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Abstract— Every plant has unique morphological features, and can be used for its characteristics identity, such as age. When the 
plants grow, their morphological features may change, observable visually or by optical equipment. These various morphology 
transformations were categorized as multi-modal Bio-metrics. In this study, tomatoes from local cultivar were grown in a net house, 
in west Sumatra. The growth medium comprised of soil, husk, and manures with the composition of 1: 1: 1 respectively. For best 
growth, plants were watered regularly, and protect from pests and weeds. The observations were performed on 21st, 42nd, and 63rd 
day after sowing (DAS). The samples were the leaflets of the primary compound leaves of the plants. The leaflets were cut and 
digitized using a high-resolution colour scanner. The imaging performed at 300 dpi resolution, and the recorded image subsequently 
processed by the image processing software. Image segmentation performed to remove background from the object. Furthermore, the 
greenish of leaf object in the image were measured in RGB colour space. The leaf dimensions and area were quantified by the 
software, as well as the length of the leaflet main vein at central axis.  Two secondary leaflet’s blades were selected manually, and the 
angle formed between the blades and the main vein was measured. A Statistical engineering program was used to identify the 
principal morphology characteristics of the leaf, by means of Principal component analysis (PCA). Mathematical models were 
developed based on the principal component values and leaflets position to determine the plants age and state. Results showed all 
model have coefficient of correlation higher than 0.99 indicating acceptable accuracy. 
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I. INTRODUCTION 

The tomatoes are widely cultivated in Indonesia, as one of 
the local horticultural products, and generally used for 
domestic consumption. The annual production of tomatoes 
in Indonesia reached more than 800 thousand metric ton [1], 
where the centre of production located in the West Java 
province. 

During the plants’ growth, the physical and biological 
characteristics of the tomato plants are changing. This 
transformation can be used for phenotypic, among others, to 
observe the age and developmental stages of the plant. The 
plant’s age is closely related to methods of treatment, as well 
as the necessity for water and other nutrients [2]. 

Phenotypic of tomato plants can be performed, among 
other, by observing the changes of physical and biological 
characteristics of the plants, such as through Multimodal 
Biometric analysis of the plant’s components [3]. This 
method has been widely used to perform identification and 
classification of various types of plants [4]. Unlike the 
systems for human biometric analysis, which widely 
available on the market, similar systems for plants analysis 
were seldom, and more often still under developments. Each 

plant characteristic is unique and identifiable at a species 
level [3]. Therefore specific system needs to be developed 
for each species, including tomato. 

Several multimodal biometric system have been 
developed to find various characteristics of plants, such as 
image analysis of canopy plants [5],[6], plant spacing and 
field slope [7],[8], plant shape [9], Ichnography [10], 
Hemispherical photography [11],[12], plant truss [9], and 
chlorophyll fluorescence imaging for plants [13] as well as 
for tomato canopy [14]. However, most of these methods 
cannot directly applied in the field, since they requires 
special tools and techniques for implementation. 

For more practical and workable approach, the 
applications of multimodal biometric analysis for plants 
were focused on the leaves of the plants, such as the study 
by Raza et al. [15],[16], Oerke et al. [17],[18], and 
Lindenthal et al. [19]. Structural analysis of the leaves of 
tomato plants allows traceability of integration lines in 
domestic plants from wild species [20]. In addition, the same 
analysis revealed an interesting association between leaf 
morphology and sugar accumulation in tomato fruits. 

Several important parameters of the leaves that can be 
used for multimodal biometric analysis include the leaflet’s 
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basic geometric features [21], colour [22], texture [23], and 
shape [24]. 

The requirements for nutrients, water, and treatment for 
plants, Tomato in particular, will vary according to the 
developmental stages of the plant. Providing these 
necessities in the right amounts will encourage excellent 
growth rates, and at the same time will improve plant 
productivity. In parallel, the exact dosage of fertilizer and 
water in particular, will significantly reduce overall 
production costs, as well as environmental consequences in 
cultivation practice, since the excess nutrients will 
accumulate and eventually contaminate the soil in the 
production area. 

In this study, multimodal biometric analysis techniques 
will be used to analyse the geometrical features of the 
leaflets of the tomato plants for plant’s age determination.  
These leaflets of the primary compound leaves of the plants’ 
were selected at certain positions and the plants were 
cultivated precisely including the application of the fertilizer, 
water, and plants treatment appropriately given to prevent 
excessive dosages.  

