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Abstract— The Three Dimensional Fast Fourier Transform (3D-FFT) is commonly used to solve the partial differential equations 
describing the system evolution in several physical phenomena, such as the motion of viscous fluids described by the Navier–Stokes 
equations. Simulation of such problems requires the use of a parallel High-Performance Computing architecture since the size of the 
problem grows with the cube of the FFT size, and the representation of the single point comprises several double precision floating- 
point complex numbers. Modern High-Performance Computing (HPC) systems are considering the inclusion of FPGAs as 
components of this computing architecture because they can combine effective hardware acceleration capabilities and dedicated 
communication facilities. Furthermore, the network topology can be optimized for the specific calculation that the cluster must 
perform, especially in the case of algorithms limited by the data exchange delay between the processors. In this paper, we explore an 
HPC design that uses FPGA accelerators to compute the 3DFFT. We devise a scalable FFT engine based on a custom radix-2 double-
precision core that is used to implement the Decimation in Frequency version of the Cooley–Tukey FFT algorithm. The FFT engine 
can be adapted to different technology constraints and networking topologies by adjusting the number of cores and configuration 
parameters in order to minimize the overall calculation time. We compare the various possible configurations with the technological 
limits of available hardware. Finally, we evaluate the bandwidth required for continuous FFT execution in the APEnet toroidal mesh 
network.  
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I. INTRODUCTION 

Continuous demand for efficient computing power is 
pushing designers into integrating dedicated hardware 
components in High-Performance Computing (HPC) 
architectures to improve computational efficiency. General-
purpose CPUs can delegate specific tasks to the hardware 
accelerator decreasing the latency of computationally 
demanding task such as the training of neural networks [1]-
[4], video or audio processing [5]-[8], environmental 
forecasting [9]-[11], security algorithms [12], automotive 
applications [13], etc. In other scenarios, hardware 
accelerators are used to reduce system power consumption 
[14]-[15].  

Modern HPC systems are evaluating the inclusion of 
FPGAs as components of their system architectures because 
they can combine effective hardware acceleration 
capabilities and dedicated communication facilities in a 
single device. The resulting design is suitable to execute 

distributed tasks in computer clusters effectively. An actual 
example is Microsoft Catapult [16], a data center able to act 
as an HPC system thanks to the introduction of FPGA 
accelerators. In this context, FPGAs also allows optimizing 
the data exchange among the hardware acceleration modules 
thanks to the direct connections supported by the network 
controllers which are integrated into the programmable 
hardware. 

A. FFT for simulations 

A widely used algorithm in the simulations of physical 
phenomena is the Multidimensional FFT and in particular 
the 3D FFT [17] that are employed in solving the partial 
differential equations of physical models, such as the 
Navier–Stokes equations that describe the motion of viscous 
fluids [18] or Newtonian mechanics equations of Molecular 
Dynamics [19]. Simulation of such problems requires the 
use of HPC since the size of the problem grows rapidly and 
this is mainly due to three reasons: 
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• The dimension of the problem increases with the cube 
of the FFT size; 

• The representation of the single data point value 
typically requires a double precision floating point 
complex number (i.e., 32, 64 or 128 bits); 

• The single point usually comprises different 
components (for example, if the point represents the 
velocity it has three components per point). 

Fig. 1 reports the required RAM vs. the FFT size N for 
different computer cluster configurations, starting from the 
single unit, up to 1024 nodes (a 32x32 bi-dimensional 
cluster). The required RAM per node is compared with the 
RAM sizes of the FPGAs development kits currently 
available on the market (512 MB, 2GB and 8GB). The figure 
shows that the single unit needs handling about 0.25 GB for 
N = 256 or up to 1024 GB for N = 4096.  

 

 
Fig. 1 Required local RAM per node for various cluster sizes increasing the 
FFT size. 

 
This implies that typical physical problems have to be 

tackled on HPC computer clusters where multiple compute 
units work in parallel to distribute the data domain. For 
example, considering an FPGA with 8GB of local RAM 
such as the Xilinx UltraScale+ VU37P, we can execute an N 
= 8192 points 3D FFT only using 1024 FPGAs, i.e. a 32x32 
cluster. 

