model-based neural network on generating 
part-programs for milling, drilling, and similar operations on 
machining centers was developed without the operator 
intervention [5].  

A process planning methodology based on a combination 
of radial basis function (RBFNN) and granular computing 
(Grc) was proposed by Danchen Zhou et al. [6]. A hole 
feature was taken to illustrate the proposed work, and it was 
found that GRC-RBFNN produces accurate process routing 
of part features compared to RBFNN. Ding et al. [7] used 
Genetic Algorithm to find optimal sequence plans for 
machining and applied (ANN) to allocate relative weights 
for different evaluation factors of variant components for 
process sequencing. Least manufacturing cost, least 
manufacturing time, and satisfaction of manufacturing 
sequence rules are the main considerations taken as input.  

Sankha Deb et al. [8] proposed a feed-forward back 
propagation neural network for the rotational component. 
Thumb rules (if then) were used for training the neural 
network. The simulation was done using a software package 
named Neuframe Version 4. Amaitik et al. [9] introduced an 
intelligent CAPP system. Fuzzy logic, artificial neural 
networks, and rule-based techniques were used to create a 
digital process plan .Sankab et al. [10] tried to automate two 
main important components of process planning, machining 
operation selection, and set-up planning. Catia V5 R13 
software was used for feature recognition and input. 
Software stores the part data, and it is accessed using a 
macro tool in the VBA module, which stores information 
such as bodies, feature shape, and sketches, parameters 
collection, and annotation set collections.  

Ouyang Hua bing [11] dealt with ANN, GA, and fuzzy 
logic. Solid works adopted by VB.NET was employed for 
feature recognition. Intelligent process planning ST-CAPP 
was deployed to integrate process planning and using STEP-
NC standards, which transforms the design entities to 
manufacture features, followed by this process planning was 
converted to the machining operation. Gokulchandran et al. 
[12] did a tool life prediction using both regression and ANN 
analysis. A regression model was proposed for predicting the 
remaining tool life, whereas the ANN model was used for 
tool life prediction.  

Gokulchandran et al. [13] used Matlab to train a neural 
network to predict the tool life in which 70 % of the data 
was used for measurement, 15 % for testing, and remaining 
for validation purposes. S.Illangovan et al. [14] implemented 

the integration of neural network and fuzzy logic for 
predicting the hardness and wear rate of specific alloy 
specimens. Izabela Rojek[15] did a comparative analysis 
utilizing MLP, RBF, and Kohonen systems for the machine 
choice, tool choice, and machine parameter choice. A 
complex genuine issue was tried utilizing these neural 
systems. These neural systems have given modern quality to 
CAPP systems. Amaitik[16] used a backpropagation neural 
network to minimize the total sum of square error. He 
trained the various drilling and milling tools. Many training 
experiments were performed to select the optimal structure. 
Recently radial basis function-based models have been used 
for modeling [17]. Techniques like Fuzzy logic and radial 
basis function has also been used for modeling the response 
of welded and processed plates. Wang et al. [18] discussed a 
dynamic process planning in modern manufacturing and 
manufacturing sustainability in terms of energy consumption, 
productivity, and production quality for process planning 
and scheduling optimization. Analysis based on the 
Backpropagation algorithm, gradient descent, and gradient 
descent with momentum, utilizing the sigmoidal and 
hyperbolic tangent activation functions, combined with pre-
processing techniques, were executed and compared [19]. 

