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Abstract— The mathematical model describes the electrical and mechanical activity of the cardiac conduction system thought set of 
differential equations. By changing the value of parameters included in these equations, it is possible to change the amplitude and the 
period of ECG waves. Although this model is a powerful tool for modeling the electrical activity of the heart, its use is often limited to 
those familiar with the differential equations that describe the system. The purpose of this work is to provide a system that allows 
generating an ECG signal using Ryzhii model without knowing the details of differential equations. First, we provide the relationships 
between the ECG wave features and the model parameters; then we generalize them through fitting neural networks. Finally, putting 
in series fitting neural network and heart model, we provide a system that allows generating a synthetic signal by setting as input only 
the morphological ECG feature. We computed numerical simulation in Simulink environment and implemented the fitting neural 
networks in Matlab. Results show that non-linear trends characterize the correlation functions between ECG morphological features 
and model parameters and that the fitting neural networks can generalized this trend by providing the model parameters given in 
input the respectively ECG feature. 
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I. INTRODUCTION 

Over the years, the dynamic of the heartbeat was analyzed 
through both mathematical model and time series analysis. 
In recent years, further help has come from the spread of 
various artificial intelligence techniques [1]–[15], many of 
which are based on neural networks that use the latest 
technologies [16]–[21]. Despite the wide use of the time 
series for the study of ECG signal, the complexity, 
nonlinearity, and nonstationarity of the cardiovascular 
system make common the use of nonlinear signal analysis 
for the modeling of heart activity [22]. Mathematical 
modeling is becoming a powerful tool for improving our 
understanding of electrical activation in the heart, in 
particular, the generation and propagation of both normal 
and abnormal rhythms [23], [24]. Van der Pol and Van der 
Mark for the first time described and modeled the dynamic 
behavior of the heart using nonlinear relaxation oscillators 
[25]. Their work has become the start point of lots of studies 
on heart behavior modeling. Afterward, a lot of researchers 
worked on an extended and modified version of Van der Pol 
model [26]–[28]. In the last years, the characterization of 
electrical muscle responses was proposed by Ryzhii [29] 
using a quiescent excitable FitzHugh-Nagumo-type (FHN) 
oscillators. Successively, Ryzhii improved their model 

including a description for depolarization and repolarization 
waves of the atrias and ventricles utilizing different modified 
FHN systems for each ECG waves [30]. The advanced 
model was able to generate normal ECG signal and several 
well-known rhythm disorders. In particular, it reproduces 
sinus tachycardia, sinus bradycardia, complete SA-AV block, 
and complete AV -HP block [31]. This model describes the 
electrical and mechanical activity of the cardiac system 
thought the set of differential equations. The parameters 
included in these equations make it possible to describe 
different cardiac behavior. By modifying the model 
parameters, it is possible to change the amplitude and the 
time duration of the ECG waves, reproducing both 
physiological and pathological behavior. Although this 
mathematical model allows describing the morphology of 
the electrical activity, the relationships between model 
parameters and morphological characteristics of ECG waves 
are not provided. In particular, it is not possible to set the 
model parameters in intuitive mode knowing the 
characteristics of the waves composing ECG signal.  

The scope of this work is to provide a system that allows 
generating synthetic signals by setting in the input only the 
morphological features of the ECG signal, without knowing 
the mathematical parameters. In this way, the knowledge and 
meaning of differential equations that describe the system 
are not necessary. First, we researched the relationships that 
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link the morphological characteristics of the signal to the 
variance of the model parameters. In particular, we 
implemented the mathematical model proposed by Ryzhii 
[30] in the Simulink environment. Then, we generalized the 
characteristic relationships using fitting neural networks. We 
implemented the neural networks in the Matlab environment 
and, finally, we used the results of the fitting neural 
networks as the input of the heart model. In this way, we 
provide a system that, without knowing the meaning of each 
parameter, allows to generate synthetic ECG waveforms. 