The results of this study can be used by the local 
community, especially tomato farmers, to cut their 
production costs, while in the same time increase 
productivity, efficiency and competitiveness, to enhance 
their chance in the ASEAN Economic Community 2015. 

II. MATERIAL AND METHODS 

A simple net house with the dimension of 6 by 4 by 1.8 m 
(length, width, high) was built to accommodate the samples. 
The study was performed in Padang (S 0° 55' 38.4126", E 
100° 27' 42.3504"), West Sumatra, Indonesia. Local tomato 
seeds were sown in 30 polybags, each one litre size. The 
growth medium was a mixture, comprised of top soil, husk, 
and manures with the composition of 1: 1: 1 respectively. 
Before sowing, the mixture was watered until the water in 
soil reached field capacity. Each polybag was sown two 
tomato seeds, by immersing the seed one cm inside the 
media, as measured from the surface. The polybags were 

placed in shaded area in the net house. Seven days after 
sowing, observation was performed to replaced non-grow 
seeds. At the same time, thinning was performed by 
removing second plant in each polybag. The weeding was 
done subsequently. 

 
Fig. 1. Five Leaflets from Every Terminal Compound Leaf Were from the 
Tomato Plant for Imaging to be digitized for The Geometrical 
Measurements. 

 
The polybags positioned in the net-house with 50 cm 

space between plants. Plants treated and watered regularly, 
and weeds are regularly removed. On day 21, the primary 
compound leaves from plants were cut and its leaflets 
separated. Five leaflets from the compound leaves (top, 2 
upper and 2 basal) were measured (Fig. 1) and digitized by 
means of imaging process, using digital colour flatbed 
scanner. The scanner resolution was set to 600 dpi in order 
to preserve features information of the leaflets. The images 
were segmented by removing the background using image 
processing program (Fig. 2). The software was made using 
the C# programming language. Subsequently after 
segmentation, image was threshold and leaflet colour was 
measurement consecutively, automatically by the image 
processing program. 

 
 

 

 

 
Fig. 2. Image Processing Program for Tomato Leaflets Multimodal Biometric Analysis 
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Multimodal biometric analysis of the plants leaflets were 
performed by phenotypic eight basic geometric features [21] 
of leaf (Fig. 3). The leaf colour also included in the 
observation [22], and considered as loose biometric 
parameter.  Although leaf texture [23], and shape [24] can be 
considered as biometric parameters, in this study both 
parameters were not included for practical reason. 

 

 
Fig. 3.  Geometrical Features of the Leaflet Considered as Biometric 
Parameters in This Study: Width (A); Length Including Petiole (B); Main 
Vein Length (C); 1st Blade Length (D); And Its Angle to The Main Vein (F); 
2nd Blade Length (E); and Its Angle to The Main Vein (G). 

 
Imaging of the leaflets were performed on 21 days after 

sowing (DAS) and repeated on 42 and 63 DAS. On each 
observation, 10 tomato plants were used as samples, and in 
total 30 plants were used as samples in this study. 

A Statistical engineering program was used to find the 
principal morphology factor of the leaf, by means of 
Principal component analysis (PCA). The program was used 
to determine which of eight biometric parameters will be 
considered as the important parameters for multimodal 
analysis. The coefficients of the principal components 
obtained from the PCA were used to calculate the principal 
component values.  

Mathematical models were developed to determine the 
plants’ age using regression analysis. This analysis was 
performed by means of graphs to explain the relationship 
between plants age and its multimodal biometric parameters, 
as well as the accuracy of the models.  

III.  RESULTS AND DISCUSSION 

The multimodal biometric dimensions data of the sample 
plants as measured in this study were presented in Table 1. 
The Table showed a positive relationship between 
geometrical features dimension and plants’ age. As the 
plants grow, most of its components gain in size, except the 
angle formed between the leaf blades with the main vein (F 
and G in Fig. 3). The rate of grow of the geometrical 
components of the leaflets in relation to the plants’ age 
represented in Fig. 4. 

