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Abstract— It is well understood that in any data acquisition system reduction in the amount of data reduces the time and energy, but 
the major trade-off here is the quality of outcome normally, lesser the amount of data sensed, lower the quality. Compressed Sensing 
(CS) allows a solution, for sampling below the Nyquist rate. The challenging problem of increasing the reconstruction quality with 
less number of samples from an unprocessed data set is addressed here by the use of representative coordinate selected from different 
orders of splines. We have made a detailed comparison with 10 orthogonal and 6 biorthogonal wavelets with two sets of data from 
MIT Arrhythmia database and our results prove that the Spline coordinates work better than the wavelets. The generation of two 
new types of splines such as exponential and double exponential are also briefed here .We believe that this is one of the very first 
attempts made in Compressed Sensing based ECG reconstruction problems using raw data.   
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I. INTRODUCTION 

In normal conditions reasonable reconstruction quality 
can be assured by maintaining the Nyquist rate[1], but 
sampling below Nyquist rate is always an attractive option 
especially in situations where collection of samples are too 
costly or physically not possible to collects the samples at 
the rate Nyquist demands [2].To deal with these situations 
people usually does compression which finds the abridged 
representation of the data which is capable of doing an 
acceptable reconstruction at the receiver side. Transform 
coding [3], one of the most used techniques in compression 
aims finds an alternative set of basis where the signal has a 
sparse representation. For a signal of length ‘n’, if it has only 
‘k’ non-zero coefficients, in a domain of interest then is said 
to have a sparsity of ‘k’ in that domain. Such a signal can be 
recovered accurately with the knowledge of only ‘k’ (or less 
than ‘k’) non-zero coefficients. This is often called as sparse 
approximation which is the basis idea behind transform 
coding. Inspiring from the idea of sparse approximation a 
new concept called Compressed Sensing (CS) was 
formulated which ensures reasonable approximation even 
with sensing fewer measurements lesser than Nyquist rate. 
The basic idea behind CS is relatively simple, if the signal is 
sparse in a basis then why we do sense all the information? 
Rather than sensing all the information and the throwing the 
unwanted ones why do we find methods to sense the data in 
the compressed form itself. Even though this idea came to 
limelight after the publication of the papers by Candes, 

Romberg and Tao[4-6] in 2006, the origin of this method 
can be seen from the seventies and eighties[7-8].Even before 
back in the eighteenth century there were some works which 
hint towards the solution for this problem, for example in 
1795 a French mathematician named  Gaspard Riche de 
Prony developed a method called Prony’s method(analysis) 
[9]which was somewhat similar to Fourier transform, it was 
used to capture  valuable information from a signal 
uniformly sampled in the presence of noise. Even though 
there were these abstract definitions they failed to find a 
solid algorithm for solving this underdetermined problem, 
Candes, Romberg and Tao construct solid algorithms which 
are capable of doing this unyielding task. They showed that 
it is possible to reconstruct the data from fewer 
measurements than the Nyquist rate. This very helps in 
situations where large amounts of data are involved. One 
such application is in continuous ECG monitoring and 
analysis. In the case of serious cardiac diseases, one way to 
save a life is to take 24 hours continuous monitoring of ECG 
and to do nursing accordingly. Wireless sensors are more 
suited in these cases as in wired networks, reading may alter 
because of patient movements [10].Wired or wireless 24-
hour continuous data monitoring involves huge amounts of 
data. In these situations, CS is an ideal choice. Reduction in 
the amount of data sensed intern reduction in the amount of 
data to be processed will reduce the power consumption. CS 
is a proven technology for reducing the power consumption. 
CS techniques are successfully implemented to save power 
up to 70% in ECG and EEG applications [11].  
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Fig.1 B-spline, Linear spline (triangle), Quadratic and Cubic   spline. 
 