The paper is organized as follows: in Sec.2 the principal 
morphological characteristics of ECG waves are described. 
In Sec.3 mathematical model to reproduce synthetic ECG 
signal is explained. In Sect.4 material and method are 
provided. In Sec.5 results and discussion are shown, and 
finally, in Sect.6 conclusions are discussed. 

A. Electrocardiographic signal 

Depolarization and repolarization of cardiac cells can be 
recorded from the body surface by the ECG. Figure 1 shows 
a normal ECG signal. The P-wave represents atrial 
depolarization, the QRS complex represents ventricular 
depolarization, and the isoelectric period between these two 
waves represents the AV node and His bundle activation. 
Finally, the T-wave represents ventricular repolarization [32]. 
 

 
Fig. 1 - Normal ECG signal 

 
Another important data component is the temporal 

relationship of these waves. The PR-interval is measured 
from the beginning of the P -wave to the beginning of the 
QRS complex and indicates the time interval between the 
onset of atrial activation and the onset of ventricular 
activation. The normal PR-interval in adults is less than 0.20 
s. The QT -interval is measured from the beginning of the 
QRS to the terminal portion of the T -wave. It represents a 
global measure of the ventricular plateau phase duration. 
Tab.1 shows the characteristic values of ECG waves and 
their temporal relationship. 
 

TABLE I 
CHARACTERISTIC VALUES OF ECG WAVES AND THEIR TEMPORAL 

RELATIONSHIP 

Event Duration 
[sec] 

Amplitude 
[mV] Meaning 

P Wave 0.07-0.12 0.2-0.4 Atria depolarization 

QRS Complex 0.06-0.10 1-2 
Ventricles 

depolarization 

T Wave 0.18-0.20 0.4-0.5 
Ventricles 

repolarization 

PR Interval 0.12-0.20  
Atria-ventricles 
conduction time 

QT Interval 0.40-0.42  
Ventricles 

depolarization 
repolarization time 

ST Interval 0.30-0.34  Isoelectric section 

RR Interval 0.8-0.9  Cardiac cycle duration 

B. Mathematical model 

Ryzhii describes the three natural pacemakers SA, AV 
and HP bundle by a system of modified asymmetric VdP 
equations with unidirectional time-delay velocity coupling 
[29]: 

 

 
 

where xi (t) and yi (t) correspond to the cardiac action 
potential and transmembrane currents, ai(xi − uij)(xi − uik) are 
the damping terms, fixi(xi − dij)(xi − eik) are the harmonic 
force terms, ai > 0 and uij are the parameters representing 
non-linear damping force, fi are the parameters related to the 
intrinsic frequency of oscillator, the coupling coefficients 
KSA−AV and KAV−HP represent unidirectional coupling 
between the pacemakers. The synchronization level between 
three oscillators depends on the coupling coefficients K ([33], 
[34]). Choosing proper coupling coefficients KSA−AV and 
KAV−HP is possible not to use time delays in coupling terms 
in order to consider the different frequency rate of the three 
oscillators. 

The parameters ai, uij, fi, di, ei, were choosen in order to 
obtain intrinsic oscillation rates of 70 bpm, 50 bpm, 35 bpm 
and 35 bpm for uncoupled SA, AV, RB and LB, respectively. 
In particular, we used the following experimental parameters: 
a1 = 40, a2 = 50, a3 = 50, a1 = 40, u11 = 0.83, u21 = 0.83, u31 = 
0.83, u12 = −0.83, u22 = −0.83, u32 = −0.83, f1 = 25, f2 = 8.4, f3 
= 1.5, d1 = 3, d2 = 3, d3 = 3, e1 = 3.5, e2 = 5, e3 = 12. The 
coupling coefficients are: KSA−AV  =  100,  KAV−RB  =  285,  
KAV−LB   =  285. Fig.2 shows the conceptual model and the 
interaction between three oscillators. 
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Fig. 2 Conceptual model with three coupled oscillators 