The backpropagation gradient descent with the adaptive 
learning rate (BPGD-AL)was improved by modifying a few 
values locally in the learning rate. The dataset results show 
that the modified and improved learning rate improved the 
learning efficiency of the Back-Propagation Algorithm [20]. 
The input parameters used to analyze the end milling process 
for  Al2024-T4 were cutting speed, feed per tooth, depth of 
cut, and the cutting fluid flow rate, and the response 
parameters used are surface roughness, cutting force, and 
MRR. MATLAB was used to perform a Regression analysis 
in an Artificial neural network, and optimized results were 
obtained [21]. The cutting parameters in CNC milling 
operations were optimized using an Artificial neural network 
to reduce the cost of production in face milling operation. 
Matlab 2011 software was used to train a Multilayer 
perceptron using the Levenberg Marquidt algorithm along 
with Edgeworth-Pareto methods [22]. Feedforward neural 
networks were used to predict machining responses. Feed, 
depth of cut, and speed were taken as Input and surface 
roughness, cutting forces, and the temperature was the 
required output. The output values were very close to the 
input values. A hard turning component was taken as an 
example [23]. 

II. MATERIALS AND METHOD 

Machining of parts includes drilling, boring, reaming, 
milling, etc. Milling is considered the best destructive type 
machining process because of its ability to produce a good 
surface finish and machine to its closest tolerance range. It 
can start with simple surface machining to complex 
machining of parts. 

A. Knowledge Gathering: 

The selection of best manufacturing operations and its 
sequence is based on the geometry of features, dimensions of 
various features, material properties, dimensional tolerance 
ranges, and surface finish details. The feature geometry 
includes types of prismatic features like a pocket, face, hole, 
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step, etc. The feature dimensions include diameter, length, 
depth angle, and radius. The material properties include the 
type of material, its hardness values and Aluminum is 
selected for the research work. Dimensional tolerances 
indicate the allowable upper and lower limits of the 
dimensions, and it is represented in IT grades. The surface 
finish indicates how smooth the feature is. It is represented 
by a numerical value usually represented in N grade. The 
hole feature has dimensions diameter and depth. The process 
selection of the hole feature includes drilling, rough reaming, 
finish reaming, rough boring, or finish boring. For instance, 
if the diameter of the hole is taken as 40 mm, the process 
route will be rough drilling, reaming or boring a hole. The 
boring operation produces a better surface finish than 
drilling. The step features include length, depth, width, and 
angle. Finish milling is chosen in case of close tolerances. 
The process selection of Boss features includes diameter and 
length dimensions because only the circular boss network is 

taken into consideration. The fillet feature does not disturb 
geometry and is used for safety purposes, and it includes 
radius dimensions. The radius and length are the dimensions 
which interpret the round feature. The machining process 
includes end milling. The length of the part, its depth, and 
angle are the important dimensions considered in the 
chamfer feature, and end milling is the machining operation 
to produce it. Face features involve dimensions such as 
length, depth, and width. Face milling is the machining 
operation considered. Pocket and Slot feature considered 
length, depth, and width dimensions for pocket milling and 
slot milling, respectively. The prismatic blank shape is 
selected to machine all the basic features mentioned above. 
Table 1 illustrates the Ranges of tolerances and surface 
finish for various features, and it represents the machining 
sequence for each feature. The tolerances and surface finish 
values are referred from various Engineering handbooks and 
best manufacturing practices [24]. 

TABLE I 
RANGES OF TOLERANCES AND SURFACEFININSH FOR PRISMATIC FEATURES 

  

Feature 
type  

Parameters Used Tolerance Range in 
mm 

Surface Finish 
Range in  µm 

Machining Process sequence 

Hole Diameter, Depth IT11-13 
IT7-IT8 
IT7 
IT12-13 
IT7-9 

5-80 
1.6-3.2 
0.8-1.6 
5-20 
0.62-2.5 

Drill 
Drill-Rough Reaming 
Drill-Rough Reaming-Finish Reaming 
Drill-Rough Boring  
Drill-Rough Boring-Finish Boring 

Fillet Radius IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Step Length,Depth,Width IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Rounded Radius IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Boss Diameter, Length IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Slot Length,Depth,Width IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Pocket Length,Depth,Width IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Face Length,Depth,Width IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

Chamfer Angle, Distance IT11 - IT13 
IT8    - IT11 
IT3   - IT8 

5-20 
1.25-10 
0.32-1.25 

Rough Milling 
Rough Milling-Semi Finish Milling 
Rough Milling-Semi Finish Milling-Finish Milling 