To better quantify the impact of the FFT in physics 
simulations, we have performed a computation of the 
Navier–Stokes equations for a 1024x1024x1024 volume on 
an increasing number of processors. The computation was 
performed by the NewTurb cluster [20]. In Fig. 2 we report 
the percentage of execution time dedicated to the FFT and 
inverse FFT computation and the percentage of the other 
computing activities. As can be noted, the percentage of time 
dedicated to the calculation decreases with the number of 
processors while the percentage of FFT computing time 
increases. 

B. Related Work 

Over recent years, FPGAs have been employed for 
several different applications such as the Internet of Things 
[21]-[23], wireless communications [24]-[25], network 
protocols [26]-[27], etc. The employment of FPGAs in HPC 
is relatively recent and still the subject of research and 
optimization. FPGAs have been initially conceived to 

implement custom networking infrastructure among the 
nodes of the cluster [28]. Only recently, the proposal of 
FPGAs as a hardware accelerator has appeared in some 
works. In [29] the authors evaluate the effectiveness of an 
OpenCL FPGA implementation of several algorithms and 
point out that FPGAs can be more energy-efficient than 
GPUs and sometimes faster. 

 

 
 
Fig. 2 Percentage of time for the FFT and the other computations for 
Navier-Stokes step increasing the number of processors. 

 
The integration of FPGAs in HPC clusters in the field of 

3D FFT has been discussed in [31], showing a distributed 
parallel implementation of a problem sized of up to 1283 
points along with a 3D-torus direct network of 83 FPGA-
based nodes. In terms of solution time, results clearly state 
the viability of FPGA clusters in terms of strong scaling. 
Moreover, in [32] it is demonstrated how the inter-
accelerator dedicated network (in this case each FPGA has a 
single 40Gbps link) gives a sensible increase of overall 
performances on the 3D FFT, even compared to a GPU 
cluster running cuFFT. 

C. Main goals 

In this paper, we explore a possible evolution of the HPC 
APEnet system. The APEnet network connections are 
designed to support the distributed processing effectively 
and are implemented by FPGA cards. Considering that 
modern FPGAs have the considerable processing power, the 
paper investigates the possibility of using the networking 
FPGA as a hardware accelerator for computing of the 3D 
FFT. For this reason, a Radix-2 module will be designed for 
complex double-precision numbers. Also, we design a 
scalable architecture for the mono-dimensional FFT 
computation that integrates the Radix-2 module and can be 
adapted to the various possible network topologies. Finally, 
the required bandwidth in the APEnet toroidal mesh network 
will be calculated to support real computation. 

II. MATERIAL AND METHOD 

A. APEnet 

The APEnet project dates back to 2004 [28] and aims at 
developing a network fabric, which allows assembling an 
HPC, cluster with direct network topologies with off-the-
shelf components. Over the years several card families have 
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been developed [32]-[33], integrating on an FPGA-based 
NIC multiple bidirectional off-board high performance serial 
links, a PCIe-based interface towards the host PC and 
peculiar offloading features such as a Remote Direct 
Memory Access (RDMA) protocol for peer-to-peer (P2P) 
connections among Fermi-class NVIDIA GPUs that allows 
real zero-copy, low latency GPU-to-GPU transfers. 

Nowadays FPGAs have evolved into more complex 
platforms with several specialized hardware capabilities, 
such as multicore ARM embedded processors, DSP units 
with floating point capabilities, large amount of high speed 
serial links (in the range of 100 Gbit/s) and, at the latest 
addition, in-package High Bandwidth Memory (HBM) 
which is becoming available on Xilinx Ultrascale+ devices. 
This memory technology allows integrating large sizes of 
memories (i.e. 8GB) with enormous available peak 
bandwidth (460GB/s) distributed along 32 AXI ports 
directly connected into the FPGA fabric. Such a technology 
may be disruptive in applications like the 3DFFT, where 
intermediate buffering of large data sets is critical. 

