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Abstract—We witness massive implementations of the Internet of Things (IoT) in smart homes, smart buildings, smart vehicles, smart 

wearables as well as Industry 4.0 initiatives. Along with the massive adoption, IoT security has become more important and crucial in 

this case. Arduino, as IoT hardware platform, also requires enhancements on its security to ensure that data it transmits and receives 

is secured and has not been tampered in any way. Transmitting of IoT data and telecommand in plaintext is not secure. Securing 

transmission using traditional block cipher is computationally intensive for embedded-systems with low memory and computing power 

like Arduino. This research proposes a novel lightweight security communication protocol that is lightweight enough to run on the 

Arduino platform. The proposed protocol shall be utilizing a lightweight key agreement scheme, the SPECK lightweight block cipher, 

and BLAKE2s hash function. This protocol is designed to support telemetry and telecommand by using publisher-subscriber, which 

also is aimed to be extensible but straightforward for future enhancements. This research shows that a secure IoT communication 

protocol can be designed and implemented on Arduino devices and another IoT platform running Arduino core such as the ESP32. The 

performance evaluation of this protocol in Arduino Mega shows that the INIT phase's average execution time is 26.83 milliseconds. The 

key agreement is 13.50 milliseconds, and the encryption-decryption of telemetry and telecommand messages requires 25 milliseconds 

execution time. The protocol performance evaluation in ESP32 has an average execution time for INIT phase 44.63 milliseconds. The 

key agreement phase, 13.90 milliseconds, and the encryption and decryption of telemetry and telecommand messages requires an 

execution time of 17.10 milliseconds. 
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I. INTRODUCTION

The Internet of Things (IoT) or the Internet of Objects is a 

network that connects objects in everyday life. The IoT 

extends the Internet as we know today to a more extensive 

network with the integration of objects in everyday life 

through embedded systems. A network of intelligent objects 

will communicate with each other. At present, IoT 

applications have reached many aspects of daily life that 
include the health sector, transportation, utilities, smart homes, 

and smart appliance. Research by Ahmad and Zafar [1] shows 

that IoT technology has been applied to healthcare, mostly 

remote medical monitoring. In this case, smart sensors 

monitor patients' biomechanical and physiological data such 

as blood pressure, data heart, body temperature, and blood 

sugar. The data would then be transmitted via a wireless body 

area network of each patient via a PDA or smartphone, 

relaying the data to the central server for analytics. 

Arduino is very popular for the development and IoT 

applications. Research in the IoT field that uses Arduino is 

very ubiquitous, such as [2], which focuses on developing an 

Arduino based environmental security system. Wahjuni et al. 

[3] developed a fuzzy inference system to monitor the eel

breeding environment and estimate young eels' survival rate.

The system is developed using Arduino Uno, and Intel Galileo

will then send telemetry data to the server. Wahjuni and

Waladi [4] also developed an Arduino-based automatic

irrigation system and REST protocol with several input

parameters such as soil moisture and pH. The Arduino

platform has very limited system resources such as memory
or processing power. Therefore, any resources consumption

shall be carefully managed.

According to ESET [5], many IoT devices send 

information in plaintext, use inadequate encryption 

technology, or not use any authentication method. Loi et al. 

research [6] found that many IoT devices in the consumer 

market communicate in plaintext. In contrast, only one device 
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uses a secure socket layer protocol, albeit with low entropy 

parameters. Besides, five of twenty IoT devices involved in 

the research were susceptible to replay attacks, while only two 

were known to resist these attacks. 

One of the most important data communication security 

services is confidentiality. This is achieved by encrypting the 

data using a cryptographic encryption algorithm with an 

encryption key to prevent the data from being read by any 

unauthorized parties. Encryption algorithm such as a block 

cipher requires both authorized parties -the sender and the 

receiver of data- to agree in using the same encryption key in 
order to exchange encrypted message successfully. Another 

important security feature is data integrity, which is important 

to ensure that the transmitted data is not tampered with during 

transmission.  

