

Vol.9 (2019) No. 2

ISSN: 2088-5334

Design and Evaluation of a Scalable Engine for 3D-FFT Computation
in an FPGA Cluster

Roberto Ammendola#1, Pierpaolo Loreti*2
#1NFN Roma Tor Vergata, Via della Ricerca Scientifica,1 - 00133 Roma – Italy

E-mail: roberto.ammendola@roma2.infn.it

* 2Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
E-mail: pierpaolo.loreti@uniroma2.it

Abstract— The Three Dimensional Fast Fourier Transform (3D-FFT) is commonly used to solve the partial differential equations
describing the system evolution in several physical phenomena, such as the motion of viscous fluids described by the Navier–Stokes
equations. Simulation of such problems requires the use of a parallel High-Performance Computing architecture since the size of the
problem grows with the cube of the FFT size, and the representation of the single point comprises several double precision floating-
point complex numbers. Modern High-Performance Computing (HPC) systems are considering the inclusion of FPGAs as
components of this computing architecture because they can combine effective hardware acceleration capabilities and dedicated
communication facilities. Furthermore, the network topology can be optimized for the specific calculation that the cluster must
perform, especially in the case of algorithms limited by the data exchange delay between the processors. In this paper, we explore an
HPC design that uses FPGA accelerators to compute the 3DFFT. We devise a scalable FFT engine based on a custom radix-2 double-
precision core that is used to implement the Decimation in Frequency version of the Cooley–Tukey FFT algorithm. The FFT engine
can be adapted to different technology constraints and networking topologies by adjusting the number of cores and configuration
parameters in order to minimize the overall calculation time. We compare the various possible configurations with the technological
limits of available hardware. Finally, we evaluate the bandwidth required for continuous FFT execution in the APEnet toroidal mesh
network.

Keywords— 3D-FFT; FPGA; high-performance computing; cluster.

I. INTRODUCTION

Continuous demand for efficient computing power is
pushing designers into integrating dedicated hardware
components in High-Performance Computing (HPC)
architectures to improve computational efficiency. General-
purpose CPUs can delegate specific tasks to the hardware
accelerator decreasing the latency of computationally
demanding task such as the training of neural networks [1]-
[4], video or audio processing [5]-[8], environmental
forecasting [9]-[11], security algorithms [12], automotive
applications [13], etc. In other scenarios, hardware
accelerators are used to reduce system power consumption
[14]-[15].

Modern HPC systems are evaluating the inclusion of
FPGAs as components of their system architectures because
they can combine effective hardware acceleration
capabilities and dedicated communication facilities in a
single device. The resulting design is suitable to execute

distributed tasks in computer clusters effectively. An actual
example is Microsoft Catapult [16], a data center able to act
as an HPC system thanks to the introduction of FPGA
accelerators. In this context, FPGAs also allows optimizing
the data exchange among the hardware acceleration modules
thanks to the direct connections supported by the network
controllers which are integrated into the programmable
hardware.

A. FFT for simulations

A widely used algorithm in the simulations of physical
phenomena is the Multidimensional FFT and in particular
the 3D FFT [17] that are employed in solving the partial
differential equations of physical models, such as the
Navier–Stokes equations that describe the motion of viscous
fluids [18] or Newtonian mechanics equations of Molecular
Dynamics [19]. Simulation of such problems requires the
use of HPC since the size of the problem grows rapidly and
this is mainly due to three reasons:

677

• The dimension of the problem increases with the cube
of the FFT size;

• The representation of the single data point value
typically requires a double precision floating point
complex number (i.e., 32, 64 or 128 bits);

• The single point usually comprises different
components (for example, if the point represents the
velocity it has three components per point).

Fig. 1 reports the required RAM vs. the FFT size N for
different computer cluster configurations, starting from the
single unit, up to 1024 nodes (a 32x32 bi-dimensional
cluster). The required RAM per node is compared with the
RAM sizes of the FPGAs development kits currently
available on the market (512 MB, 2GB and 8GB). The figure
shows that the single unit needs handling about 0.25 GB for
N = 256 or up to 1024 GB for N = 4096.

Fig. 1 Required local RAM per node for various cluster sizes increasing the
FFT size.