There are lots of papers published in the field of CS based 

ECG reconstruction most of them considers CS as a 
technique for compression rather than a sensing paradigm 
[12-17]. Recently in May-2015 Abo-Zahhad, et.al published 
their work [18] which is showing some promising results, In 
that they have estimated the QRS complex from the 
available data and subtracted it from the original and CS 
techniques are applied on the error signal. The major 
drawback here is that prior information of the data has to 
known before, and thresholding has also been employed to 
increase sparsity. Preprocessing techniques like smoothening, 
removal of dc offset and thresholding to improve the quality 
of data are actually contradictory to the original CS based 
approach. In ideal CS based reconstruction scenario, we 
sense only a few random coefficients and the algorithm is 
expected to reconstruct the original signal without sensing 
the whole data points. As it sounds magical the convex 
optimization algorithm used in CS is often known as l1 
magic [19]. So in our work, none of the preprocessing 
methods are applied on the data and have included a low-
frequency base to capture low-frequency information. We 
had selected spline coordinates instead of wavelet basis and 
made a detailed comparison between the two. Spline 
coordinates are compared against the wavelet basis and it 
was found out that the splines work better than wavelets. 
The exponential spline is kind of splines which uses causal 
exponentials instead of polynomials were introduced by 
Unser. M et.al in 2005 [20] and double sided exponentials 
spline family [2E spline] was introduced by us through our 
earlier work [21]. 2E spline uses two-sided exponentials 
fragments for generating higher orders.  

The remaining of the paper is arranged as follows: Section 
II gives a brief introduction of CS theory, Section III deals 
with splines, where a brief description of polynomial, 
exponential, and double exponential spline families are 
given in subsections. In Section IV, the details about the 
construction of sparsifying matrix from the spline 
coordinates are discussed. Results are analyzed in Section V 
and in subsection the effect of the addition of dc base in the 
sparsifying domain are detailed; we conclude this paper in 
section VI   

 

 
 
Fig.2 Causal Exponent with an exponential factor of 1. This can be used for 

the generation of higher order exponential splines. 

II. COMPRESSED SENSING (CS) 

As mentioned, CS theory states that if the signal has a 
sparse representation in a certain domain then it can be 
recovered using a small number of coefficients lesser than 
that of Nyquist rate by solving basis pursuit algorithms or 
using greedy based algorithms. For example consider ‘x’ as 
the input vector of size N x 1, and if it has a sparse 
representation in a domain say ‘β’ with coefficients as ‘ , 
mathematically the problem of finding   from the 
measurements ‘y’ can be formulated as  

 
     (1) 

                     s.t   y= .   
 

Where ‘y’ represents the random samples collected by 
projecting ‘x’ on a sensing matrix Φ, and  is called as the 
reconstruction matrix which is the product of Φ and β i.e. 

β, dimensions of Φ is  ‘M x N’, where ‘M’ represents 
the number of projected samples, and ‘β’ is of size N x N; 
where N is the signal length. The reconstruction matrix 
(‘  will be of size ‘M x N’. The transform matrix β can  
be discrete cosine basis or wavelets basis or any other basis 
in which the signal is supposed to have a sparse 
representation. In this present work, we have compared this 
matrix (β) using basis selected from different orders of 
spline with orthogonal and biorthogonal wavelets. The 
problem of finding the sparsest solution using l0 norm is NP-
hard, computationally not possible to solve in real time 
[ 22].But CS theory states that this problem can be relaxed in 
the form 

 
   Min         (2) 
   s.t  y= .  

 
i.e. Instead of solving for l0 norm we can solve for  l1  norm 
and yet yield the similar results. Reasoning behind is well 
explained in the papers [22-27]. Geometrically this can be 
simply explained using the concept of the unit circle (The set 
of all vectors of norm unit 1). The unit circle will be 
different for different norms. In R2, the unit circle 
corresponds to l1 norm is diamond in shape which touches 
exactly the solution space at the same point where l0 norm 
contacts the solution, i.e. in each coordinate axis, as 
explained in the introductory section of [28]. Even though 
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CS seems to be a better option it is still underutilized in 
ECG-based applications, this may be because of 
unavailability of proper hardware in capturing the real-time 
data, which is always a challenging problem. Some research 
in recent years [29-30] based on random demodulation 
changed the scenario and CS is more attractive than before. 
Random demodulators can be used to collect the random 
samples instead of sensing the whole signal. Recently 
Bortolotti et .al proposed an ECG monitor based on CS 
architecture which saves up to 70% of power compared to 
other monitors [31]. 

III.  POLYNOMIAL AND EXPONENTIAL SPLINES 

Michael Unser made a series of publications [32-37] in 
spline fitting theory which showcases the advantageous of 
splines in signal and image processing. A discrete signal can 
be well approximated using splines, and polynomial splines 
can be constructed from B-spline basis functions. If the 
spline knots are placed at equally spaced integers, its 
parameters can be found by simple digital filtering rather 
than complex matrix manipulations. The spline is one of the 
most flexible functions, i.e. by increasing the degree of the 
spline (n) we can progressively switch from the constant 
(n=0) and piecewise linear representations (n=1) to the other 
extremes n=∞, i.e. up to band limited models. Three 
different types of splines are detailed such as polynomial, 
exponential, and double exponential splines. 