Lightweight cryptography algorithms are a new class of 

cryptography algorithms specifically designed to provide an 

adequate security level and require minimal memory and 

computing resources.  These algorithms are considered more 

suitable for IoT environments that have very limited 

computing resources.  

Wu and Zhang state [7] that lightweight cryptographic 
algorithms, when compared to traditional cryptographic 

algorithms, have three distinctive properties: First, the 

application of IoT devices generally do not need to encrypt 

large amounts of data. Second, the attackers cannot record 

enough encrypted IoT data for cryptanalysis. Therefore, 

lightweight cryptographic algorithms only need a moderate 

level of security. Third, light cryptographic algorithms are 

generally applied to hardware such as 8-bit microcontrollers, 

so efficiency is critical. Dinu et al. [8] mentioned that 

important criteria in the use of lightweight cryptography 

algorithms include code size, RAM required, and 
computational time needed to encrypt and decrypt data. 

Research by Loi et al. [6] also mentions that many IoT 

solutions do not use any form of secure communication 

protocol in transmitting data from IoT devices to servers or 

from the server to user applications. 

This research aims to design a communication protocol 

that can primarily provide data confidentiality, data integrity, 

and authentication services. This protocol should be able to 

run on IoT devices that have limited computing resources 

such as the Arduino platform.  

II. MATERIAL AND METHOD

A. Development Environment

The programming language used for this research is a C++

programming language with the Arduino IDE version 1.8.5 

for development on the Arduino IoT device. This research 

also utilizes open source libraries such as the ArduinoJSON, 

ArduinoCryptLibs, and communication libraries for SIM808 

GPRS modules and Wifi modules for ESP32. The protocols 

server-side is developed using the Python programming 

language version 3.7.1 with Microsoft Visual Studio Code as 
IDE. Protocol server-side development also utilizes open 

source software such as Redis, which serves the publisher-

subscriber module to support this protocol's functionalities. 

Redis is used for tracking the protocol communication status 

within the protocol state table and IoT device configuration 

databases. Open-source libraries being used are Redisworks 

as the Redis client in Python, Gunicorn as the WSGI HTTP 

server and Falcon framework, and the implementation of the 

Speck algorithm in the Python language. We also use 

Wireshark to analyze raw protocol communication. 

B. Test Environment

The Arduino Mega 2560 microcontroller platform used the

test equipment, which has an 8-bit processor with a 16MHz 

clock speed, 8 KB RAM memory, and 256KB flash storage a 
4KB EEPROM. The Arduino Mega is connected to the 

SIM808 GSM / GPRS module. We also use the ESP32 

microcontroller with Arduino core, where this platform has 

160MHz clock speed, 520KB RAM memory, 2MB embedded 

flash storage. We also would like to evaluate if the protocol 

can work in various IoT microcontroller platforms. Therefore, 

in addition to Arduino Mega, ESP32 is also being used as the 

test environment. 

The research data was taken from the development and 

implementation of protocols on the Arduino Mega test device 

with GPRS module and Arduino ESP32 with Wifi. We 
measure the processing time required at each phase of the 

protocol. This data collection was carried out on both test 

devices with a total sample of 30 samples.  

C. Assumptions

The assumptions used include: 1) The time of the protocol

phase process does not include the time required by network 

services such as GPRS / Wifi / Internet given the 

unpredictability of reliability and latency. 2) Public Key 

Infrastructure and digital certificates are outside the scope of 
this protocol. 3) Availability of network services where this 

protocol can be run, such as GSM / GPRS, LoRa, Wireless 

LAN, Ethernet. is outside this protocol's scope. 

D. Research Methodology

This research consists of 5 (five) main parts, namely

protocol design, server protocol development, state table 

protocol development, and publisher-subscriber on the server-

side, development of the protocol on the Arduino side as a 
client. The overall research methodology is shown in Fig 1. 