 
The FitzHugh-Nagumo equations can reproduce the 

excitable nature of cardiac myocytes, including the presence 
of a refractory period. Starting from modified FHN model 
proposed by Ryzhii in [30], we describe the depolarization 
and repolarization process for atrial (AT) and ventricles (VN) 
muscles: 
 

 
 
where ki are the scaling coefficients. In our work we used the 
following experimental parameters: k1 = 2 ∗ 103, k2 = 4 ∗ 
104, k3 = 104, k4 = 2 ∗ 103, c1 = c2 = 0.26, c3 = 0.3, c4  = 0.1 
b1  =  b2  =  b4  = 0,  b3  = 0.015,  dm1   =  dm2   = 0.4,  dm3   = 
0.09,  dm4   = 0.1,  h1 = h2  = 0.004,  h3  = h4  = 0.008,  g1  = 
g2  = g3  = g4  = 1,  w11  = 0.13,  w12  = 1.0,  w22 = 1.0, w21 = 
0.19, w31 = 0.12, w32 = 1.1, w41 = 0.22, w42 = 0.8. 

The activation currents Ii represent the coupling between 
the SA and AT muscle and between HP pacemaker and VN 
muscles. Concerning the Ryzhii model [30], we adjusted the 
activation currents for the QRS complex and T wave to 
consider HP oscillator composed by the RB and LB 
oscillators: 
 

 
 
where KATDe = 9 ∗ 10−5, KATRe = 3 ∗ 10−5, KVNDe = 9 ∗ 
10−5 and KVNRe = 9 ∗ 10−5. Finally, we obtained the 

synthetic ECG signal as a composition of AT and VN 
waveforms as following: 
 
                   ECG = z0 + z1 − z2 + kRz3 + z4                         (12) 
 
where z0 = 0.2 provides the adjustment of baseline and kR is 
a multiplicative coefficient to modulate the amplitude of R 
peak. 

II. MATERIAL AND METHOD 

 The method is composed of the following steps: 

• Model parameters, signal features, and their 
relationship 

• Training, test, and validation of the fitting neural 
networks 

• Parameters obtained through the neural network: 
application to the model 

A. Model parameters, signal features, and their relationship 

First, we investigated the relationships between the 
characteristic features of ECG waves (Table.1) and heart 
model parameters. What are the parameters that change the 
morphological features of ECG waves (Fig.3) ? 
 

 
 
Fig. 3 Relationship between ECG waves features and heart model 
parameters 
 

To answer this question, we implemented the 
mathematical model of Ryzhii [30] in the Simulink 
environment. In the first step, we looked which 
mathematical constant or variable of the model allows 
modifying the amplitude and the temporal intervals of the 
ECG waves in according to the Table.1. In this way, for each 
morphological feature FECG of the ECG signal corresponds 
a specific parameter Pm of the model. In the second step, we 
defined the operating ranges of the model parameters. To 
evaluate the operating intervals of every Pm, we performed a 
series of simulations in Simulink. In particular, by knowing 
the specific interval of each ECG wave (Table.1), we have 
changed the operative value of the matched Pm until it 
returns the ECG signal with the desired morphological 
characteristics. In the third step, we have found the 
correlation function between FECG and the corresponding 
Pm (Fig.4). 

We generated the synthetic ECG signal by executing the 
cardiac model and modifying the parameters within the 
respective operating ranges. Then, we applied a modified 
version of the Pan & Tompkins algorithm [35]–[37] to 
identify the P-wave, QRS-complex, and T-wave of the 
synthetic signals. Finally, we chart each model parameter 
according to its corresponding ECG feature. 
 

603



 
Fig. 4 - Correlation function between Pm and the corresponding FECG 
 

B. Training, Test, and Validation of the Fitting Neural 
Networks 

In the second phase, we generalized the relationships 
FECG-Pm defined in the previous paragraph by a neural 
network. Neural networks provide a tool for the fast solution 
of repetitive non-linear curve fitting problems. In particular, 
function fitting is the process of training a neural network on 
a set of inputs to produce an associated set of target outputs. 
Fig.5 shows the conceptual scheme. 
 

