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Abstract— Oil Palm Empty Fruit Bunches (OPEFB) and mesocarp can mainly be used as a raw material for nanocrystalline cellulose 
(NCC), which was previously converted into α-cellulose. Although this biomass is abundant, it needs to be observed that which part of 
the OPEFB and mesocarp are more suitable to be used as a raw material for NCC in terms of the characteristics of α-cellulose, 
especially the degree of crystallinity. To isolate α-cellulose, the lignocellulose material was dissolved into acid, delignified to remove 
lignin and bleached, then dissolved it with NaOH 17.5%. The samples were then analyzed for the composition of fiber chemicals, 
determined the yield of α-cellulose, degree of crystallinity (XRD), functional groups (FTIR) and surface morphology (SEM). From the 
observation, it is known that OPEFB fibers have relatively higher cellulose levels the mesocarp fibers. From the visual appearance, α-
cellulose color of OPEFB is whiter than the mesocarp. Comparatively, the yield of α-cellulose and the degree of crystallinity of fiber 
and α-cellulose OPEFB are higher than the mesocarp. The observation of functional groups showed that there was a difference 
between fiber and α-cellulose, but there was no difference between α-cellulose and OPEFB and mesocarp. The observation of the 
surface morphological structure of α-cellulose shows that the OPEFB has a more unified structure by forming regular microfibrils, 
while the mesocarp surface is irregular. Based on the analysis, it can be concluded that OPEFB fibers are more suitable to be used as 
raw material for nanocrystalline cellulose than mesocarp fibers. 
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I. INTRODUCTION 

Nanocrystalline cellulose (NCC), also known as cellulose 
nanocrystals (CNCs), nanowhiskers, nanorods, rod-like 
cellulose crystals, whiskers, rod-like cellulose, microcrystals 
[1, 2], is in the form of elongated crystalline rods [ 3], 5-70 
nm wide and 100 nm to several micrometers long [1], with 
limited flexibility, compared with the nanofiber cellulose 
(NFC) because of a lack of an amorphous region [2]. 

Compared with cellulose fibers, NCC has more 
advantages, such as the nanoscale dimensions, specific 
strength, high modulus, high surface area, and unique optical 
properties [4]. Besides, NCC has a relatively low density, a 
high aspect ratio [5], and modifiable surface properties due 
to a reactive side –OH group. The physicochemical 
properties of NCC can be used in various fields such as the 
production of regenerative medicine, coatings, adhesives, 

filtration membranes, and composite materials, printing 
applications, and optical applications [6]. 

To produce NCC, the cellulose is derived from wood, 
cotton, ramie, wheat straw, mulberry bark, tunicin, algae, 
and bacteria [1]. In Indonesia, a natural fiber from oil palm 
processing industry waste (Elaeis guineensis Jacq.) is 
considered to have high potential as Indonesia is the largest 
global producer of crude palm oil (CPO) and crude palm 
kernel oil (CPKO). In 2013, the CPO and CPKO production 
reached 29.5 and 3.9 million tons respectively. The total area 
of palm plantation in 2015 was 9.2 million ha, producing 
31.5 million tons of CPO. The CPO production is estimated 
to exceed 40 million tons by 2020, and 60 million tons by 
2030. According to the Presidential Regulation Number 28 
of 2008 and the Ministerial Regulation of the Ministry of 
Industry Number 13 of 2010, the oil palm processing 
industry is a national industry to develop on priority because 
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raw material for the industry is abundant in Indonesia [7]. 
Simultaneously, CPO and CPKO production also create a 
huge amount of waste, and natural fibers produced from this 
waste great potential and must be explored.  

Based on the estimation and conversion of oil palm area 
in 2015 amounting to 9.2 million ha, with the assumption of 
oil palm productivity of 25 tons of fresh fruit bunches 
(FFBs)/ha/year, the TBS will be 230 million tons/year. Of 
the FFCs produced during FFB-CPO processing, if oil palm 
empty fruit bunches (OPEFBs) solid waste comprises 23% 
and fruit fiber (mesocarp) waste comprises 13%, then in 1 
year there will be 52.9 million tons of OPEFB waste and 
29.9 million tons of FFB waste. This massive amount of 
waste demands effective alternative utilization to reduce the 
waste and minimize exploitation of forests for natural fiber 
for the industry. This waste can be used to produce NCC as a 
low-cost filler in the manufacture of polymer composites. 

To obtain NCC, cellulose is first converted to α-cellulose 
(a long chain insoluble cellulose, Figure 1) in 17.5% NaOH 
solution or a strong alkaline solution with a degree of 
polymerization (DP) between 600 – 1500. The DP is also 
used as a predictor and /or determinant of cellulose purity 
level [8]. Generally, multistage pulping is used to isolate the 
α-cellulose. The lignocellulose material is dissolved in acid 
before is it subjected to delignification to remove and bleach 
the lignin. Β- and γ-cellulose are then separated by 
dissolving α-cellulose in 17.5% NaOH. 