This implies that typical physical problems have to be

tackled on HPC computer clusters where multiple compute
units work in parallel to distribute the data domain. For
example, considering an FPGA with 8GB of local RAM
such as the Xilinx UltraScale+ VU37P, we can execute an N
= 8192 points 3D FFT only using 1024 FPGAs, i.e. a 32x32
cluster.

To better quantify the impact of the FFT in physics
simulations, we have performed a computation of the
Navier–Stokes equations for a 1024x1024x1024 volume on
an increasing number of processors. The computation was
performed by the NewTurb cluster [20]. In Fig. 2 we report
the percentage of execution time dedicated to the FFT and
inverse FFT computation and the percentage of the other
computing activities. As can be noted, the percentage of time
dedicated to the calculation decreases with the number of
processors while the percentage of FFT computing time
increases.

B. Related Work

Over recent years, FPGAs have been employed for
several different applications such as the Internet of Things
[21]-[23], wireless communications [24]-[25], network
protocols [26]-[27], etc. The employment of FPGAs in HPC
is relatively recent and still the subject of research and
optimization. FPGAs have been initially conceived to

implement custom networking infrastructure among the
nodes of the cluster [28]. Only recently, the proposal of
FPGAs as a hardware accelerator has appeared in some
works. In [29] the authors evaluate the effectiveness of an
OpenCL FPGA implementation of several algorithms and
point out that FPGAs can be more energy-efficient than
GPUs and sometimes faster.

Fig. 2 Percentage of time for the FFT and the other computations for
Navier-Stokes step increasing the number of processors.

The integration of FPGAs in HPC clusters in the field of

3D FFT has been discussed in [31], showing a distributed
parallel implementation of a problem sized of up to 1283
points along with a 3D-torus direct network of 83 FPGA-
based nodes. In terms of solution time, results clearly state
the viability of FPGA clusters in terms of strong scaling.
Moreover, in [32] it is demonstrated how the inter-
accelerator dedicated network (in this case each FPGA has a
single 40Gbps link) gives a sensible increase of overall
performances on the 3D FFT, even compared to a GPU
cluster running cuFFT.

C. Main goals

In this paper, we explore a possible evolution of the HPC
APEnet system. The APEnet network connections are
designed to support the distributed processing effectively
and are implemented by FPGA cards. Considering that
modern FPGAs have the considerable processing power, the
paper investigates the possibility of using the networking
FPGA as a hardware accelerator for computing of the 3D
FFT. For this reason, a Radix-2 module will be designed for
complex double-precision numbers. Also, we design a
scalable architecture for the mono-dimensional FFT
computation that integrates the Radix-2 module and can be
adapted to the various possible network topologies. Finally,
the required bandwidth in the APEnet toroidal mesh network
will be calculated to support real computation.

II. MATERIAL AND METHOD

A. APEnet

The APEnet project dates back to 2004 [28] and aims at
developing a network fabric, which allows assembling an
HPC, cluster with direct network topologies with off-the-
shelf components. Over the years several card families have

256 512 1024 2048 4096 8192
N - FFT Size

10-2

100

102

104

106

L
oc

al
 R

A
M

 (
G

B
)

Single Unit
4 (2x2)
16 (4x4)
64 (8x8)
256 (16x16)
1024 (32x32)

 512MB RAM

 2GB RAM

 8GB RAM

32 64 128 256 512
Number of Processors P

0

20

40

60

80

100

%
 o

f
tim

e

FFT
Other

678

been developed [32]-[33], integrating on an FPGA-based
NIC multiple bidirectional off-board high performance serial
links, a PCIe-based interface towards the host PC and
peculiar offloading features such as a Remote Direct
Memory Access (RDMA) protocol for peer-to-peer (P2P)
connections among Fermi-class NVIDIA GPUs that allows
real zero-copy, low latency GPU-to-GPU transfers.

Nowadays FPGAs have evolved into more complex
platforms with several specialized hardware capabilities,
such as multicore ARM embedded processors, DSP units
with floating point capabilities, large amount of high speed
serial links (in the range of 100 Gbit/s) and, at the latest
addition, in-package High Bandwidth Memory (HBM)
which is becoming available on Xilinx Ultrascale+ devices.
This memory technology allows integrating large sizes of
memories (i.e. 8GB) with enormous available peak
bandwidth (460GB/s) distributed along 32 AXI ports
directly connected into the FPGA fabric. Such a technology
may be disruptive in applications like the 3DFFT, where
intermediate buffering of large data sets is critical.