Fig. 1  Research Methodology 

START

(1) Protocol Architecture & Design (2) Protocol Client side development

Protocol Message Format Protocol init & authentication request

Protocol initialization and authentication Key agreement request

Key agreement Secure communication session

Session establishment Secure session teardown

Session Teardown

(3) Protocol Server side development (4) Evaluation

Response to protocol init & authentication request Testing environment

Key agreement Performance Evaluation

Secure communication session management Evaluation of client&server authentication 

Protocol state table management Evaluation of data integrity & confidentiality

Management telemetry&telecommand messages

Session invalidation and teardown END
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E. High-Level Topology

The protocol is designed to run on top of the HTTP

protocol, utilizing any TCP/IP connection, such as using 

GPRS or Wifi connection. The high-level topology of this 

protocol is shown in Fig.2.  

Fig. 2  Protocol High-Level Topology 

F. Lightweight Cryptography Algorithms in use

Lightweight cryptography algorithms are designed to run

in devices with very limited computing and memory 

resources. This is ideal for Arduino as IoT hardware, which 

has such characteristics. There is increasingly more research, 

such as assessing several lightweight block ciphers' 

performances for IoT [8] and evaluating lightweight cipher in 

8-bit microcontroller [9].

Beaulieu et al designed the SPECK cipher algorithm. at the

National Security Agency [10] as a general-purpose 

lightweight block cipher that offers good performance while 

aiming as the smallest implementation to suit IoT applications. 
The SPECK cipher has ten variations: the SPECK-32/64 (32-

bit block size, 64-bit key, 22 encryption rounds) up to the 

SPECK-128/256 (128-bit block size, 256-bit key, 34 

encryption rounds). The SPECK cipher has since become the 

subject of research assessing its security and performance. 

Biryukov et al. [11] concluded that among several algorithms 

tested. The Speck cipher is one among light cryptographic 

algorithms that have resistance to correlation power analysis 

attack, in which the attacker exploits the correlation of power 

leakage with a specific cryptographic function to try to extract 

the key. Dinur [12] uses improved differential cryptanalysis 

to attack a scaled-down (reduced round) SPECK 
implementation. However, the research concludes that the 

enhanced attacks do not threaten any member of SPECK's 

security. Dwivedi et al. [13] published an attack using 

differential cryptanalysis on 12 rounds of SPECK-32 SPECK. 

This attack requires a large amount of plaintext and 

encryption operations. Fu et al. [14] also utilized the 

differential cryptanalysis to attack 1-round, 3-rounds, and 5-

rounds of SPECK-64, SPECK-96, SPECK-128. No published 

research so far claims a successful attack on the full 34-rounds 

of SPECK-128 cipher. Therefore, SPECK cipher can still be 

considered secure. 
In terms of performance, Dinu et al. [8] confirmed that the 

SPECK algorithm from the NSA was the smallest and fastest 

cryptographic algorithm on all platforms. Beaulieu et al. [9] 

conclude that the SPECK cipher is mostly better in term of 

system resources usage, including flash usage, RAM, and cost 

(cycle/byte) when compared to the cipher algorithms such as 

AES, SIMON, HIGHT, IDEA, TWINE, TEA in AVR 

ATmega128 8-bit microcontroller. 

The hash algorithm used is BLAKE2s, which is, according 

to Aumasson et al. [15]. This algorithm is designed to have a 

high security level but is quite light, requires little memory 
and can be run on an 8-bit processor as is commonly used on 

Arduino. BLAKE2s is part of BLAKE2 hash algorithm 

family that is targeted on 8-32-bit platform. Jain et al. [16] 

conclude that BLAKE2 hash algorithm family is secure and 

fast, with the performance 2.01x compared to latest standard 

SHA3-256. Luykx et al. [17] conclude that currently, there is 

no generic attack on any modes that BLAKE2 uses. 