 

 
 

Fig.3. 0th, 1st, 2nd, and  3rd order Exponential splines.  

A. Polynomial splines 

A polynomial spline (spline) is a numeric function that is 
piecewise defined by polynomial functions. They possess a 
high degree of smoothness at the points where these 
polynomial segments are connected. These points are called 
as knots. The individual segments are polynomials and this 
characteristic of splines make them a better contender in 
approximation problems,  

The Polynomial B-spline of order zero can be obtained 
from rectangular function  

 0(y) = 

       
Polynomial splines are obtained by connecting 

polynomial of degree one or by connecting straight lines. 
In quadratic spline, the individual segments will be 

connected by polynomial of degree 2, for example  
 

 2(y) = 

       
Cubic spline, most commonly used splines in 

interpolation problems can be represented as 

B3(y)=         (5) 

      
The linear, quadratic, cubic splines and the basis spline 

(B-Spline) are shown in Figure.1 
Higher order splines can be obtained by the repetitive 

convolution of the lower order ones [20]. 
 
B n(y) = B0 (y)* B 1(x)* B 2(y)*…..* Bn-1(y)             (6) 
 

B. Exponential Splines 

Exponential Splines were introduced in order to reduce 
the gap between the spline fitting and continuous system 
theory. Here in exponential splines instead of polynomials, 
cardinal causal exponentials are connected in smooth fashion. 
Instead of rectangular function here an exponent in unit 
interval is used as basis function (B0y) for generating higher 
order splines. Similar to polynomial splines higher order 
splines are obtained by the convolution of lower order 
splines. B- spline used for exponential splines with a factor 
of one is shown in Figure [2] and Figure[3] shows zero, first, 
second and third order causal exponential splines  

 

 
 
Fig.4 0th,1st , 2nd, 3rd order 2E splines. The splines obtained are symmetric 
in nature.  

471



C. Double Sided exponential Splines 

We tried exponential splines in our experiment and found 
that the splines are not symmetric in nature so we developed 
a new family of symmetric splines called double sided 
exponential splines. The basis function used for generating –
this type of spline is of the form  (where ‘a’ 
indicates the scaling parameter and b, the index of the 
central (maximum) point)).Higher order splines can be 
obtained from the convolution of the basis function. This can 
be called as 2E splines. 

The first, second, third order double-sided exponential 
splines along are shown in Figure [4]. From the figure it can 
be observed that the spline obtained from double sided 
exponents shows symmetric characteristics as compared to 
asymmetric nature of splines obtained from causal exponents. 

IV.  ALGORITHM FOR CONSTRUCTING SPARSIFYING MATRIX 

FROM SPLINES. 

Sparsifying matrices are constructed by taking the 
representative coordinates from both the first, second, third 
order exponential, double exponential and polynomial 
splines. The points are selected in such a way that they are at 
equal distance from the center of the spline. The polynomial 
and double exponential spline coordinates are symmetric in 
nature because of the symmetric nature of their splines, 
where exponential spline coordinates are asymmetric in 
nature. The coordinates selected are shown in Table.1.We 
dictate asymmetrical exponential splines as one-sided 
exponential splines or 1E splines and symmetrical 
exponential splines as double sided splines or 2E splines. We 
introduced a low frequency/dc base, for capturing the low-
frequency information so, if the data (to be reconstructed) is 
having a DC content that also will be reconstructed. This 
seems to be very much important as in practical cases as it 
will not be possible to take samples without having a DC 
content at least in sensor outs. The reasoning behind this is 
that bio measurements like ECG employ the same number of 
electrodes expecting the half cell potential [38] to cancel out. 
But in practical cases difference in electrode material or skin 
contact resistance causes a DC offset voltage which makes 
deviations or baseline drift in the readings. In ideal CS we 
are expected to collect only a few random samples (not the 
complete signal) and the algorithm is expected to construct 
the original data from the limited data sensed. So if we are 
collecting few samples from a preprocessed data for 
experimental purpose and analyzing the result based on that, 
we can only presume that the algorithm will work fine if the 
data (to be reconstructed) contains dc artifacts. Moreover, 
rather than reconstructing the original data in the domain 
where the data is sensed, the CS algorithms recover 
coefficients of the signal in the domain where it is having a 
sparse representation (provided if the data does not have a 
sparse representation in the sensing domain.). There is no 
guarantee that the random samples sensed with or without 
noise will have the same sparse presentation in the alternate 
domain. Moreover  Józef K. Cywiński et.al [39] points that 
very low frequency and DC components of ECG signal carry 
information about the heart muscle conditions. Different 
splines tried in our problem are as follows: 