B. 3D FFT

The Multidimensional FFT is an optimized
implementation of the Multidimensional Discrete Fourier
Transform (DFT) that is defined in Eq. (1), where �� ������/�, D is the number of dimensions, the output indices
run from
� � 0,1, … , � � 1 and all the dimensions have a
size of N. The inverse expression has a complementary
expression that can be found in [17].

Analyzing Eq. (1) it can be noted that the 3D FFT can be
computed as a nested sequence of monodimensional FFTs.
The order in which the three dimensions are scanned is not
relevant. For example, the FFT can be computed along the X
direction then the transformed data can be worked on again
along the Y direction and finally along the Z direction.
Every transformation requires N2 monodimensional FFTs.
After the 3D transformation, data is used to perform the
required processing and then antitransformed again. Thus the
entire compute step involves 6xN2 monodimensional FFTs.

C. Implementation of the monodimensional FFT

The Cooley–Tukey FFT algorithm is the most commonly
used to calculate the DFT and the inverse DFT. It is a divide
and conquers algorithm that recursively breaks down a DFT
into many smaller DFTs. The algorithm can be applied in
two versions: the decimation in time (DIT) or the decimation
in frequency (DIF). In the following, we are going to use the
DIF version.

The mono-dimensional FFT can be divided as follows:

��
� � � �����������
��� � � ���������/���

��� � � �����������
���/� �2

��
� � � ���������/���
��� � � �����!�� ��� � �/2��/���

��� �3

��
� � � ����� � ��1 ���� � �/2� �����/���
��� �4

where in the last step we used ��$%& '� � ��1 � . If we
consider the even and the odd ��
� separately, we obtain:

��2(� � �)���� � � *� � �2 +, ���
-�

����
��� �5

��2(� 1� � � ����� � ��� � �/2� �����/�-��/���
���

 �6

where (� 0,1, … , �/2 � 1.
As can be noted, the proposed formulation allows

dividing the even and the odd part of the FFT thus reducing
its size of the FFT by a factor 2 every step. The simple
kernel that can be defined from eq. (5) and eq. (6) is depicted
in Fig. 3 and is usually called “butterfly”.

Fig. 3 Radix-2 Butterfly kernel

The butterfly kernel combines the sample k and the

sample k+N/2 to produce two outputs, which can be
processed separately in the next step. The complete FFT can
be built from this basic butterfly kernel, building a structure
of N/2 butterflies at each stage for a total of 012��� stages.
In Fig. 4 we show an example of an 8-point FFT. Each stage
includes �/2 � 4 butterfly units and the total number of
stages is 012��� � 3. Each butterfly unit operates on a pair
of results from the previous stage. The distance between the
two samples selected decreases by a factor two every stage.
Finally, the output values have to be reordered.

III. RESULTS AND DISCUSSION

A. FPGA Radix-2 Implementation

In this section, we detail the design of the Radix-2 module
depicted in Fig. 3 that will be used as the main building
block for the full monodimensional FFT implementation.
Writing explicitly the real and imaginary parts of the
equations representing the inner butterfly FFT operations,
we have:

��
�,
�, … ,
3� � � 4���5�5 � 4���&�& … � 6���7�7����, ��, … , �3�8���
�7�� 9���

�&�� 9���
�5�� �1

Eq. (1) Multidimesional FFT definition

679

:;��� � :;��� � :;6�<8 (7) ℑ>��� � ℑ>��� � ℑ>6�<8 (8) :;6�<8 � :;�W $:;��� � :;6�<8'� ℑ>�W $ℑ>��� � ℑ>6�<8' �9 ℑ>6�<8 � ℑ>�W $:;��� � :;6�<8'� :;�W $ℑ>��� � ℑ>6�<8' �10

where ��and �< represent the butterfly inputs, �� and �< the
outputs and W is the twiddle factor. A direct hardware
implementation of these equations for FPGA is reported in
Fig. 5, where the complex operations are broken up in
double precision adders and multipliers operating on the real
and the imaginary components.

Fig. 4 Example of the 8 point FFT with DIF algorithm

Fig. 5 FPGA implementation of the Radix-2 Butterfly kernel using three separated computational stages with parametric latency.

To maximize data throughput, the FPGA uses concurrent
operations, for a total of six adders and four multipliers.