G. Protocol Design

This protocol is designed as a data communication protocol
that provides an authentication mechanism for both the server 

and the client by using a nonce-based challenge-response 

authentication method at the initiation phases. This protocol 

will perform a key agreement function by agreeing to an 

ephemeral session key, a secret key that is only used during 

this session. An ephemeral session key is derived based on 

parameters communicated by the server and client. After the 

communication session is securely established (session 

established state), the client and server can communicate with 

the traffic encrypted with SPECK lightweight block cipher 

being used. In this secure communication session, the client 
can send telemetry data and receive telecommand commands 

to a Publisher-Subscriber module of the protocol at the server-

side, which the Publisher-Subscriber module is based on 

Redis server. The server will manage the session securely 

until the session is terminated (session teardown). 

The protocol flow design can be described as follows: 

1) INIT phase: In the protocol initiation phase, as shown

in Fig.3, Arduino-based IoT devices that act as clients will 

send INIT messages to the server. The client-side protocol 

sends INIT messages containing the protocol version and 

supported SPECK key length parameters, as well as random 

client (client nonce) and key hash values from the nonce client 
with keys stored permanently on Arduino. 

The IoT client will use the ephemeral client ID for the 

initialization message. Ephemeral client ID is a temporary ID 

that helps to conceal the true client ID of this device during 

each protocol initialization handshake. This temporary ID is 
calculated based on a BLAKE2 hash of the real client ID and 

a saved initialization vector. Both are stored in EEPROM. The 

real ClientID itself is never transmitted. 

The saved initialization vector is always changed upon 

every successful protocol handshake. This results in the next 

protocol handshake will use different ephemeral ClientID. 

Fig. 3  Protocol Initialization & Client Auth Phase 

Client send:

Ephemeral ClientID=hash(clientID + saved Init vector), 
 parameter SPECK, versi protocol, Cnonce 
 HashedCnonce=hash(password){CNonce}

Server response:

IF  (Ephemeral ClientID di DB) & 

(Hash(DB.clientID.password){Cnonce}== 
HashedNonce) then:

/* CLIENT AUTHENTICATED */

initACK()

ELSE:

Server send: ( session timeout = 10s) 
assign SessionID, HashedServerID= 
Hash(passwd){cnonce+serverID+Snonce}, 
SNonce,parameter SPECK, versi protocol

/* CLIENT FAIL AUTHENTICATION */

InitNACK & RST()
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Client ID acts as the primary key to differentiate the 

identity of entities such as one of the IoT devices that the 

server manages. Bin-Rabiah et al. [18] seem to transmit the 

Client ID in plaintext so that when the server receives it, the 

server will be easier to find data related to the ClientID in the 

database. By transmitting ClientID in plaintext, it is more 

likely for potential attackers to selectively record 

communication activities. It is easy to find out the specific 

ClientID that their communication activities will follow. This 

protocol proposes to improve the approach by having the 

ClientID is further disguised by using an ephemeral ClientID 
that is derived from the real ClientID and a saved initialization 

vector obtained from the previous successful, secure session 

as shown in Fig.3. Therefore, ephemeral ClientID of one 

session to another will appear to be different despite it comes 

from the same real ClientID. 

2) Server Authentication and Key Agreement phase: In

this phase, the protocol on the server-side has successfully 

verified the client's identity. The server will send a response 

to the client by assigning a session ID that will be used as a 

reference for further communication, as shown in Fig.4. This 

session ID is temporary and only used until both sides to 
complete the handshaking process. Therefore, it is given a 

short expiry time. At this phase, the protocol state table still 

in the INIT phase. The temporary sessionID with short expiry 

is meant to prevent a potential INIT flood Denial of Service 

attack. INIT flood is possible if too many INIT requests are 

not completed and stay coming, which shall fill up the 

server’s protocol state table until the system fails. By this 

mechanism, those INIT requests which fail to complete 

protocol handshaking before timeout shall be flushed out 

from the IoTSec protocol state table as a strategy to prevent 

the INIT flood.  