 

TABLE I 
BIOMETRIC PROPERTIES OF THE TOMATO LEAVES ACCORDING TO 

GEOMETRIC FEATURES AND PLANT ’S AGE 

Length 
(mm) Angle 0

Length 
(mm) Angle 0

21 a 31±0.8ab 13±0.3b 201.5±5ab 16±0.4b 11.8±0.3ab 9±0.2b 23.3±0.6ab 5±0.1a

b 30±0.8ab 11±0.3a 165±4.1a 17±0.4b 15.8±0.4ab 5±0.1a 33.8±0.8b 0a

c 33±0.8b 14±0.4b 231±5.8b 17±0.4b 7.1±0.2a 11±0.3b 14.9±0.4a 0a

d 25±0.6a 12±0.3a 150±3.8a 11±0.3a 15.1±0.4ab 9±0.2b 29.6±0.7b 5±0.1a

e 26±0.7a 11±0.3a 143±3.6a 12±0.3a 22.7±0.6b 8±0.2b 39±1b 4±0.1a

42 a 88±2.2d 37±0.9d 1628±40.7d 63±1.6d 7.2±0.2a 48±1.2d 14.3±0.4a 0a

b 80±2cd 38±1d 1520±38d 58±1.5d 8.1±0.2a 46±1.2d 18.3±0.5a 0a

c 80±2cd 35±0.9d 1400±35d 49±1.2ed 11.1±0.3ab 37±0.9cd 17.5±0.4a 0a

d 68±1.7c 32±0.8cd 1088±27.2c 36±0.9e 16.1±0.4ab 30±0.8c 31±0.8b 4±0.1a

e 60±1.5c 25±0.6c 750±18.8c 38±1e 19.7±0.5b 27±0.7c 29.7±0.7b 7±0.2a

63 a 123±3f 61±1.5f 3751.5±93.8f 78±2f 16.2±0.4ab 63±1.6f 25±0.6ab 33±0.8b

b 132±3.3f 68±1.7f 4488±112.2f 84±2.1f 15.3±0.4ab 70±1.8f 23±0.6ab 35±0.9b

c 103±2.6ef 49±1.2ef 2523.5±63.1ef 73±1.8f 12.3±0.3ab 60±1.5f 19.2±0.5a 27±0.7b

d 96±2.4ef 47±1.2ef 2256±56.4ef 63±1.6ef 9.2±0.2a 52±1.3ef 14.6±0.4a 24±0.6b

e 74±1.9e 39±1e 1443±36.1e 45±1.1e 21.3±0.5b 36±0.9e 27.8±0.7b 12±0.3ab
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Z Means followed by the same letter within rows are non-significant at P = 0.05 by Duncan’s multiple 
range tests. 

 

       
                         a.                      b. 
 

       
                          c.                                                d. 
 

       
                        e.                                                f. 
Fig. 4. Geometrical dimensions of the leaflets from the terminal compound 
leaves of the tomato plants. Five leaflets were selected from terminal 
compound leaf (See Fig. 1), and their geometrical dimensions progressed 
along the growth of the plants, as seen on the dimension of leaflets’ veins 
(a); width (b); area (c); length of the 1st leaf-blade (d); length of the 2nd leaf-
blade (e); and petiole (f).  
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From Fig. 4, it was observed that the dimensions of the 
geometric features of the leaflet have linear relationship with 
the plant’s age, such as the length of the main veins of the 
leaflets (Fig. 4a); leaflets width (Fig. 4b); as well as the 
length of the blades (Fig. 4d and Fig. 4e) for some leaflets.  

In Fig. 4 it was also observed that the area of the leaflets 
(Fig. 4c) and the length of its petiole (Fig. 4f) grow 
exponentially, in contrast to others geometric features of the 
leaflets.  

However, the selection of geometric features of the leaflet 
as parameter for the multimodal biometric analysis of tomato 
plants cannot be used as a reference solely based on the 
relationships between the trends of the size of the leaf with 
the age of the plant. To correctly determine which geometric 
features significantly contribute to determine the age of the 
plants, a further statistical analysis was performed, namely 
the PCA . 
 