 

B. Network Topology 

The network topology, which uses a feed-forward neural 
network, is shown in Figure 1. A two-layer feed-forward 
neural network is employed with hidden sigmoid neurons 
and linear output neurons, which matches dimensional 

mapping issues well, given consistent knowledge and 
enough neurons in its hidden layer. The detailed explanation 
of the selection of various Inputs and outputs for different 
prismatic features are discussed in the following section. 
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Fig.1 Machining operation selection 

 

C. Selection of Input and Desired Outputs 

The Inputs are selected in such a way that one neuron is 
allocated for each feature type. The values of Inputs are 
normalized using proper scaling factors, and it lies between 
0 and 1. The input parameters selected for various prismatic 
features such as chamfer, fillet, face, rounded, hole, slot, step, 
face, and pocket are shown in table 1. In the inputs, the 
Tolerances ranges, surface finishes, and material 
requirements are common parameters for all the features. 

Hole includes diameter and depth as input and outputs are 
operation sequences such as Drill, Drill-Rough Reaming, 
Drill-Rough Reaming-Finish Reaming, Drill-Rough Boring, 
and Drill-Rough Boring-Finish Boring. The machine 
operation sequence is given values between 0 and 1, 0 
represents a particular sequence is not selected, and 1 
represents a particular sequence is selected. An example of a 
training sample for the hole feature is shown below in Table 
2.  

TABLE  II 
TRAINING SAMPLES FOR HOLE FEATURE AFTER NORMALIZATION  

Inputs 
Desired output  Process Route 

HFT MT BL DI DP DA SF 

0.85 0.5 0.6 0.15 0.08 0.6 0.016 1 1 0 0 0 D RR - - - 

0.85 0.5 0.6 0.18 0.09 0.6 0.016 1 1 0 0 0 D RR - - - 

0.85 0.5 0.6 0.28 0.22 0.5 0.016 1 1 0 0 0 D RR - - - 

0.85 0.5 0.6 0.2 0.1 0.1 0.016 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.19 0.09 0.1 0.016 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.18 0.08 0.2 0.014 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.16 0.1 0.5 0.006 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.16 0.1 0.5 0.005 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.15 0.1 0.1 0.005 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.15 0.1 0.1 0.006 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.15 0.08 0.2 0.008 1 1 1 0 0 D RR FR - - 

0.85 0.5 0.6 0.41 0.08 0.6 0.032 1 0 0 1 0 D - - RB - 

0.85 0.5 0.6 0.42 0.09 0.6 0.004 1 0 0 1 0 D - - RB - 

0.85 0.5 0.6 0.45 0.17 0.5 0.008 1 0 0 1 0 D - - RB - 

0.85 0.5 0.6 0.6 0.18 0.2 0.032 1 0 0 1 1 D - - RB FB 

0.85 0.5 0.6 0.78 0.12 0.1 0.032 1 0 0 1 1 D - - RB FB 

0.85 0.5 0.6 0.8 0.08 0.1 0.032 1 0 0 1 1 D - - RB FB 

 
For instance, hole feature of diameter 15 mm and depth 8 

mm, surface finish 1.6, and dimensional tolerance IT 7 has 
an output sequence of Drilling and Rough reaming. 
Similarly, a hole of diameter 80 mm, depth 20 mm, surface 
finish 0.6, and dimensional tolerance IT7 -IT9, the 

machining sequence will be Drilling, Rough Boring, and 
Finish Boring. The neural network Inputs and outputs are 
trained according to these criteria. A sample training 
samples of slot features is shown in Table 3.
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TABLE III 
TRAINING SAMPLES FOR PRISMATIC SLOT FEATURE AFTER NORMALIZATION 