PS1 - First order polynomial spline, PS2 - Second order 
polynomial spline, PS3-Third order Polynomial Spline 
(cubic Spline), 1E1- First order one-sided exponential spline, 
1E2- Second order one-sided exponential spline,1E3- Third 
order one-sided exponential spline, 2E1- First order double-
sided exponential spline, 2E2- Second order double-sided 
exponential spline, 2E3- Third order double-sided 
exponential spline. 

V. RESULTS AND DISCUSSIONS 

The algorithm is analyzed on the basis the important 
parameters such as Percentage Root mean square Difference 
(PRD) and Signal to Noise Ratio (SNR) and Compression 
Ratio (CR) which are used to quantify the error between the 
original and reconstructed signal. The formulation of PRD is 
given in equation (5) 

 

 
    
Where be the original signal,  be the 
reconstructed signal and N be its length. CR is defined as the 
ratio between the numbers of bits used for representing the  
uncompressed signal to the bites in compressed signal 

  

 
 

Where �orig and �comp represent the number of bits 
required for the original and compressed signals respectively.            
SNR can be found from PRD using relation  

 
  SNR= - 20log10 (0.01 × PRD)         (7)

        
The experiments are conducted using the data from MIT-

BIT Arrhythmia database [40]. MIT-BIH Arrhythmia 
Database are sampled at 360 samples per second per 
channel , we took 2 seconds data(720 samples) for analyzing 
our results datasets used are 101m and 104m. The algorithm 
is tested for orthogonal wavelets from db1 to db10 and for 
biorthogonal bior1.1 bior1.3,bior1.5, bior2.2,bior2.4, bior2.6, 
bior2.8, bior3.9,bior 4.4,bior 5.5 bior6.8 against the 
coordinates from the splines  PS1,PS2,PS3,1E1, 1E2,1E3, 
2E1,2E2,2E3. CS on ECG signal is carried out using convex 
optimization software CVX [41] and mat lab [42] as our 
platform. Random samples are obtained by projecting the 
data using a random matrix. The input data analyzed is of 
size 720 X 1 and for each experiment input data is projected 
onto a random matrix to take random measurements. 
Random samples are varied from 10% of the sample size i.e. 
72.to 60% (432)  for getting a compression ratio (CR) of 
10% to 60%, The ideology of CS   allows us to sense only 
that much amount of samples for reconstructing  the original 
signal within the desired PRD. As we aim to reconstruct the 
data with minimum measurements it is found meaningless 
for going CR above of 60%.  The wavelets are decomposed 
at level 4 as in [18]. Table.2 shows the PRD obtained for 
various compressions.  
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TABLE I 
DIFFERENT SPLINES AND THE COORDINATES SELECTED. 

 
 
Ratios for the MIT data 101m, Table.3 indicate the same 

for  101m. Table 4 and Table 5 indicate corresponding SNR 
values for 101m and 104m respectively. A low PRD and 
higher SNR are indicating good reconstruction. From Tables 
2, 3, 4, 5 it is evident that Splines coordinates perform better 
than wavelets. 

A sample of reconstructed data for the first 720 samples 
from the data set 101 using first order spline coordinates are 
shown in Fig.6. and Figure .7 indicate the same for 104 