Fig. 4  Server Authentication and Key Agreement phase 

The server will send a keyed hash value of the serverID so 
that the client can validate the server's validity. The client will 

then verify the identity of the server, as shown in Fig4. Upon 

successful verification, the client will initiate a key agreement 

process by sending a random client initialization vector (CIV) 

encrypted using the SPECK algorithm with a temporary key 

derived from the ClientID and password. The server also 

sends a server initialization vector (SIV) with a similar 

method. After that, the server and client can proceed to the 

key-agreement process by deriving the session key from the 

keyed-hash of ClientID, ServerID, CIV, SIV, which at this 

stage both the IoT client and the server have them all. The 

keyed-hash process will use the BLAKE2s algorithm that 

uses the password for that IoT device as the key parameter for 

the keyed-hash process. 

The security design of this process lies that the password, 
ClientID, and ServerID are never transmitted, while CIV and 

SIV are transmitted in encrypted form with SPECK. 

3) Protocol Session Established and Encrypted

Communication phase: In this phase, the protocol reaches a 

state where a secure communication session can happen using 

the previously agreed session key as described in Fig. 5. The 

client can send encrypted telemetry data, and simultaneously 

receive telecommand commands on the same transmission. 

The encryption algorithm used is the SPECK lightweight 

block cipher. The secure communication session can continue 

to use the same session key until the protocol timed-out state 
is reached in the server’s protocol state table. The flow is 

shown in Fig.5. 

Fig. 5  Protocol Session Established & Encrypted Communication 

Fig. 6  Protocol Session Teardown 

initACK()

Server send: ( session timeout = 10s) 
assign SessionID, HashedServerID= 
Hash(passwd){cnonce+serverID+Snonce}, 
SNonce,parameter SPECK, versi protocol

Client response:

IF HashedServerID==hash(passwd){cnonce+serverID+Snonce} 
then: /* SERVER AUTH SUCCESS */

Key Agreement()

tmpkey=Turunkankunci(clientID,passwd)

client_initvector CIV = random(), 

Client send:

SessionID, enc_CIV = enkripSPECK(temporarykey){CIV}

Server response:

tmpkey=Turunkankunci(clientID,passwd) 
testCIV = dekripSPECK(tmpkey){enc_CIV} 
IF CIV==testCIV then:

SIV = generate_server_initvector() 
sessionkey= Turunkankunci(clientID, 

      passwd, SIV,CIV) 

set sessionID timeout (3600s)

Established()

Server send:  

enc_SIV=enkripSPECK(tmpkey){SIV} 
new_IV = enkripSPEC(sessionkey){new_

  saved_initvector_for next_session()}

A
rd

u
in

o
 IO

T 
   

D
E

V
IC

E

S
ER

V
E

R

Established()

Server send:  

enc_SIV=enkripSPECK(tmpkey){SIV} 
new_IV = enkripSPEC(sessionkey){new_

  saved_initvector_for next_session()}

Client response:

SIV=decryptSPECK(tmpkey){enc_SIV}

sessionkey= Turunkankunci(clientID,  passwd, SIV,CIV) 

newIV_fornextsession = decryptSPECK(sessionkey){new_IV} 
savetoEEPROM(newIV_fornextsession)
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ed= encryptSPECK(sessionkey){telemetry data}, 

SessionID

Server response:

telemetry= decryptSPEC(sessionkey, ed) 
publish(telemetry) to pchannel 
subscribe (telecommand) from schannel

Secured Response()

SessionID,

ec = encryptSPECK(sessionkey)_ 
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4) Session teardown phase: When the session timed-out

state is reached, then the server will send a connection 

termination message when it receives a transmission from the 

corresponding IoT client. The same thing happens if the client 

intentionally sends a connection termination request (Fig.6). 