 
 
 
 
 
 
 
 
 

Fig. 1 α-cellulose [8] 

 
Previous research on α-cellulose isolation has been 

carried out, both on Spruce wood [9], oil palm empty fruit 
bunches and dried jackfruit leaves [10], sugar palm bunches 
[11]. However, studies of α-cellulose isolation from oil palm 
biomass solid waste, namely oil palm empty fruit bunches 
and mesocarp, as raw material for nanocrystalline cellulose 
have not been carried out and there is no information about 
this. Though oil palm empty fruit bunches (OPEFB) and 
mesocarp fibers are very abundant and can be used as a 
source of fiber for industrial needs, to reduce the excessive 
exploitation of forests to meet the needs of natural fibers. 

 This study aims to determine which oil palm biomass 
waste between OPEFB and mesocarp which is more suitable 
to be used as raw material for nanocrystalline cellulose in 
terms of the characteristics of α-cellulose, especially the 
degree of crystallinity. 

II. MATERIAL AND METHOD 

A. Preparation and Characterization of Raw Materials 

OPEFB and mesocarp fibers were initially dried in 
sunlight until the moisture level is reduced to approximately 
10%. They were then mashed in a hammer mill and sieved 

using a multilevel sieve to obtain fibers with a mesh size of 
40. 

B. Analysis of Chemical Components 

The following chemical components of the fibers were 
analyzed: water content (using the oven method), 
holocellulose, cellulose, and hemicellulose (TAPPI T257 
om-85); lignin (TAPPI T222 om-88); ash level (TAPPI T211 
om-85), and extractive substances (TAPPI T264 om-88). 
The degree of crystallinity was determined by X-ray 
diffraction (XRD), functional groups were determined by 
Fourier to transform infrared (FTIR) spectroscopy, and 
surface morphology was analyzed by scanning electron 
microscopy (SEM). 

C. Isolation of α-Cellulose and Characterization 

α-cellulose was isolated using the method specified by 
Sumaiyah et al. [11]. 75 grams of OPEFB and mesocarp 
fibers were inserted into a glass beaker, and then 1 L of 3.5% 
HNO3 mixture and 10 mg of NaNO2 were added. The beaker 
was heated on a hot plate at 90 ºC for 2 h. The contents were 
then filtered, and the pulp was washed to obtain a neutral 
filtrate, which was later dissolved in a 750 ml solution 
containing 2% NaOH and 2% Na2SO3 at 50 ºC for 1 h before 
being filtered. The dregs were washed until they reached a 
neutral pH. Bleaching was then performed using 250 mL of 
1.75% NaOCl solution at boiling temperature for 30 min. 
The contents were filtered and the pulp was washed until it 
reached a neutral pH. Purification of α-cellulose was 
performed using 500 mL of 17.5% NaOH solution at 80 ºC 
for 30 min. The contents were re-filtered, and the filtrate was 
washed until it reached a neutral pH. The bleaching of the 
filtrate with 10% H2O2 at 60 ºC for 5 min, then dried in an 
oven at 70 ºC for 1 h, and stored in a desiccator. The α-
cellulose yield obtained was determined, in addition, to see 
the degree of crystallinity (XRD), functional groups (FTIR) 
and surface morphology (SEM). 

D. Yield 

The α-cellulose yield was calculated as the ratio between 
the mass of the product and the initial mass (per dry weight 
or wet weight. 

 

 Yield (%) =  (1) 

 

E. Degree of Crystallinity (by XRD) 

The degree of crystallinity was measured by XRD 
(Maxima X XRD-7000 Shimadzu, Japan) with a lean angle 
approximately 2θ = 0º 

‒ 40º and in steps of 2θ = 0.02º. The 
analysis was conducted using Cu Kα irradiation at voltage 
40 kV voltage, a current of 30 mA and a wavelength of 
1.54Å wave length. 

F. Functional Groups (FTIR) 

An FTIR Perkin Elmer Frontier Spectrometer with a wave 
number of 400 – 400 cm-1 was used to detect the functional 
groups in α-cellulose fibers and α-cellulose of OPEFB fibers, 
and mesocarp. 
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G. Surface Morphology (SEM) 

The morphology of the OPFEB and mesocarp fiber 
surfaces and of OPEFB and mesocarp α-cellulose was 
observed using SEM (Hitachi S-3400, Hitachi Ltd, Japan) 
The specimens were prepared by placing OPEFB and 
mesocarp fibers and OPFEB and mesocarp α-cellulose on 
double sided carbon in high vacuum mode. 