Other approaches are possible, as reviewed in [34],
targeting a specific optimization, such as low power
consumption [35], low area usage [36], or real-valued only
signals [37]. In the proposed implementation, each operator
has its characteristic (and parametric) internal latency and a
streaming interface (in input and output ports), and they are

typically available from IP libraries of the FPGA vendors,
even in a double precision format with full IEEE-754
standard compliance. Thus, a balanced chain of operators
perfectly fits into a pipelined architecture, where after the
initial latency FFT outputs are available at each clock cycle.

Computing is organized in three stages. In Stage A, the
following operations are performed:

 A� � :;��� � :;6�<8, (11)

680

A� � :;��� � :;6�<8, (12) AB � ℑ>��� � ℑ>6�<8, (13) AC � ℑ>��� � ℑ>6�<8. (14)
 :;�W and ℑ>�W are delivered to stage B by a register

chain with the same length of the latency of the adders.
In Stage B, the following operations are performed:
 B� � A�:;�W , B� � ACℑ>�W , BB � A�ℑ>�W , BC � AC:;�W ,

 A� and AB are delayed to the output stage on register
chains. Finally, in Stage C, the following operations are
performed:

 C� � B� � BC C� � B� � BB,

and the results are delivered to the output.

Among these stages, data is registered to ease resource
placement and achieve a higher frequency. Adders have a
programmable latency among 0 and 14 clock cycles and
multipliers among 0 and 12, and they are all configured to
allow operands to be applied on every clock cycle (one cycle
per operation). The computational complexity of this radix-2
butterfly implementation is 10 Floating Point operations per
cycle. Defining the latency of the three stages 0F, 0G and 0H,
then the total latency of the butterfly operation block is:

 0IJI � 0F � 0G � 0H � 4 (15)

where the constant value 4 is the number of registration

cycles among the 3 stages. Varying 0IJI has an impact on
working clock period KL , thus making it an adaptable
parameter.

B. Scalable FFT Implementation

The full hardware of the monodimensional FFT includes a
matrix of �/2 ∙ 012��� Radix-2 modules and 012���
swap modules as shown in Fig. 6. The full implementation is
clearly the most efficient from the computational point of
view, because it can theoretically allow the computing of
one monodimensional FFT for clock tick KL.

Fig. 6 Full monodimensional FFT implementation

However, the hardware components required for a full
implementation rapidly exceed the available resources in the
current available FPGAs, and thus alternative designs have
to be considered. Moreover, since data is spread over the
whole cluster to parallelize the computation, therefore, nodes
periodically need to exchange data, the required bandwidth
among them turns out to be too high for the available
communication technologies so that the processors would
spend most of the time idling.

To decrease the total number of radix-2 computing units
required for the single FFT, we consider two strategies: i) to
reduce N, the number of columns with N ≤ 012��� or ii) to
reduceP , the number of rows in the computation matrix
with P ≤ �/2. To explain the basic design required by the
two solutions, in Fig. 7 and Fig. 8 we depict the two extreme
cases: N � 1 and P � 1 respectively.

The single column solution uses �/2 radix-2 units reused 012��� times (see Fig. 7). Thus, the total FFT execution
time results inKL012��� . More generally, if the number of
columns of the FFT isN , the FFT execution time
isKL012��� /N. Considering the single row solution in Fig.
8, we have that every FFT step needs repeating N/2 times.
Moreover, to feed the next step we need to wait for all the �/2 computations buffering the intermediates values. The
total resulting execution time in case of P rows results in KL��/2 /P.

Fig. 7 Single column FFT implementation

Fig. 8 Single row FFT implementation

It is possible to implement a general solution with P rows

and N columns. In this case, the total FFT execution time is:
 KQQR � KL $��' 012��� /�PN (16)

C. Radix2 Performance

The proposed double precision FFT engine in the case of P � 1 and N � 012��� has been implemented on a Xilinx
Virtex Ultrascale+ VU37P device for full synthesis and
simulation with Vivado 2018.3 version. In Table I, we
compare hardware resource usage for � � 1024 and

681

� � 4096 and setting the latency of the floating point
operators to 3 cycles.