VI.  EFFECT OF LOW-FREQUENCY BASE IN RECONSTRUCTION 

MATRIX  

Even though the introduction of a low-frequency base in 
the transform matrix successively capture low-frequency 
information from the projected samples it has some adverse 
effect on the reconstruction matrix, upon performing 
decomposition using SVD (Singular Value Decomposition), 
it was found that the introduction of dc base shoots up the 
first singular value and makes the condition number worse. 
This is because the addition of a dc base in transform 
domain replaces a column in reconstruction matrix by the 
sum of column elements of the sensing matrix. The increase 
in singular value normally deteriorates the matrix. But here 
increase in singular value does not have any effect on 
reconstruction quality; this is proved by reconstructing the 
signal using unmodified matrix singular values. Our 
experiments show that increase in first singular value doesn’t 
have an effect and the reconstruction quality is still 
preserved even though the first singular value is lowered 
down. Singular value of the reconstruction matrix with and 
without a dc base along the sparsifying basis is shown below. 
Figure 8.a shows the singular values (SV) of the 
reconstruction with adding a dc base along the sparsifying 
bases and figure 8.b shows the singular values of the 
reconstruction matrix when a dc base is added. In the first 
case the maximum SV is 140 and in the second case, it is 
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Fig.5 Different representative coordinates selected from polynomial and 
exponential splines. PS1 - First order polynomial spline,PS2 - Second order 
polynomial spline,PS3-Third order Polynomial Spline (cubic Spline),1E1- 
First order one-sided exponential spline,1E2- Second order one-sided 
exponential spline,1E3- Third order one-sided exponential spline,2E1- First 
order double-sided exponential spline,2E2- Second order double-sided 
exponential spline,2E3- Third order double-sided exponential spline. 

 

 
 
Fig.6 The original data (top) and the reconstructed data using first order 
spline coordinates (1E1) for data set 101m by sensing only 30% of the 
samples. 

Spline Type Representative coordinates selected 

First order polynomial Spline(PS1) 0.4, 0.6, 0.8, 1, 0.8,  0.6, 0.4 

Second order Polynomial spline(PS2) 0.0133,0.2, 0.733,1,0.733,0 .2,0.0133 

Third order Polynomial Spline-cubic spline(PS3) 0.05224,0.3284,0.806,1, 0.806,0.3284, 0.05224 

First order one sided exponential spline (1E1) 0.246, 0.7288, 0.9449, 1, 0.6667, 0.3293, 0.122 

Second order one sided exponential spline (1E2) 0.04006,0.4028,0.8099,0.9893,0.7278,0.3578,0.1017 

Third order one sided exponential spline (1E3) 0.0063,0.2252,0.6975,1,0.7994, 0.3679, 0.0944 

First order double sided exponential spline (2E1) 0.1212,0.4089,0.7704,1,.7704,.4089,.1212 

Second order double sided exponential spline (2E2) 0.06597,0.3339,0.7727,1,.7727,.3339,.06597 

Third order double sided exponential spline (2E3) 0.0368,0.2622,0.7257,1,0.7257,.2622,0.0368 
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Fig.7 The original data (top) and the reconstructed data using first order 
spline coordinates (1E1) for data set 107m 

 

 
 
Fig. 8a.Singular Value of the  reconstruction matrix without a dc base 
 

 
 

Fig. 8b.Singular value of the reconstruction matrix with dc base 
 
 
 
 