III.  RESULT AND DISCUSSION 

A. Chemical Composition of Oil Palm Waste Biomass 

Table I shows the chemical composition of OPEFB fibers 
and mesocarp. OPFEB fibers contained higher cellulose, and 
lower lignin with extractive substance levels (52.96%, 
17.25% and 7.09% respectively) as compared with the 
mesocarp. 

Cellulose, a linear homopolymer consisting of β-D 
glucopyranose connected through (1 → 4) [12], [13], is a 
major component of wood. Cellulose is the raw material in 
α-cellulose isolation. α-cellulose is a long chain cellulose 
that is insoluble in 17.5% NaOH solution or a strong alkaline 
solution with a 600–1500 DP. α-cellulose is used as a 
predictor and /or determinant of the cellulose purity level 
[8]. Lignin comprises macromolecules that have different 
structures compared with polysaccharides as they comprise 
aromatics from phenylpropane units. Morphologically, the 
lignin is an amorphous compound found in the middle 
lamellae and in the secondary wall [14]. It is small, but it has 
the ability to interfere with cellulose extraction. It also 
comprises certain extractive components, such as resin, wax, 
fatty acids, and oil residues, which are flammable, have a 
distinctive odor, and block the pulping process. 

TABLE I  
CHEMICAL COMPOSITION OF OPEFB AND MESOCARP FIBERS 

Chemical composition (%)  OPEFB fibers Mesocarp 

Water Content 7.27 9.76 
Solubility in:     
NaOH 1% 25.58 29.20 

Hot Water 8.55 6.48 
Cold Water 5.08 3.44 

Ethanol Benzene  7.09 8.71 
Holocellulose 70.52 56.57 

Cellulose 52.96 46.36 
Hemicellulose 17.57 11.21 
Lignin 17.25 32.61 
Ash 3.25 5.12 
Volatile Substance 75.23 73.02 

B. α-Cellulose Yield 

The OPEFB α-cellulose yield was higher compare to 
mesocarp (α-cellulose yield, as shown in Table II). The 
conversion of fibers to α-cellulose is done through 
multistage pulping, which breaks down and eliminates 
amorphous components, such as lignin, hemicellulose, and 
other substances, in the form of micromolecules, leaving a 
chain of cellulose that is resistant to and insoluble in 17.5% 
NaOH, known as α-cellulose. The higher the amorphous 
content shown by lignin and hemicellulose levels, the more 
the number of parts that will be broken down and removed 
in the pulping and bleaching processes, leaving a lesser 
amount of α-cellulose content. As a result, the yield obtained 

as a result of the comparison of α-cellulose with the initial 
sample weight will be smaller. This description is supported 
by the data on chemical components of OPEFB fibers, which 
have crystalline parts larger in the form of cellulose and 
amorphous with smaller amounts compared to the mesocarp. 

TABLE II 
OPEFB AND MESOCARP FIBERS Α-CELLULOSE YIELD 

Source 
α-Cellulose yield (%)  

1 2 Average 

OPEFB 31.60 33.35 32.48 

Mesocarp 14.95 17.07 16.01 

C. Degree of Crystallinity (X-Ray Diffraction test, XRD) 

Table III shows the degrees of crystallinity of fibers and 
α-cellulose. We found that the degree of crystallinity of raw 
material was lower than that of α-cellulose, regardless of 
being derived from OPEFB and mesocarp. The degree of 
crystallinity of raw materials is lower because of the effect 
of removal of amorphous content including lignin and 
hemicellulose, during acid hydrolysis when isolating α-
cellulose isolation [15], [16]. When the amorphous 
substances are released in dissolution during acid hydrolysis, 
the individual crystals are released, thereby, increasing the 
degree of crystallinity [17]. 

TABLE III 
CRYSTALLINITY OF OPEFB AND MESOCARP FIBERS AND Α-CELLULOSE 

Source Degree of crystallinity (%) 

OPEFB Fiber 18.78 
Mesocarp Fiber 16.34 
OPEFB α-Cellulose 31.17 
Mesocarp α-Cellulose 25.97 

 
In addition, by the elimination of amorphous substances, 

cellulose chains become more solid, eventually increasing 
the degree of crystallinity. Therefore, a high degree of 
crystallinity can be perceived as solid molecule structure 
arranged in rows [18]. The X-ray diffactogram of the 
crystalline polymers show sharp peaks, whereas the 
amorphous polymer shows widening peaks. The crystallinity 
degree of fiber and OPEFB α-cellulose, which is higher than 
that in mesocarp, shows that the fiber of OPEFB is a better 
raw material for NCC isolation, which requires a higher 
degree of crystallinity. Besides a higher yield and degree of 
crystallinity possessed by the OPEFB fibers and α-cellulose 
had a brighter visual appearance. The mesocarp α-cellulose 
was rather dark because of high lignin content and extractive 
substance levels (solubility in ethanol benzene) compared 
with OPEFBs (Figure 3).  