INPUTS 
DESIRED OUTPUTS 

PROCESS ROUTE 
SLT MT L D W DA SF RM SFM FM 
0.75 0.5 0.51 0.15 0.25 0.6 0.05 1 0 0 RM - - 
0.75 0.5 0.54 0.12 0.23 0.6 0.07 1 0 0 RM - - 
0.75 0.5 0.57 0.1 0.22 0.5 0.09 1 0 0 RM - - 
0.75 0.5 0.66 0.08 0.29 0.5 0.02 1 1 0 RM SFM - 
0.75 0.5 0.68 0.09 0.28 0.4 0.04 1 1 0 RM SFM - 
0.75 0.5 0.68 0.14 0.25 0.4 0.08 1 1 0 RM SFM - 
0.75 0.5 0.8 0.03 0.13 0.5 0.1 1 1 0 RM SFM - 
0.75 0.5 0.45 0.09 0.17 0.1 0.0032 1 1 1 RM SFM FM 
0.75 0.5 0.45 0.09 0.17 0.1 0.0032 1 1 1 RM SFM FM 

 
The inputs selected are depth, length, width, blank size, 

and material type. Apart from this, tolerances ranges and 
surface finishes are taken as inputs and outputs would be 
their corresponding machine operation sequences like rough 
Milling, semi-finish milling, and finish milling. For example 
in a prismatic part with slot feature, for the length 50 mm, 
depth 15 mm, width 25 mm, Dimensional tolerance range IT 
7 and surface finish range 50 µm the machining route 
selected is Rough Milling and for the same parameters for 
dimensional tolerance IT 3 and surface finish of 0.32 µm the 
process route selected by neural network would be Rough 
milling, semi finish milling and finish milling. In a similar 
way, the inputs and outputs of the various other features like 

step, face, pocket, chamfer, rounded, fillet, and boss are 
selected. 
D. Training and Validation of Neural Networks: 

The neurons are trained with the Levenberg-Marquidt 
backpropagation algorithm. Even though it needs more 
memory, this algorithm was found to be more effective. The 
Levenberg–Marquidt algorithmic program (LMA), 
additionally called the damped least-squares (DLS), the 
methodology provides a numerical answer to the matter of 
minimizing a perform, usually nonlinear, over an area of 
parameters of the function. These step-down issues arise, 
particularly in statistical procedure curve fitting and 
programming. The flowchart of the process planning based 
on LMBPNN   is shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Flowchart of process planning for prismatic part features based on LMBPNN 
 

 

Neural network model 
selection 

Determine the transfer function, number of 
iterations, chose small weights 

Compare output values with 
desired input values 

Decide number of neurons in input, 
output, and hidden layers 

Decide number of neurons 
in input, output, and hidden 

layers 

Testing and Validation: 
If error value 

<predefined value 

Display results 

NO 

YES 
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III.  RESULTS AND DISCUSSION 

Supervised learning is one in which both the input and 
output data are provided, the network processes the input 
data and compares with the required output data. Errors are 
propagated back through the system to adjust the weights 
which control the network. MATLAB 2018a software was 
used for training. The input vectors and target vectors were 
randomly divided 70 % of the data set were used for training, 
15% for validating the networks and to stop training before 
overfitting, and the remaining 15% used as completely 
independent testing of network generalization. The training 
continued until the validation stopped. For each process, the 
input layers, output layers, and hidden layers are different 
for different features. 

1) NN for slot feature: The input, output, and hidden 
layer selected using MATLAB is shown in Figure 3. The 
slot features have nine inputs and three outputs. 

 

 
Fig. 3 The neural network structure of the slot 

 
The training of the network was done by changing the 

number of hidden layers and performing many iterations. 
Around 172 training samples of various dimensions, 
dimensional accuracy, and tolerances ranges were selected 
as input. The best performance of the slot feature is shown in 
Figure 4, and the best architecture selected is 9-30-3 at 
epoch 9, as shown in Table4. 