TABLE III 
DESCRIPTIVE STATISTICS OF THE GEOMETRIC FEATURES OF THE LEAVES 

 Days after sowing (DAS) 
 21 42 63 

  Mean
Std.  
Dev. (δ) Mean δ Mean δ 

Main Vein 29.0 3.2 75.2 10.4 105.6 21.3
Leaflet Wide 12.2 1.2 33.4 4.9 52.8 10.8
Leaflet Area 178.1 34.7 1277.2 332.0 2892.4 1128.8
Blade1 Length 14.6 2.7 48.8 11.1 68.6 14.2
Blade1 Angle 14.5 5.3 12.4 5.0 14.9 4.2
Blade2 Length 8.4 2.0 37.6 8.7 56.2 12.1
Blade2 Angle 28.1 8.7 22.2 7.1 21.9 4.8
Petiole 2.8 2.4 2.2 3.0 26.2 8.4

 
Using the geometrical features of the leaflets as input 

variables, the PCA was performed based on the plants age 
upon observation. Based on the univariate descriptive 
analysis, as shown in Table II, indicated the average of 
leaflets geometrical features and their difference, measured 
by the standard deviation between data.  

The data extraction of the PCA analysis was performed by 
utilizing the KMO and Bartlett’s test of sphericity and the 
correlation analysis reproduced based on the anti-image and 
inverse correlation to assess the significant level of the 
features. For the selection of the principal components, the 
Eigenvalue had to be greater than one; therefore, only 
significant components were selected. The results were 
rotated using a Vari-max factor analysis rotation to show 
which features were correlated between each other, and thus 
can be represent by a single principal component. 

Number of the components required to explain the total 
variation of the geometric features of the leaflets depend on 
the age of the plants upon observation. Described by Fig. 5, 
the scree plot showed that during the initial stage of the 
plants, the leaflets geometric features can be explained by 
two principal components. These numbers of the 
components determined by the Eigenvalue from the PCA 
analysis of the geometrical features data. When the plants 
reached the mid-age (42 days) of vegetative stages, the 
principal component required to explain the variation of the 
data, can be assigned by a single component. However, 
when the plants enter the generative stage, approximately 60 
DAS, the principal components required to explain the 
variance of the data increased to two components.  

 
Fig. 5. The Scree Plot Showed Total Variance of the Geometric Features of 
the Leaflets as Explained Based on the Number of the Components and 
Eigenvalues. 

 
Based on these differences of principal components 

required in each developmental stage of the plants, the 
biometric analysis of the tomato plants hence required 
discrete approached, meaning, the analysis cannot be 
generalized for the whole development stages of the plants, 
rather it need to be specified by age. 

The first principal component for determining the 
multimodal biometrics of tomato plant in the initial 
vegetative state (21 DAS) consists of five geometric features 
(Fig. 6), namely main vein; blade1 length; leaflet area; 
leaflet width; and blade2 length. The second principal 
component consists of four geometrical features, the petiole; 
leaflet position; blade1 angle; and blade2 angle.   

 

Fig. 6. The Component Plot in Rotated Space from PCA of the geometrical 
features of the leaflets from the 21 days old tomato plants. 

 
Entering middle vegetative stages (42 DAS), a single 

principal component enable to explain the multimodal 
biometric analysis for samples age determination. The 
component consisted of all the geometrical features of the 
leaflets, namely: Blade1_Angle; Leaflet_Area; Main_Vein; 
Leaflets_Position; Blade2_Length; Petiole; Blade1_Length; 
Leaflet_Wide; and Blade2_Angle. All of these geometrical 
features contributes evenly to the multimodal biometrics 
analysis and equally important to determine the plants age. 

Upon reaching the generative stage, the plants age was 
around 60 days. When observations were performed on the 
63 DAS, most of the sample plants have produced flowers. 
At this age, the geometrical features of the plants’ leaflets 
could be categorized into two principal components (Fig. 7). 
The first principal component for multimodal biometrics of 

PC1 

PC2 
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tomato plants consists of seven geometrical features, of the 
leaflets, which are: Leaflet-Wide, Leaflet_Area, Main_Vein, 
Blade1_Length, Blade2_Length, and Petiole. The second 
principal component for multimodal biometrics of tomato 
plants comprised of two geometrical features, Blade2_angle; 
and Blade1_Angle. 

 

 
Fig. 7. The Component Plot in Rotated Space from PCA of the geometrical 
features of the leaflets from the 63 days old tomato plants. 

 
In contrast to the principal components of the plants when 

observed at 21 DAS, the geometrical features of the leaflets 
at 63 DAS were less vary, observed by their positions on the 
graphs (Fig. 7). These conditions suggest that the differences 
between the features were reduced and converged, therefore 
they may instead represent as a single variable. However, 
since the importance of these features for age determination 
of the plants were different among components, several 
features cannot be represent with one feature only, thus, to 
reduce the factor in the analysis, features with similar 
contribution to the analysis represent by a principal 
component.  