B. 3D FFT 

The Multidimensional FFT is an optimized 
implementation of the Multidimensional Discrete Fourier 
Transform (DFT) that is defined in Eq. (1), where �� ������/�, D is the number of dimensions, the output indices 
run from 
� � 0,1, … , � � 1 and all the dimensions have a 
size of N. The inverse expression has a complementary 
expression that can be found in [17].  

Analyzing Eq. (1) it can be noted that the 3D FFT can be 
computed as a nested sequence of monodimensional FFTs. 
The order in which the three dimensions are scanned is not 
relevant. For example, the FFT can be computed along the X 
direction then the transformed data can be worked on again 
along the Y direction and finally along the Z direction. 
Every transformation requires N2 monodimensional FFTs. 
After the 3D transformation, data is used to perform the 
required processing and then antitransformed again. Thus the 
entire compute step involves 6xN2 monodimensional FFTs. 

C. Implementation of the monodimensional FFT 

The Cooley–Tukey FFT algorithm is the most commonly 
used to calculate the DFT and the inverse DFT. It is a divide 
and conquers algorithm that recursively breaks down a DFT 
into many smaller DFTs. The algorithm can be applied in 
two versions: the decimation in time (DIT) or the decimation 
in frequency (DIF). In the following, we are going to use the 
DIF version.  

The mono-dimensional FFT can be divided as follows: 
 

��
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where in the last step we used ��$%& '� � ��1 � . If we 
consider the even and the odd ��
� separately, we obtain: 
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���
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where ( � 0,1, … , �/2 � 1. 
As can be noted, the proposed formulation allows 

dividing the even and the odd part of the FFT thus reducing 
its size of the FFT by a factor 2 every step. The simple 
kernel that can be defined from eq. (5) and eq. (6) is depicted 
in Fig. 3 and is usually called “butterfly”. 

 

 
 

Fig. 3  Radix-2 Butterfly kernel 
 
The butterfly kernel combines the sample k and the 

sample k+N/2 to produce two outputs, which can be 
processed separately in the next step. The complete FFT can 
be built from this basic butterfly kernel, building a structure 
of N/2 butterflies at each stage for a total of 012���  stages. 
In Fig. 4 we show an example of an 8-point FFT. Each stage 
includes �/2 � 4  butterfly units and the total number of 
stages is 012��� � 3. Each butterfly unit operates on a pair 
of results from the previous stage. The distance between the 
two samples selected decreases by a factor two every stage. 
Finally, the output values have to be reordered. 

III.  RESULTS AND DISCUSSION 

A. FPGA Radix-2 Implementation 

In this section, we detail the design of the Radix-2 module 
depicted in Fig. 3 that will be used as the main building 
block for the full monodimensional FFT implementation. 
Writing explicitly the real and imaginary parts of the 
equations representing the inner butterfly FFT operations, 
we have: 

 

��
�, 
�, … , 
3� � � 4���5�5  � 4���&�& … � 6���7�7����, ��, … , �3�8���
�7�� 9���

�&�� 9���
�5��              �1  

 

 
Eq. (1) Multidimesional FFT definition 
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where ��and �<  represent the butterfly inputs, ��  and �<  the 
outputs and W  is the twiddle factor. A direct hardware 
implementation of these equations for FPGA is reported in 
Fig. 5, where the complex operations are broken up in 
double precision adders and multipliers operating on the real 
and the imaginary components. 
 

 

 
 

Fig. 4  Example of the 8 point FFT with DIF algorithm 
 

 
 

Fig. 5  FPGA implementation of the Radix-2 Butterfly kernel using three separated computational stages with parametric latency. 
 
 
 

To maximize data throughput, the FPGA uses concurrent 
operations, for a total of six adders and four multipliers.   

Other approaches are possible, as reviewed in [34], 
targeting a specific optimization, such as low power 
consumption [35], low area usage [36], or real-valued only 
signals [37].  In the proposed implementation, each operator 
has its characteristic (and parametric) internal latency and a 
streaming interface (in input and output ports), and they are 

typically available from IP libraries of the FPGA vendors, 
even in a double precision format with full IEEE-754 
standard compliance.  Thus, a balanced chain of operators 
perfectly fits into a pipelined architecture, where after the 
initial latency FFT outputs are available at each clock cycle.  