TABLE IV 
TRAINING EXPERIMENTS FOR VARIOUS FEATURES USING LM  NEURAL NETWORK 

Feature type Network structure Training error Validation error Testing error Epochs Gradient 

Slot 9-10-3 0.00166 0.005300 0.00978 11 0.0000384 

 9-20-3 0.000300 0.003347 0.000648 11 0.0000212 

 9-30-3* 0.000008 0.001285 0.0066 15 0.00000013 

Boss 8-5-3 0.0007 0.02 0.000030 14 0.00007 

 8-10-3* 0.00000001 0.00005 0.000833 63 0.0000015 

 8-13-3 0.000008 0.0128 0.00111 13 0.0000074 

Hole 8-10-5 0.00269 0.0040 0.00288 12 0.0012177 

 8-20-5 0.00130 0.00689 0.00525 10 0.000428 

 8-30-5* 0.000006 0.00133 0.00406 32 0.0007133 

Chamfer 9-10-3 0.00000049 0.00947 0.0414 15 0.00001266 

 9-20-3* 0.000000014 0.00689 0.104 12 0.000000005 

 9-7-3 0.0038 0.0388 0.00323 10 0.000000002 

Pocket 9-10-3 0.00054 0.0067 0.00143 8 0.000123 

 9-25-3* 0.0000013 0.00038 0.00031 19 0.0000267 

 9-27-3 0.00029 0.0069 0.00291 10 0.000143 

Step 10-10-3 0.00000841 0.00004189 0.0146 14 0.00001003 

 10-20-3* 0.000000011 0.00000804 0.0167 49 0.0000023 

 10-25-3 0.000000157 0.0000713 0.00018 29 0.00000398 

Face 9-20-3 0.0069 0.0135 0.0139 8 0.00000009 

 9-10-3* 0.000000023 0.003725 0.08433 20 0.00000002 

 9-14-3 0.002145 0.004938 0.0211 10 0.00000143 

Fillet 7-5-3 0.000967 0.0077 0.0161 13 0.001 

 7-10-3* 0.0000000235 0.000005196 0.00088 24 0.000007 

 7-20-3 0.0000048 0.0014 0.0035 44 0.0006 

Rounded 8-7-3 0.0000589 0.000916 0.000696 13 0.000075 

 8-5-3* 0.0000043 0.00014128 0.00103 17 0.0000094 

 8-10-3 0.00089 0.00098 0.0012 20 0.00048 

 

2) NN for Boss feature The Boss feature has eight inputs 
and three outputs, and the best validation network is found to 
be 8-10-3. The best performance curve is shown in Figure 5, 
which produces less error at epoch 57. The number of 
training patterns selected was 49.  

3) NN for Hole: The number of inputs selected for the 
hole feature is eight, and the output is 5. The best validation 
is shown in Figure 6. The best network for the hole was 
found to be 8-30-5. Around 129 training samples were 

chosen for training using various diameter values, 
dimensional tolerances, and surface finishes. The best 
performance for the hole feature was found to be at epoch 26. 

4) NN for chamfer: The chamfer feature training 
samples include nine inputs and three outputs. The number 
of training samples was 54, and the best performance was at 
epoch four as shown in Figure 7. The number of the hidden 
layer which gave the best performance was 20. The table 
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shows the various experiments conducted and the best-
selected one. 

5) NN for pocket: The training sample selected for the 
pocket feature was 202 with nine inputs and three outputs. 
The best validation curve shown in Figure 8 is achieved at 
epoch 13. The best structure for the pocket feature is 9-25-3. 

6) NN for STEP: The training sample selected was 165 
for the step feature. The number of hidden layers selected 
was 20. The best performance was at epoch 43 as shown in 
Figure 9 

7) NN for Face: The face feature network uses 9 inputs 
for training, and its outputs are 3. The best validation is at 

epoch 14, and as shown in Figure 10. The best selected 
hidden layer is 10. 

8) NN for Fillet: The neural network is trained with 
seven inputs and three outputs, and the best validation 
performance is achieved at epoch 18, and the best network 
was found to be 7–10–3. The performance graph is shown in 
Figure 11. 