Although the number and values of principal component 
at three age stages of the plants were differ (Fig. 8), where 
21 and 63 DAS observation resulting of two principal 
components, and 42 DAS observation resulting single 
component, and the leaflets position influenced the 
components value, in general, the first component mainly 
contribute as an important factor when multimodal 
biometrics analysis were performed to determine the plants’ 
age.  

Therefore, in this study, the multimodal biometrics 
analysis for determining the plants’ age performed using the 
first principal component, to explain the relationships 
between geometrical features of the leaflets, their position in 
compound leaves and the plants age. 

Based on the geometric features data of the samples, 
leaflets B (Fig. 1) have largest dimensions, while leaflets E 
were among the smallest. This phenomenon suggests that the 
terminal leaflets was not the largest in the primary 
compound leaves of tomato plants, instead it is the second 
leaflet which has greater dimensional size. In general, the 
dimensional size of the leaflets in compound leave of the 
tomato plants may be shorted as B-A-C-D-E from the largest 
to the smallest size.  

 
Fig. 8. A three axis graph explaining the relationship between the first 
principal components values, leaflets positions, and the observation time 
(plants age). The graph suggested positive correlation of the principal 
component values with the plants age, and negative correlations between 
leaflets positions and the components values.  
 

The first principal components of the leaflets’ geometrical 
features can be calculated based on the coefficients produced 
by the statistical software (Table III). Since there are two 
developmental stages of the plants when they grow; the 
generative and vegetative stage, the principal components 
should be calculated based on the plants’ state, accordingly. 
The coefficients as presented in Table III explained the 
contribution of each geometrical feature to the Principal 
Component values. The calculation of the principal 
component can be done using the following formula: 
 

 (1) 
 

Where i is the leaflet position on the compound leaves, a 
is the coefficient value of the feature, and b is the 
geometrical feature dimension of the leaflet.  

  

TABLE III 
COEFFICIENT OF PRINCIPAL COMPONENTS FOR GEOMETRICAL FEATURES OF 

THE LEAFLETS BASED ON THE PLANTS’  DEVELOPMENT STAGES  

Component Score Coefficient Matrix a 
 Plant’s Stage 

Vegetative Generative 
Leaflets_Position 0.060 -0.151 
Main_Vein 0.023 0.153 
Leaflet_Wide 0.258 0.157 
Leaflet_Area 0.154 0.157 
Blade1_Length -0.085 0.139 
Blade1_Angle -0.164 0.027 
Blade2_Length 0.332 0.136 
Blade2_Angle -0.219 0.061 
Petiole 0.130 0.140 
a Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization.  

 
Based on the value of the principal component of the 

leaflets, and their positions, the age of the observed plants 
(measured by days after sowing) can be determined using 
the following equations: 

PC1 

PC2 
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 (2) 

 (3) 

 (4) 

 (5) 

 (6) 
 
The equation 2 until 6 is for the age determination of the 

leaflets position A until E, respectively. The developed 
mathematical models to determine tomato plants’ age based 
its leaflets geometrical features from the primary compound 
leaves have coefficient of correlation higher than 0.99 (Fig. 
9) which indicate the exceptional accuracy of the models. 

Nevertheless, these developed models only applicable to 
the tomato plants of this particular cultivar, others models 
should be developed for other tomato cultivar using similar 
principal, or by means of machine visions and 
spectroscopy[25-38].  

 
Fig. 9. Mathematical models on the plants age based on the multimodal 
biometrics analysis of the first principal component, represented several 
leaflets geometrical values. The models adjusted according to the leaflets 
position on the primary compound leaves of the tomato plants.. 

IV.  CONCLUSIONS 

The age and state of the tomato plants in this study can be 
determined non-destructively based on its multimodal 
biometrical characteristics. Five models were developed to 
estimate plants age, according to the leaflets position on the 
primary compound leaves. The phenotypic were done by 
measuring the geometrical features of the selected leaflets 
and performed PCA, in order to retrieve the principal 
component values. These values were integrated into the 
models to get the age determination results. Developed 
models accurately estimated the plants’ age with coefficient 
of correlation higher than 0.99.   
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