 
Fig. 5 - Generalization of the relationships FECG-Pm using fitting neural 
network 
 

TABLE II 
NEURAL NETWORK CHARACTERIZATION (LM=LEVENBERG-MARQUARDT, 

BR=BAYESIAN REGULARIZATION) 

Event Model 
parameters Neurons Training  

Function 
Transfer 
Function 

P wave 
KAT de = [9, 10.5] ∗ 

10−5 
10 LM tansig 

QRS 
complex 

KR = [1, 2.1] 10 LM tansig 

T wave 
KV Nre = [−8, 8] ∗ 

10−5 
20 BR tansig 

PR interval 
KSA−AV = [80, 

200] 
20 BR tansig 

RR interval f1 = [20, 30] 20 BR hardlims 

 
First, we constructed the network with the desired hidden 

layers and the training algorithm; then we trained it using the 
ECG features as a set of training data and the model 
parameters Pm as the training label. Once the neural network 
adapts to the data, it forms a generalization of the input-
output relationship. In other words, given the ECG feature as 

input, the fitting neural network can provide the respectively 
model parameter as output. Table 2 shows the set-up of 
fitting neural networks. For each ECG feature, a custom 
neural network was created. 

In particular, the chosen transfer function depending on 
the relation curve between the ECG wave feature and model 
parameter. For the training of P -wave and QRS -complex, 
we used Levenberg-Marquardt function. It is a training 
function that updates weight and bias values according to 
Levenberg-Marquardt optimization. Whereas, for T -wave, 
PR-interval, and RR-interval we used Bayesian 
Regularization function. It is a training function that updates 
the weight and bias values according to Levenberg-
Marquardt optimization. It minimizes a combination of 
squared errors and weights and then determines the correct 
combination to produce a network that generalizes well. The 
process is called Bayesian regularization. 

C. Parameters Obtained through the Neural Network: 
Application to the Model 

Once defined and modeled, with an appropriate neural 
network, the relationships between FECG - Pm, we have 
verified the results using the system shown in Fig.6. 
For example, we want to simulate an ECG signal 
characterized by a particular amplitude of the P-wave. This 
feature represents the input of the fitting neural network that 
returns as output the model parameter KATde. The parameter 
KATde in input to the heart model generates the synthetic 
ECG signal. To validate that the output signal is correct, the 
P - wave amplitude (ḞECG) was extracted using a modified 
version of the Pan & Tompkins algorithm. Finally, the 
amplitude of P -wave in the input (FECG) and the amplitude 
of P-wave of the synthetic ECG signal in output (ḞECG) were 
compared.  The validation test was repeated for all ECG 
features in their range of applicability. 

 

 
Fig. 6 - Conceptual scheme 

III.  RESULT AND DISCUSSION 

Tab.3 shows the relationships FECG-Pm searched in 
paragraph 4A. It is an extension of the Tab.1, where at each 
range of amplitude and time interval of ECG waves 
corresponds the model parameter associated. 

To control the amplitude values of ECG waves (P, T, R-
waves) we worked on the intensity of activation currents 
IATDe and IVNRe . These currents represent the coupling 
between the SA pacemaker and AT muscles in the 
depolarization phase, and between HP pacemaker and VN 
muscles in the repolarization phase. To govern duration time 
and amplitude range of the P and the T-waves we set the 
constants KATDe  and KVNRe . In fact, they allow modulating 
the amplitude of transmembrane ionic currents IATDe and 
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IVNRe which represent the couplings between the SA ad HP 
pacemakers and AT and VN muscles. 