TABLE I
RESOURCE USAGE AND HARDWARE CHARACTERIZATION OF A SINGLE

FFT ENGINE

 N=1024 N=4096
% LUTs 4.03 4.92
% REGs 1.66 2.07
% BRAM 4.86 20.83
% DSP 5.10 6.12
Cycles 5260 24744
Frequency (MHz) 259 243
Exec. time (µs) 20.31 101.83
GFLOPS 25.9 29.16
Power (W) 5.606 5.167

We can observe good scalability in terms of Slice LUTs,
Slice Registers, and DSP blocks. Block RAM usage is
relatively high. It can be further optimized or to reduce the
memory impact when scaling to larger N, a possible solution
is to use different types of memory resources, such as
distributed memories or UltraRAM blocks.

In terms of energy efficiency, we estimated the power
consumption using Xilinx Power Analyzer tool: the single
FFT engine implemented is capable of 4.62 GFLOPS/Watt
for the � � 1024 case and 5.64 GFLOPS/Watt for the � � 4096 case. This preliminary result indicates that the
FPGA can be considered a viable solution also for highly
power efficient computing.

Fig. 9 Example of 2D decomposition with P processing nodes a) in the X direction, b) in the Y direction and c) in the Z direction.

In Table 2 we report the results of several synthesis

attempts with different floating-point operators’ latency. We
note that increasing the overall butterfly latency; we can
achieve a higher working frequency of the engine. In our
scenario, the total execution time is more affected by the
working frequency rather than engine latency.

TABLE II
BUTTERFLY LATENCY VERSUS SYNTHESIZABLE FREQUENCY FOR AN

FFT OF N=1024

operator
latency

0IJI frequency (MHz)

1 4 101

3 13 259

6 22 359

9 31 375

12 (14) 44 380

D. Network required capacity

To perform a distributed 3D FFT, data has to be divided
among the available processors that compute the
monodimensional FFTs. The most efficient decomposition
strategies are the 1D and the 2D [38]. The cluster processing
efficiency depends on the number of processors available
and the size of the problem: if the nodes are relatively few it
is better to use the 1D strategy; on the contrary, if the
number is high the 2D strategy becomes convenient. In both
decompositions, the nodes process the local data and then
need to exchange a part of to compute the FFTs in along
other dimensions.

Since we are targeting large clusters, in the following we
assume to be using the 2D partition strategy that is depicted
in Fig. 9. Each node has to compute a pencil of the full cube
in the three directions X, Y, and Z. The processing nodes are
typically arranged in a 2D network, and we assume a switch-
less torus topology typical of parallel computer systems [33].

In the 2D decomposition, the data is only exchanged
among the nodes of the same row in the XY transposition
and the nodes of the same column in the YZ transposition
[38]. If we use a total of S processing units in the 2D cluster,
each node executes ��/√S FFTs and needs exchanging 16 �/√S bytes with every other node on the row/column for
every FFT (where 16 bytes = 2*64 bits is the representation
of the single point). Since we have √S processors per
row/column, the total amount of bytes that we need to
exchange in a single link in the torus network is 16 �√S/2
for every FFT.

In Fig. 10 we report the network throughput of the single
torus link with increasingS , the number of processing
elements for various characteristics of the FFT engine. We
also report two link bandwidth capabilities available on the
target FPGA device.

We note that increasing the engine dimension, in terms of
R and C, we quickly ramp up the required bandwidth to
values not compatible with current link technologies so that
communication delay dominates the total computation time.

682

Fig. 10 Required network throughput vs. the number of processing nodes

IV. CONCLUSIONS

We presented a scalable FFT engine suitable for HPC
cluster architectures that employ FPGAs as hardware
accelerators and network communication. The FFT engine is
based on a radix-2 double precision floating point module,
specifically designed for the FFT computation. A single row
version of the core has been implemented and synthesized in
a Xilinx Virtex Ultrascale+ VU37P to evaluate the
achievable performances. The results have been used to
estimate the link bandwidth capacity required for a 2D torus
network.

ACKNOWLEDGMENT

We would like to thank the group of Luca Biferale for the
use of the NewTurb cluster.

REFERENCES
[1] Giardino, D., Matta, M., Silvestri, F., Spanò, S., & Trobiani, V.

“FPGA implementation of hand-written number recognition based on
CNN.” 2019 International Journal on Advanced Science,
Engineering and Information Technology, 9(1).

[2] Ismail, A. R., & Zarir, A. A., “Convolutional neural networks and
deep belief networks for analyzing the imbalanced class issue in
handwritten dataset” International Journal on Advanced Science,
Engineering and Information Technology, vol. 7(6), 2302-2307, 2017.