D. Functional Groups (FTIR) 

FTIR analysis is conducted to identify the functional 
groups in the chemical structures of substances such as 
alkanes, esters, aromatics, and alcohol [19]. Table IV and 
Figure 4 show the results of FTIR analysis in OPEFB and 
mesocarp fibers and α-cellulose. The OPEFB and mesocarp 
α-cellulose show peaks of 3154 and 3148 cm-1, respectively 
that are associated with vibration stretching of amine groups 
‒NH. 
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Fig. 2. X Ray Diffractogram  

 
 

Cellulose is formed by three functional groups: C–O, –
OH and C–H. The peaks in OPEFB and mesocarp fibers 
with wave numbers of approximately 3447 and 3391 cm-1, 
respectively, indicate the presence of –OH groups. The –OH 
groups in cellulose make the cellulose surface hydrophilic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Visual Appearances of Samples (a.) OPEFB Fibers, (b.) Mesocarp  
(c.) OPEFB α-cellulose,  (d.) Mesocarp α-cellulose 

 
This group interacts with –O, –N, and –S to form 

hydrogen. The –OH groups in α-cellulose are substituted by 
–N, acid hydrolysis using HNO3, resulting in fewer –OH 
groups due to the elimination of abundant substance and 
amorphous cellulose (delignification and bleaching). 
Amorphous cellulose is a hydrophilic part of cellulose with 
excessive -OH groups, hence, this part has strong affinity 
toward any substances that contain –OH, especially water 
[19], [20]. In the α-cellulose of OPEFB and mesocarp, peaks 
3154 and 3148 cm-1 that are associated with vibration 
stretching of amine groups –NH.  

The C–H functional group was found in both OPEFB and 
mesocarp fibers and OPEFB and mesocarp α-cellulose with 
peaks at wave numbers of 2924, 2943, 2901 and 2897 cm-1, 
respectively. Likewise, the C‒O functional groups were 
found at peaks wave numbers 1063, 1033, and 1030 cm-1. 
The existence of C‒H and C‒O functional groups indicate 
the presence of cellulose in all samples, whereas the 

presence of lignin is characterized by C=C the functional 
group at peaks with wave numbers 1624, 1512, 1597 and 
1589 cm-1, respectively. In OPEFB and mesocarp α-cellulose, 
the C‒Cl functional group was found at peaks with wave 
numbers 665 and 663 cm-1, respectively. This indicates the 
binding of Cl from NaOCl reagent in the sample used in the 
bleaching process during α-cellulose isolation. 

 

 
 
Fig. 4. FTIR Spectra 

 

c 

a b 
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TABLE IV 
POSITIONS OF PEAKS AND FUNCTIONAL GROUP MARKERS IN OPEFB AND MESOCARP FIBERS AND  Α-CELLULOSE 

Treatment O‒H[21] N‒H[22] C‒H[22] -CΞC-[22] C=C[22] ‒C‒H[22] C‒N[22] C‒O[22] C‒Cl[22] 

  Water Amide Alkane Alkyne Aromatic Alkane Amine Ester Alkyl Halide 

  stretch  stretch stretch Stretch stretch bending stretch stretch stretch 

  (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) 

OPEFB fiber 3447 - 2924 2113 1624 - - 1063 - 

Mesocarp fiber  3391 - 2943 2115 1512 - - 1033 - 

OPEFB α-ellulose - 3154 2901 - 1597 1367 1319 1030 665 

Mesocarp α-cellulose - 3148 2897 - 1589 1366 1321 1030 663 
 

E. Surface Morphology by Scanning Electron Microscopy 
(SEM) 

Figure 5 shows the outer surface of OPEFB, mesocarp 
fibers and α-cellulose. The fibers surface look more compact 
and solid, as compared to the α-cellulose; since, the 
microfibrils are still intact to each other because of the 
presence of lignin and hemicellulose components [23]. In α-
cellulose, the lignin-hemicellulose bond gets broken down 
and removed by amorphous substances, during the acid 
hydrolysis multistage pulping. Comparatively, the OPEFB 
α-cellulose had a more regular surface structure and the 
broken-down fibers formed microfibrils. In addition, on the 
surface of mesocarp α-cellulose looked irregular and rough. 
Those differences occur due to differences in the degree of 
crystallinity between OPEFB α-cellulose and mesocarp α-
cellulose (see Table 3). 
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Fig. 5. SEM images (a,b) OPEFB, (c,d) Mesocarp, (e,f) OPEFB α-Cellulose, 
(g,h) Mesocarp α-Cellulose 

IV.  CONCLUSIONS 

Even though mesocarp is equally abundant, its 
characteristics make it less suitable to be used as a raw 
material for NCC production. On the other hand, on the basis 
of their chemical composition, α-cellulose yield, degree of 
crystallinity and  surface OPEFB fibers are more suitable as 
a raw material for NCC production. 
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