TABLE II 
PRD OBTAINED FOR THE DATA 101.M FROM MIT  DATA BASE  FOR 

DIFFERENT WAVELETS AND SPLINE COORDINATES 

Compression 
Ratio(CR) 10 20 30 40 50 60

Wavelet Filter

db1 3.54 2.35 1.75 1.30 1.02 0.80

db2 3.85 2.54 1.92 1.55 1.25 0.95

db3 4.46 2.93 2.20 1.68 1.49 1.12

db4 3.98 2.95 2.15 1.75 1.35 0.95

db5 3.85 2.80 2.35 1.91 1.21 1.02

db6 3.65 2.25 1.95 1.43 1.20 0.92

db7 3.71 2.37 1.65 1.50 1.32 1.02

db8 4.22 2.95 2.48 1.55 1.54 0.95

db9 3.65 3.25 2.35 1.64 1.24 0.83

db10 3.02 2.13 1.52 0.83 0.65 0.50

bior1.1 3.23 2.65 1.88 1.42 1.12 0.85

bior1.3 3.62 2.56 2.32 1.66 1.23 0.85

bior1.5 3.52 2.46 1.92 1.52 1.13 0.72

bior2.2 3.71 2.56 1.84 1.75 1.44 0.84

bior2.4 3.62 2.86 2.15 1.36 1.02 0.71

bior2.6 3.40 2.75 2.58 1.82 1.18 0.91

bior2.8 3.32 2.45 2.25 1.65 1.21 0.95

bior3.9 3.59 2.35 2.45 1.72 1.35 1.02

bior4.4 3.25 2.23 1.65 1.15 0.75 0.52

bior5.5 4.01 3.64 2.55 1.91 1.38 1.12

bior6.8 3.85 2.82 2.42 1.65 1.25 0.81

PS1 2.85 2.34 1.73 1.25 0.85 0.43

PS2 2.75 2.45 1.94 1.32 0.76 0.34

PS3 2.88 2.14 1.76 1.28 0.83 0.43

1E1 1.91 1.42 0.95 0.49 0.35 0.18

1E2 1.74 1.35 0.81 0.55 0.24 0.12

1E3 1.95 1.35 0.95 0.61 0.27 0.28

2E1 1.85 1.22 0.72 0.55 0.32 0.15

2E2 1.66 1.15 0.92 0.49 0.21 0.15

2E3 1.81 1.22 0.82 0.41 0.19 0.09

PRD-101.m

 
 

TABLE III 
PRD OBTAINED FOR THE DATASET 104.M FROM MIT DATA BASE FOR 

DIFFERENT WAVELETS AND SPLINE COORDINATES 
 

Compression 
Ratio(CR) 10 20 30 40 50 60

Wavelet Filter

db1 3.65 2.24 1.61 1.25 1.14 0.74

db2 3.50 2.35 2.12 1.66 1.15 0.81

db3 4.24 2.72 1.93 1.52 1.03 0.80

db4 3.85 2.75 2.35 1.82 1.24 0.93

db5 3.62 2.50 2.16 1.74 1.46 1.13

db6 3.95 2.45 2.04 1.32 1.10 0.85

db7 3.46 2.65 1.93 1.42 1.43 1.15

db8 3.85 2.75 2.35 1.31 1.15 0.80

db9 3.32 2.65 2.11 1.55 1.22 0.85

db10 3.02 1.92 1.60 0.91 0.55 0.35

bior1.1 3.32 2.75 1.75 1.35 1.02 0.75

PRD-104.m

 
continued.. 
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bior1.1 3.32 2.75 1.75 1.35 1.02 0.75