[3] Cardarilli, G. C., Cristini, A., Di Nunzio, L., Re, M., Salerno, M., &
Susi, G. “Spiking neural networks based on LIF with latency:
Simulation and synchronization effects,” 2013 IEEE Asilomar
Conference on Signals, Systems and Computers, 1838-1842

[4] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Matta,
M. Patetta, M. Re, S. Spanò “Approximated computing for low
power Neural Networks” 2019 Telkomnika (Telecommunication
Computing Electronics and Control), 17 (3), ARTICLE IN PRESS

[5] Esposito, A., Lomuscio, A., Cardarilli, G. C., Di Nunzio, L.,
Fazzolari, R., Nannarelli, A., & Re, M. “Dynamically-loaded
hardware libraries (HLL) technology for audio applications,” 2017
Conference Record - Asilomar Conference on Signals, Systems, and
Computers, 882-886.

[6] Abhishek, S., Veni, S., & Narayanankutty, K. A. “Splines in
Compressed Sensing.” International Journal on Advanced Science,
Engineering and Information Technology, 6(4), 469-476, 2016.

[7] Tan, S. Y., Arshad, H., & Abdullah, A.. An efficient and robust
mobile augmented reality application. International Journal on
Advanced Science, Engineering and Information Technology, 8(4-2),
1672-1678, 2018.

[8] Castro, F. L., De Luca, M., & Iarossi, S. “Simulation of an Ultrasonic
Flow Meter for Liquids,” Sensors (pp. 397-402). Springer, Cham,
2015.

[9] Waheeb, W., & Ghazali, R., “Chaotic time series forecasting using
higher-order neural networks,” International Journal on Advanced
Science, Engineering and Information Technology, 6(5), 624-629,
2016.

[10] Mustaffa, Z., Sulaiman, M. H., Rohidin, D., Ernawan, F., & Kasim, S.
Time Series Predictive Analysis based on Hybridization of Meta-
heuristic Algorithms. International Journal on Advanced Science,
Engineering and Information Technology, 8(5), 1919-1925, 2018.

[11] Bostanbekov, K., Nurseitov, D., & Kim, D. Risk Assessment Model
of Technogenic Pollution of the Environment from Oil Spill in the
Northern Caspian Sea. International Journal on Advanced Science,
Engineering and Information Technology, 8(1), 37-43, 2018.

[12] Lim, S. Y., Fotsing, P. T., Almasri, A., Musa, O., Kiah, M. L. M.,
Ang, T. F., & Ismail, R. Blockchain Technology the Identity
Management and Authentication Service Disruptor: A Survey.
International Journal on Advanced Science, Engineering and
Information Technology, 8(4-2), 1735-1745, 2018.

[13] Benedetti, I., Giuliano, R., Lodovisi, C., & Mazzenga, F. “5G
wireless dense access network for automotive applications:
Opportunities and costs.”, In 2017 IEEE International Conference of
Electrical and Electronic Technologies for Automotive (pp. 1-6).

[14] G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, M. Re and R. B. Lee,
"Integration of butterfly and inverse butterfly nets in embedded
processors: Effects on power saving," 2012 Conference Record of the
Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), Pacific Grove, CA, 2012, pp. 1457-1459.

[15] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Silvestri, F.
and Spanò, S. 2018, “Energy consumption saving in embedded
microprocessors using hardware accelerators”, Telkomnika
(Telecommunication Computing Electronics and Control), vol. 16,
no. 3, pp. 1019-1026.

[16] Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J.,
Haselman, M. “A cloud-scale acceleration architecture.” In 2016
IEEE/ACM International Symposium on Microarchitecture (p. 7)

[17] https://en.wikipedia.org/wiki/Fast_Fourier_transform
[18] Vu, D. T., & Linh, N. M. “Solving Navier-Stokes Equation Using

FPGA Cellular Neural Network Chi.” In 2016 International
Conference on Advances in Information and Communication
Technology (pp. 562-571). Springer, Cham,

[19] Chin, M., Herbordt, M. C., & Langhammer, M. “Performance
potential of molecular dynamics simulations on the high-performance
reconfigurable computing system.” In 2008 IEEE Second
International Workshop on High-Performance Reconfigurable
Computing Technology and Applications (pp. 1-10).