III. RESULTS AND DISCUSSION

In the test environment, we take 30 test samples of protocol 
execution time measurement on both test environment: the 

Arduino Mega and ESP32 microcontroller. The test results 

obtained are as follows: 

A. Protocol Performance Evaluation

The results of the protocol performance measurements as

shown in Fig.7, the INIT phase averaged 44.63 milliseconds 

at ESP32 and 26.83 milliseconds on Arduino Mega for the 

protocol initialization phase as described in Figure 3, which 
in this phase the Arduino client sends access requests while 

sending credential to the server for the verification process. 

Fig. 7  Protocol Performance Evaluation on each phase 

The performance evaluation of the INIT-ACK phase, the 

Arduino ESP32 client on average, takes 16.17 milliseconds to 

verify the validity of the server. In comparison, Arduino Mega 

requires an average of 8.27 milliseconds for the same process.  

The Key Agreement phase (as described in Figure 4) on 

average, takes 13.90 milliseconds for ESP32 and 13.50 
milliseconds for Arduino Mega. The Protocol-Established 

phase (as illustrated in Figure 5) on average, takes 15.30 

milliseconds for ESP32 and 9.50 milliseconds for Arduino 

Mega. 

After all the handshaking processes are completed, now the 

protocol reaches a Protocol-established state. The client and 

server can communicate securely in a process as depicted in 

Figure 8, using a session key that is valid only for this 

encrypted communication session. The average processing of 

each encrypted message is 17.10 milliseconds on ESP32 and 

25 milliseconds on Arduino Mega for each telemetry 
encrypted message. The Arduino Mega or ESP32 as IoT client 

can communicate securely with the server using the same 

session key until the session is marked as expired on the server 

protocol state table. As the session expires, the protocol will 

enter the session teardown phase, as described in Figure 6. 

The client will verify whether the information to terminate the 

session is valid from the server by checking the results of the 

hash locking the session key against the current session ID. 

This is a strategy to mitigate a potential false reset attack. The 

false reset attack referred to here is a potential attempt to fool 

an IoT client to think the server has sent a protocol session 

termination message by sending a bogus message.  

INIT & client identity verification phases, server identity 

verification, key agreement, and establish protocol are 

referred to as the overhead phase of this protocol. The phases 

are the preparation phases of the protocol before actual secure 

communication begins. After the overhead phases are 

completed, the next phase is the encrypted communication 

phase, where the secured data transmission happens. 

Performance measurements are shown in Fig.8. 

Fig. 8  Protocol communication phase on Arduino Mega and ESP32 

It shall be noted that the overhead time for INIT is the 

largest among the other overhead phases. In this case, the 

INIT process is carried out the first time and only once when 

the Arduino IoT client connects to the network. After that, the 

protocol phases will gradually proceed until the protocol is 

established to complete all the overhead phases. After all 

overhead phases are completed, now the protocol state is 

established, in which the client and server can communicate 

data securely protected using SPECK encryption that uses the 

ephemeral session key as the encryption key. The secure data 
communication transmissions -both telemetry and 

telecommand- may happen many times during the protocol 

established state until the protocol timed-out state is reached. 

The research data reveal that ESP32 outperforms Arduino 

Mega for secure data communication in the protocol-

established phase, the most repetitive phase in this protocol 

lifecycle. This is consistent with the fact that ESP32 has better 

processing and memory resources. However, in the overhead 

phases, Arduino Mega outperforms the ESP32 despite having 

smaller computing resources. This may be an anomaly that 

may become a potential subject-of-interest for future research. 

Suppose a communication network disruption during the 
session protocol state is still valid (not timed-out). In that case, 

the protocol shall only need to continue from the last protocol 

phase when the communication is disrupted. However, in the 

event of a power failure that causes the IoT device as this 

client to reboot, then the process will start from INIT again 

because the current protocol state is reset. 