bior1.3 3.55 2.72 2.16 1.52 1.12 0.80

bior1.5 3.72 2.65 2.01 1.38 1.04 0.82

bior2.2 3.88 2.45 1.72 1.42 1.25 0.65

bior2.4 3.55 2.70 2.28 1.74 1.14 0.72

bior2.6 3.45 2.57 2.15 1.63 1.36 0.95

bior2.8 3.39 2.45 2.03 1.52 1.30 0.81

bior3.9 3.45 2.65 2.45 1.68 1.27 0.98

bior4.4 3.12 2.30 1.60 1.04 0.84 0.43

bior5.5 3.83 3.34 2.44 1.85 1.43 1.24

bior6.8 3.75 3.02 2.35 1.55 1.18 0.75

PS1 2.63 2.15 1.63 1.32 0.75 0.51

PS2 2.52 2.05 1.83 1.25 0.87 0.56

PS3 2.46 2.26 1.93 1.39 0.73 0.61

1E1 1.99 1.52 0.85 0.63 0.42 0.28

1E2 1.75 1.26 0.62 0.42 0.32 0.20

1E3 1.81 1.45 0.95 0.72 0.29 0.13

2E1 1.71 1.50 0.85 0.61 0.32 0.20

2E2 1.62 1.26 0.72 0.51 0.31 0.21

2E3 1.85 1.55 0.95 0.42 0.25 0.15 
 

TABLE IV 
 SNR CALCULATED FOR THE DATASET 101.M FROM MIT DATA BASE FOR 

DIFFERENT WAVELETS AND SPLINE COORDINATES 
 

Compression 
Ratio(CR) 10 20 30 40 50 60

Wavelet Filter

db1 29.03 32.59 35.14 37.71 39.79 41.94

db2 28.30 31.92 34.32 36.22 38.09 40.49

db3 27.02 30.65 33.16 35.52 36.56 38.99

db4 28.01 30.61 33.36 35.15 37.41 40.46

db5 28.30 31.07 32.59 34.36 38.33 39.79

db6 28.77 32.96 34.22 36.92 38.45 40.74

db7 28.61 32.52 35.67 36.49 37.56 39.79

db8 27.50 30.61 32.12 36.21 36.22 40.46

db9 28.76 29.77 32.58 35.73 38.12 41.58

db10 30.40 33.42 36.35 41.57 43.79 46.10

bior1.1 29.81 31.54 34.54 36.93 38.98 41.44

bior1.3 28.83 31.82 32.71 35.58 38.17 41.46

bior1.5 29.08 32.20 34.35 36.39 38.97 42.90

bior2.2 28.60 31.82 34.73 35.14 36.86 41.50

bior2.4 28.83 30.88 33.35 37.35 39.79 42.93

bior2.6 29.38 31.22 31.77 34.82 38.56 40.80

bior2.8 29.59 32.23 32.96 35.65 38.32 40.48

bior3.9 28.90 32.56 32.23 35.31 37.42 39.79

bior4.4 29.77 33.02 35.66 38.80 42.53 45.74

bior5.5 27.93 28.77 31.87 34.37 37.23 39.05

bior6.8 28.29 31.01 32.34 35.63 38.09 41.79

PS1 30.91 32.63 35.22 38.09 41.44 47.31

PS2 31.22 32.22 34.24 37.62 42.34 49.39

PS3 30.83 33.37 35.07 37.86 41.57 47.43

1E1 34.36 36.93 40.48 46.24 49.00 54.98

1E2 35.21 37.40 41.78 45.21 52.56 58.79

1E3 34.22 37.40 40.43 44.26 51.32 51.21

2E1 34.68 38.30 42.90 45.25 50.00 56.59

2E2 35.62 38.75 40.76 46.12 53.37 56.54

2E3 34.83 38.25 41.77 47.65 54.24 60.49

SNR

 

TABLE V 
SNR CALCULATED FOR  DATASET 104.M FROM MIT DATA BASE FOR 

DIFFERENT WAVELETS AND SPLINE COORDINATES 
 

Compression 
Ratio(CR) 10 20 30 40 50 60

Wavelet Filter

db1 28.76 32.98 35.85 38.10 38.85 42.67

db2 29.11 32.59 33.46 35.62 38.80 41.81

db3 27.46 31.32 34.31 36.39 39.79 41.95

db4 28.30 31.22 32.60 34.79 38.17 40.59

db5 28.84 32.03 33.33 35.17 36.72 38.97

db6 28.08 32.23 33.82 37.58 39.19 41.44

db7 29.23 31.55 34.31 36.98 36.87 38.80

db8 28.29 31.22 32.59 37.64 38.75 41.95

db9 29.59 31.55 33.50 36.20 38.30 41.42

db10 30.41 34.35 35.91 40.78 45.20 49.23

bior1.1 29.57 31.23 35.14 37.42 39.79 42.55

bior1.3 29.01 31.32 33.31 36.34 38.99 41.99

bior1.5 28.60 31.55 33.93 37.17 39.70 41.68

bior2.2 28.23 32.23 35.31 36.94 38.09 43.76

bior2.4 29.00 31.39 32.84 35.18 38.83 42.80

bior2.6 29.25 31.79 33.35 35.78 37.35 40.47

bior2.8 29.40 32.23 33.83 36.34 37.73 41.78

bior3.9 29.25 31.54 32.23 35.52 37.93 40.13

bior4.4 30.10 32.76 35.93 39.70 41.57 47.40

bior5.5 28.33 29.52 32.27 34.68 36.88 38.16

bior6.8 28.51 30.39 32.59 36.20 38.57 42.55

PS1 31.59 33.37 35.73 37.57 42.55 45.81

PS2 31.99 33.78 34.73 38.07 41.26 44.96

PS3 32.18 32.90 34.31 37.14 42.68 44.23

1E1 34.04 36.39 41.46 44.06 47.54 51.00

1E2 35.16 37.97 44.20 47.60 50.03 54.20

1E3 34.83 36.80 40.48 42.91 50.66 57.96

2E1 35.32 36.50 41.45 44.23 50.03 54.20

2E2 35.80 37.97 42.90 45.81 50.12 53.45

2E3 34.68 36.22 40.48 47.63 52.19 56.72

SNR

 
      

VII.  CONCLUSIONS 

The problem of increasing the reconstruction quality with 
a limited number of random samples in compressed sensing 
is addressed here by the use of splines. Both polynomial and 
exponential splines were experienced and our experiment 
shows that spline basis performs better than wavelets. We 
have introduced a low-frequency base in the sparsifying 
domain in order to capture the low-frequency information 
from the random samples and this proves to have a higher 
effect in decreasing the variation between the original data 
and the reconstructed one. A total of 360 experiments were 
conducted on two sets of ECG data. The effect of the 
introduction of a dc base is also studied here. 
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