Computing is organized in three stages. In Stage A, the 
following operations are performed: 

 A� � :;��� �  :;6�<8,  (11) 
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A� � :;��� �  :;6�<8,  (12) AB � ℑ>��� �  ℑ>6�<8,  (13) AC � ℑ>��� �  ℑ>6�<8.  (14) 
 :;�W  and ℑ>�W  are delivered to stage B by a register 

chain with the same length of the latency of the adders. 
In Stage B, the following operations are performed: 
 B� � A�:;�W , B� � ACℑ>�W , BB � A�ℑ>�W , BC � AC:;�W , 

 A�  and AB  are delayed to the output stage on register 
chains. Finally, in Stage C, the following operations are 
performed: 

 C� � B� � BC C� � B� � BB, 
 
and the results are delivered to the output. 

Among these stages, data is registered to ease resource 
placement and achieve a higher frequency. Adders have a 
programmable latency among 0 and 14 clock cycles and 
multipliers among 0 and 12, and they are all configured to 
allow operands to be applied on every clock cycle (one cycle 
per operation). The computational complexity of this radix-2 
butterfly implementation is 10 Floating Point operations per 
cycle.  Defining the latency of the three stages 0F, 0G and  0H, 
then the total latency of the butterfly operation block is: 

 0IJI �  0F �  0G �  0H � 4  (15) 
 
where the constant value 4 is the number of registration 

cycles among the 3 stages. Varying 0IJI  has an impact on 
working clock period KL , thus making it an adaptable 
parameter. 

B. Scalable FFT Implementation 

The full hardware of the monodimensional FFT includes a 
matrix of �/2 ∙ 012���  Radix-2 modules and 012���  
swap modules as shown in Fig. 6. The full implementation is 
clearly the most efficient from the computational point of 
view, because it can theoretically allow the computing of 
one monodimensional FFT for clock tick KL. 

 

 
 

Fig. 6 Full monodimensional FFT implementation 
 

However, the hardware components required for a full 
implementation rapidly exceed the available resources in the 
current available FPGAs, and thus alternative designs have 
to be considered. Moreover, since data is spread over the 
whole cluster to parallelize the computation, therefore, nodes 
periodically need to exchange data, the required bandwidth 
among them turns out to be too high for the available 
communication technologies so that the processors would 
spend most of the time idling. 

To decrease the total number of radix-2 computing units 
required for the single FFT, we consider two strategies: i) to 
reduce N, the number of columns with N ≤ 012���  or ii) to 
reduceP , the number of rows in the computation matrix 
with P ≤ �/2. To explain the basic design required by the 
two solutions, in Fig. 7 and Fig. 8 we depict the two extreme 
cases: N � 1 and P � 1 respectively. 

The single column solution uses �/2 radix-2 units reused 012���  times (see Fig. 7). Thus, the total FFT execution 
time results inKL012��� . More generally, if the number of 
columns of the FFT isN , the FFT execution time 
isKL012��� /N. Considering the single row solution in Fig. 
8, we have that every FFT step needs repeating N/2 times. 
Moreover, to feed the next step we need to wait for all the �/2 computations buffering the intermediates values. The 
total resulting execution time in case of P  rows results in KL��/2 /P.  

 

 
Fig. 7 Single column FFT implementation 

 

 
 

Fig. 8  Single row FFT implementation 
 
It is possible to implement a general solution with P rows 

and N columns. In this case, the total FFT execution time is: 
 KQQR � KL $��' 012��� /�PN      (16) 

 

C. Radix2 Performance 

The proposed double precision FFT engine in the case of P � 1 and N � 012���  has been implemented on a Xilinx 
Virtex Ultrascale+ VU37P device for full synthesis and 
simulation with Vivado 2018.3 version. In Table I, we 
compare hardware resource usage for � � 1024  and 

681



� � 4096  and setting the latency of the floating point 
operators to 3 cycles.  