B. Protocol Security Services Evaluation

This section focuses on evaluating the proposed protocol's
security services: client and server authentication services, 

data integrity services, and data communication 
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confidentiality services. The test scenario simulates a man-in-

the-middle-attack attack, as illustrated in Figure 9. 

Fig. 9  Man-in-the-middle attack illustration 

1) Evaluation of Client-Server Authentication: Client and

server authentication process are carried out before the key 

agreement process is completed, as mentioned in the INIT and 

INIT-ACK phases, as illustrated in Figures 3 and 4.  

In this test, a simulated attacker tries to take over the 

connection and pretend as if the attacker were the server. The 

simulated attacker will intercept the normal authentication 

process and send the parameters required for client-server 

authentication, such as the server-nonce and keyed hash of 

server-nonce required by the client to validate the identity of 

the server. The results of testing this protocol on the server 

authentication process, as previously illustrated in Figure 4, 

the client was able to detect this and display the Server 
identity verification failed message, as shown in Figure 10. 

Fig. 10  Evaluation of Protocol Client-Server Authentication 

2) Evaluation of Protocol Data Integrity:   The data 
transmission process of telemetry and telecommand is 

secured by SPECK encryption, which uses the session key, as 

shown in Figure 4. The integrity of the encrypted telemetry 

message is protected by using the BLAKE2s hash algorithm. 

The process of testing data integrity, as described in Figure 

11, is performed by simulating an attacker that captures the 
data communication by an IoT client with the server. The 

simulated attack tries to tamper with the encrypted message 

before sending it to the server to simulate man-in-the-middle-

attack. The result shows that the protocol can detect that a 

change has occurred so that its integrity cannot be guaranteed. 

Fig. 11 Evaluation of Protocol Data Integrity 

3) Evaluation of Protocol Data Confidentiality: The data
confidentiality testing process is carried out by using the 

Wireshark tool to record and open encrypted communication 

transmissions in the established communication protocol 

phase. When carried out packet analysis using the Wireshark 

tool, the test results indicate that the data transmission is in an 

encrypted state, as illustrated in Figure 12. 

Fig. 12 Evaluation of Protocol Data Confidentiality

IV. CONCLUSIONS

This research shows that a secure IoT communication 

protocol can be designed and implemented in resource-

constrained IoT devices such as the Arduino. Performance 

evaluation of this IOTSec protocol in Arduino Mega 

concludes that the INIT phase's average execution time is 

26.83 milliseconds, the key-agreement phase is 13.50 

milliseconds and encrypted message processing during the 

protocol established phase requires 25 milliseconds. 

Performance evaluation of this IOTSec protocol performance 
in ESP32 for INIT phase is 44.63 milliseconds, the key-

agreement phase is 13.90 milliseconds, and encrypted 

message processing during protocol established phase 

requires 17.10 milliseconds. 

This research also proves that the protocol can provide 

client authentication service to the server and vice versa. This 

is accomplished securely that the server-ID, Client-ID, and 

password is never transmitted in any way because all the 

verification processes are carried out by a challenge-response 

mechanism utilizing a keyed-hash function. This protocol 

currently utilizes the BLAKE2s keyed-hash algorithm, as 

well as the lightweight block cipher SPECK algorithm with 
256-bits key size and 128-bit block size of data. This protocol

currently supports 128-bit (16 bytes) per message telemetry

and telecommand messages.

The research shows that ESP32 outperforms Arduino 

Mega for the secure data communication phase, which is 

consistent with the fact that ESP32 has better processing and 

memory resources. However, for the overhead phases, 

Arduino Mega outperforms the ESP32 despite having smaller 

resources. This might be an anomaly, which may be an 

interesting subject for future research. 

This protocol can be further developed to add new security 
services. The addition of this new security service is adapted 

to the challenges of developing new security threats that 
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continue to emerge from time to time, so the IoT security 

protocol shall evolve to deal with the new threats. 
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