 

TABLE III 
ECG WAVES AND RESPECTIVE MODEL PARAMETERS 

Event Duration 
[sec] 

Amplitude 
[mV] 

Model 
parameters 

P wave 0.07-0.12 0.2-0.4 
KAT de = [9, 10.5] ∗ 

10−5 
QRS complex 0.06-0.10 1-2 KR = [1, 2.1] 

T wave 0.18-0.20 0.4-0.5 KV Nre = [−8, 8] ∗ 10−5 

PR interval 0.12-0.20 - KSA−AV = [80, 200] 

RR interval 0.8-0.9 - f1 = [20, 30] 

 
To control the time interval between waves (PR, RR, ST -

interval) we used the coupling coefficients. They provide 
proper synchronization behavior of pacemakers in a wide 
range of heart rhythms. In particular, PR-interval represents 

the time between the atria depolarization, that generates the 
P-wave, and ventricles depolarization, that generates the 
QRS complex. To manage this interval range we worked on 
the KSA−AV coupling coefficient because it provides 
synchronization in the SA and AV oscillators interaction. It 
is important to notice that not for all morphological features 
of ECG signal exist the corresponding model parameter. For 
example, with this heart model, it is not possible to change 
the duration of ST and QT-intervals. For this reason, they do 
not appear in Tab.2 

Fig.7 shows the correlation graphs of the related behavior 
between morphological ECG features and model parameters. 
From these graphs, it is possible to notice that only kR and 
R-wave amplitude show linear functional behavior. In this 
case, increasing kR in the model equation proportionally 
increases R-amplitude. Whereas, for the other parameters, 
there are non-linear functional trends. In these cases, it is not 
possible, by knowing the ECG wave amplitudes or periods, 
to set the corresponding model parameters. 

 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 - Correlation graphs that describe the relation behavior between morphological ECG features and model parameters 
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By implementing the fitting neural networks, we showed 
how they can predict the model parameters given in entry the 
ECG wave features. Fig.8 shows the fitting neural networks 

results. The blue dots represent the training targets, the data 
presented to the network during the training phase, and the 
network is adjusted according to its error.  

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. 8 - Fitting neural networks results. a) Function fit for (P-wave, KATde); b) Function fit for (R-wave, KR); c) Function fit for (T-wave, KVNre); d) Function fit 
for (PR-interval, KSA−AV ); e) Function fit for (RR-interval, f1) 
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The green dots represent the validation targets; the data 
set used to measure network generalization and to halt 
training when generalization stops improving. The red dots 
represent the test targets; these do not affect training and 
provide an independent measure of network performance 
during and after training. Finally, the black line represents the 
fitting curve searched. The blue, green and red crosses 
represent respectively training, validation and test outputs 
that are the result of the network for specific ECG features in 
the input. The error is the difference between targets and 
outputs. It is possible to notice that in a) and b) cases the 
error about zero. In the case of c) it is about zero, besides in 
the part in which the trend changes. It can depend on the 
training data size. In d) and e) cases the error is more than 
zero, but the networks can generalize the relationships 
FECG-Pm. 

IV.  CONCLUSION 

In this paper, we provide a system that allows generating 
an ECG signal using Ryzhii model [30] without knowing the 
details of differential equations. Although the mathematical 
model is a powerful tool for modeling the electrical and 
mechanical activity of the heart, its use is limited to those 
familiar with the differential equations that describe the 
system. We provide the correlation functions that link the 
ECG features and model parameters and generalized them 
with fitting neural networks. Finally, we used the output of 
the neural network as the input of the mathematical heart 
model. In this way, we generate ECG signal only setting the 
amplitude and the time duration of waves composing ECG 
signal. Results show that the relationships between ECG 
features and model parameters present a non-linear trend and 
that the fitting neural networks can generalize them with an 
acceptable error. Considering the enormous spread of IoT 
devices [38], this type of system, as well as other complex 
systems useful for health care [39], will necessarily have to 
be integrated into low energy consumption portable 
embedded devices [40]–42] which will allow monitoring the 
quality of patients' health more efficiently. 
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