9) NN for Rounded: The rounded feature network was 
trained using 43 samples, each having eight inputs and three 
outputs. The best validation is achieved at epoch 11, as 
shown in Figure 12 with hidden layer 5.  

 

 
 

Fig.4 Slot NN Fig.6 Hole NN 

  

Fig.5 Boss NN Fig.7 Chamfer NN 
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Fig.8 Pocket NN Fig.10 Face NN 

  

Fig.9 Step NN Fig.11 Fillet NN 

  

 

Fig.12 Rounded NN 

Fig 4-12. Best performances by the various neural networks 
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The number of hidden layers used for each feature is 
consolidated in Figure 13, which depicts that a total of nine 
features and the best-hidden layers for each network. 

 
Fig.13 No of hidden layers used for each feature 

 
The epoch values for each feature are represented 

graphically in Figure14. The Boss feature neural network 
took more iterations to give the best result, and features like 
Chamfer, Pocket, and slot produced results in fewer 
iterations considerably. 

Selecting the best process routes of the different part 
features is the most important activity in Computer-aided 
process planning systems. To improve the quality of the 
process planning neural network approach is used. An 
illustrative example is used to show the feasibility of the 
proposed method of selecting machining operations. A 

sample component with different prismatic features like 
chamfer, boss, pocket, face, slot, and hole was considered to 
check the working of the neural networks. The part has 12 
features.  

 

 
Fig .14 Epoch used for various features 

 
The detailed dimensions details of the various machining 

features are shown in Figure 15. The various features, their 
dimensions, tolerance, and surface finishes are input to the 
best selected neural network and the process routes are 
automatically generated for the different features using the 
best selected neural network, as represented in table 5. 
 

 
Fig .15: A sample Prismatic Component 
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TABLE V 
PROCESS ROUTE FOR THE PRISMATIC PART 

Feature 
number 

Type of 
Feature 

Process Route generated by 
ANN 

1 Chamfer 
Rough Mill – Semi Finish 
Mill 

2,8 Boss 
Rough Mill – Semi Finish 
Mill 

3 Pocket 
Rough Mill – Semi Finish 
Mill 

4 Face 
Rough Mill – Semi Finish 
Mill 

5 Slot 
Rough Mill – Semi Finish 
Mill 

6,11,7,12,9,10 Hole 
Drill 
Drill-Rough Reaming 

 

IV.  CONCLUSION 

The networks of the various prismatic parts were created 
using Levenberg Marquidt  algorithm and tested with sample 
components, and further, it’s compared with Scaled 
Conjugate Gradient, and it was found that almost all the 
neural networks developed using LM algorithm had the best 
performance compared to them later. 

The comparison analysis of these algorithms is shown in 
Figure 16, which indicates clearly that the mean square error  
values in LM method are much closer to zero than the SC. 
Only the Chamfer neural network shows almost the same 
error values, or else other networks clearly show that LM 
method produces the least error than the scaled conjugated 
method. So the computer-aided process planning using these 
networks proved to produce a better process plan. LM 
algorithm has a few disadvantages; it is not applicable when 
the RMSE (Root Mean Square Error) is needed. LM 
algorithm does not work well with large data since it cannot 
handle a lot of memory space.  

 
Fig .16 Comparison of LM and SC neural network 

 
LM algorithm is best suited for training a few thousand 

and hundreds or fewer parameters, but many neural network 
types are present. In our research, nine neural networks were 
trained using a few hundreds of settings under each network. 
Figure 17 shows the MSE error produced by LM and SC 
method for the various number of hidden layers. 

Artificial neural networks easily train a flexible CAPP. A 
prismatic component was analyzed, and proper machining 
operations have been identified, and the time taken to 
process the plan component is very less. Future work should 
focus more on selecting the sub-features of the prismatic 
features, which is not considered here. Further tool selection 
and parameter selection should be considered. An Intelligent 
feature recognition, Integrating CAD, CAPP, and CAM are 
the future interest. 
 

 

 

 
Fig .17 MSE for different hidden layers
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