[20] Lanotte, A. S., Benzi, R., Malapaka, S. K., Toschi, F., & Biferale, L.
Turbulence on a fractal Fourier set. Physical review letters, 115(26),
2015.

[21] Giuliano, R., Mazzenga, F., Neri, A., & Vegni, A. M. “Security
access protocols in IoT capillary networks,” IEEE Internet of Things
Journal, 4(3), 645-657, 2017

[22] Giuliano, R., Mazzenga, F., Neri, A., & Vegni, A. M., “Security
access protocols in IoT networks with heterogenous non-IP terminals.
Paper presented at the Proceedings”, IEEE International Conference
on Distributed Computing in Sensor Systems, DCOSS 2014, 257-262.

[23] Bracciale, L., Loreti, P., Detti, A., Paolillo, R., & Melazzi, N. B..
“Lightweight Named Object: an ICN-based Abstraction for IoT
Device Programming and Management” IEEE Internet of Things
Journal, 2019

[24] Benedetti, I., Giuliano, R., Lodovisi, C., & Mazzenga, F., “5G
wireless dense access network for automotive applications:
Opportunities and costs.” In 2017 IEEE International Conference of
Electrical and Electronic Technologies for Automotive (pp. 1-6).

[25] Mazzenga, F., Giuliano, R., & Vatalaro, F, “FttC-based fronthaul for
5G dense/ultra-dense access network: Performance and costs in
realistic scenarios”. Future Internet, 9(4) 2017

[26] Detti, A., Bracciale, L., Loreti, P., Rossi, G., & Melazzi, N. B. “A
cluster-based scalable router for information-centric networks,”
Computer Networks, 142, 24-32, 2018.

[27] Detti, A., Orru, M., Paolillo, R., Rossi, G., Loreti, P., Bracciale, L., &
Melazzi, N. B. “Application of information centric networking to
nosql databases: the spatio-temporal use case” In 2017 IEEE
International Symposium on Local and Metropolitan Area Networks
LANMAN (pp. 1-6).

[28] Amendola, R., et al. "APENet: a high speed, low latency 3D
interconnect network." 2004 IEEE International Conference on
Cluster Computing.

16 64 256 1024
Processing Nodes

1010

1012

1014

N
et

w
or

k
T

ho
ru

gh
pu

t (
bp

s)

R=1 C=10
R=2 C=10
R=8 C=10
R=16 C=10

R=1 C=1
R=2 C=1
R=8 C=1
R=16 C=1

100Gbps

200Gbps

683

[29] Muslim, F. B., Ma, L., Roozmeh, M., & Lavagno, L. “Efficient
FPGA implementation of OpenCL high-performance computing
applications via high-level synthesis” IEEE Access, 5, 2747-2762,
2017.

[30] Sheng, Jiayi, et al. "Design of 3D FFTs with FPGA clusters." 2014
IEEE High-Performance Extreme Computing Conference (HPEC).

[31] Sheng, Jiayi, et al. "HPC on FPGA clouds: 3D FFTs and implications
for molecular dynamics." 2017 27th International Conference on
Field Programmable Logic and Applications (FPL).

[32] Amendola, Roberto, et al. "APEnet+: a 3D Torus network optimized
for GPU-based HPC Systems." Journal of Physics: Conference
Series. Vol. 396. No. 4. IOP Publishing, 2012.

[33] Amendola, Roberto, et al. "Latest generation interconnect
technologies in APEnet+ networking infrastructure." Journal of
Physics: Conference Series. Vol. 898. No. 8. IOP Publishing, 2017.

[34] Joshi, Shubhangi M. "FFT architectures: a review." International
Journal of Computer Applications 116.7 (2015).

[35] Ayinala, Manohar, Michael Brown, and Keshab K. Parhi. "Pipelined
parallel FFT architectures via folding transformation." IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 20.6
(2012): 1068-1081.

[36] Garrido, Mario, Keshab K. Parhi, and Jesús Grajal. "A pipelined FFT
architecture for real-valued signals." IEEE Transactions on Circuits
and Systems I: Regular Papers 56.12 (2009): 2634-2643.

[37] Garrido, Mario, et al. "Pipelined radix-2k feedforward FFT
architectures." IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 21.1 (2013): 23-32.

[38] Pekurovsky, D. (2012). P3DFFT: A framework for parallel
computations of Fourier transforms in three dimensions. SIAM
Journal on Scientific Computing, 34(4), C192-C209.

684