TABLE I 
RESOURCE USAGE AND HARDWARE  CHARACTERIZATION OF A SINGLE  

FFT ENGINE 

 N=1024 N=4096 
% LUTs 4.03 4.92 
% REGs 1.66 2.07 
% BRAM 4.86 20.83 
% DSP 5.10 6.12 
Cycles 5260 24744 
Frequency (MHz) 259 243 
Exec. time (µs) 20.31 101.83 
GFLOPS 25.9 29.16 
Power (W) 5.606 5.167 

We can observe good scalability in terms of Slice LUTs, 
Slice Registers, and DSP blocks. Block RAM usage is 
relatively high. It can be further optimized or to reduce the 
memory impact when scaling to larger N, a possible solution 
is to use different types of memory resources, such as 
distributed memories or UltraRAM blocks. 

In terms of energy efficiency, we estimated the power 
consumption using Xilinx Power Analyzer tool:  the single 
FFT engine implemented is capable of 4.62 GFLOPS/Watt 
for the � � 1024  case and 5.64 GFLOPS/Watt for the � � 4096  case. This preliminary result indicates that the 
FPGA can be considered a viable solution also for highly 
power efficient computing. 

 

 

 
 

Fig. 9 Example of 2D decomposition with P processing nodes a) in the X direction, b) in the Y direction and c) in the Z direction. 
 
 
In Table 2 we report the results of several synthesis 

attempts with different floating-point operators’ latency. We 
note that increasing the overall butterfly latency; we can 
achieve a higher working frequency of the engine.  In our 
scenario, the total execution time is more affected by the 
working frequency rather than engine latency. 

TABLE II 
BUTTERFLY LATENCY VERSUS SYNTHESIZABLE FREQUENCY FOR AN  

FFT OF N=1024 

operator 
latency 

0IJI frequency (MHz) 

1 4 101 

3 13 259 

6 22 359 

9 31 375 

12 (14) 44 380 

D. Network required capacity 

To perform a distributed 3D FFT, data has to be divided 
among the available processors that compute the 
monodimensional FFTs. The most efficient decomposition 
strategies are the 1D and the 2D [38]. The cluster processing 
efficiency depends on the number of processors available 
and the size of the problem: if the nodes are relatively few it 
is better to use the 1D strategy; on the contrary, if the 
number is high the 2D strategy becomes convenient. In both 
decompositions, the nodes process the local data and then 
need to exchange a part of to compute the FFTs in along 
other dimensions.  

Since we are targeting large clusters, in the following we 
assume to be using the 2D partition strategy that is depicted 
in Fig. 9. Each node has to compute a pencil of the full cube 
in the three directions X, Y, and Z. The processing nodes are 
typically arranged in a 2D network, and we assume a switch-
less torus topology typical of parallel computer systems [33].  

In the 2D decomposition, the data is only exchanged 
among the nodes of the same row in the XY transposition 
and the nodes of the same column in the YZ transposition 
[38]. If we use a total of S processing units in the 2D cluster, 
each node executes ��/√S  FFTs and needs exchanging 16 �/√S bytes with every other node on the row/column for 
every FFT (where 16 bytes = 2*64 bits is the representation 
of the single point). Since we have √S  processors per 
row/column, the total amount of bytes that we need to 
exchange in a single link in the torus network is 16 �√S/2 
for every FFT. 

In Fig. 10 we report the network throughput of the single 
torus link with increasingS , the number of processing 
elements for various characteristics of the FFT engine. We 
also report two link bandwidth capabilities available on the 
target FPGA device. 

We note that increasing the engine dimension, in terms of 
R and C, we quickly ramp up the required bandwidth to 
values not compatible with current link technologies so that 
communication delay dominates the total computation time. 
 

682



 
 

Fig. 10 Required network throughput vs. the number of processing nodes 

IV.  CONCLUSIONS 

We presented a scalable FFT engine suitable for HPC 
cluster architectures that employ FPGAs as hardware 
accelerators and network communication. The FFT engine is 
based on a radix-2 double precision floating point module, 
specifically designed for the FFT computation. A single row 
version of the core has been implemented and synthesized in 
a Xilinx Virtex Ultrascale+ VU37P to evaluate the 
achievable performances. The results have been used to 
estimate the link bandwidth capacity required for a 2D torus 
network. 
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