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Abstract— One of the main factors contributing to radiometric distortion on remote sensing data is a topographic effect, but it can be 
reduced by applying the topographic correction. This study identifies the effect of topographic correction on canopy density mapping 
in the Menoreh Mountains, Indonesia. Topographic correction methods examined in this research are C-Correction, Minnaert, and 
Sun-Canopy-Sensor+C (SCS+C). Canopy density estimation was approached using vegetation indices, i.e., Normalized Difference 
Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), Aerosol Free Vegetation Index (AFRI) 1.6, and AFRI 
2.1 derived from Landsat-8 OLI imagery. We evaluated the performance of topographic correction by visual and statistical analysis 
before comparing the accuracy of canopy density estimation of different vegetation indices and correction methods. The results 
showed that topographic normalization could increase the accuracy of canopy density mapping. The most significant improvement is 
the model using MSAVI, which increases by 1.207% using the Minnaert method to reach 86.692% accuracy. Meanwhile, NDVI, 
AFRI 1.6, and AFRI 2.1 have less significant improvement with the maximum increase of 0.241%, 0.057%, and 0.032% using the 
SCS+C method, reaching the accuracy of 88.980%, 83.303%, and 82.308%, respectively. The accuracies were slightly improved since 
the algorithms have already reduced the effect of topography, which are categorized as ratio vegetation indices. SCS+C is the best 
topographic correction method because of not only the appropriate assumption of canopy normalization but also its consistency and 
better accuracy in canopy density estimation, among other methods. 
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I. INTRODUCTION 

Pre-processing in remote sensing analysis is essential 
before information extraction to reduce the errors. Several 
variables causing radiometric errors are atmosphere, terrain 
elevation, slope, and aspect [1]. Aspect and slope of the 
topographic condition influence the difference of sun 
illumination towards the ground. Slopes facing the sun 
directly produce higher value; on the other hand, the slopes 
facing away the sun have a lower value because the slopes 
cover the sun rays. The topographic condition leads to the 
effect of different solar light energy towards the earth's 
surface, and then it is captured by a satellite sensor based on 
the reflectance value from the earth's surface. The different 
energy captured by satellite data on the same objects would 
present different pixel values, and it affects the accuracy of 
information derived from that data. Hence, before the images 
are processed digitally, it needs pre-processing named 
radiometric correction, which includes topographic 
correction. 

Topographic correction is categorized as radiation and 
atmospheric correction, which is needed to obtain the 
surface reflectance accurately [2]. This method corrects 
slope and aspect effects that can cause radiometric distortion 
on the image [1]. Topographic correction is essential to 
reduce the effect of hilly and mountainous terrain. Several 
research and studies about topographic correction have been 
widely conducted. The results showed topographic condition 
has an effect on reflectance value. Nevertheless, the effect 
can be repaired, or at least it can be reduced by applying the 
topographic correction. From those studies, various methods 
have been developed.  

Topographic correction can be applied to the wavy and 
mountainous conditions and on all land cover types. Several 
researchers examined the topographic correction and focused 
on the method comparison in purpose to reduce topographic 
effects [3–8]. Most of them applied topographic correction 
on land cover classification [9] and forest mapping [10], 
whether it was multitemporal analysis or not. It was reported 
that the studies about increasing the accuracy of a 
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continuous variable such as canopy density of vegetation by 
applying topographic correction were rarely conducted [11].  

A multispectral classification, which is widely examined 
the effect of topographic correction, is based on band 
combination; meanwhile, canopy density estimation is 
approached by vegetation index. On the other hand, several 
vegetation indices can reduce several disturbances, including 
slope and aspect effects indirectly [12]. Adhikari et al. 
examined the effect of C-Correction on fractional tree cover 
and found that ratio-based vegetation indices were not 
affected significantly [11]. Leaf Area Index model using 
Minnaert topographic correction has succeeded in improving 
the result, but this previous research did not compare the 
result to the uncorrected image [13]. Information regarding 
canopy density is important since the quality of vegetation 
stands can be figured out from this information; regardless, 
there is no change to the extent [14], [15]. Moreover, this 
data is related to the carbon stock of vegetation [16].  

Menoreh Mountains located in the Special Region of 
Yogyakarta and Central Java Province, was selected in this 
research. Previous research estimated vegetation cover in the 
part of this area resulted in vegetation density without 
paying attention to topographic effect [17]. As a result, the 
canopy density values are greatly affected by the slope and 
aspect condition. This study aims to identify the effect of 
several topographic correction methods applied in the 
canopy density estimation mapping using vegetation indices, 
which are derived from remote sensing imagery to find out 
the importance of this pre-processing method conducted. 

II. MATERIALS AND METHOD 

A. Satellite Imagery 

Landsat-8 OLI imagery acquired on 22 February 2015 
was used in this study due to its cloud-free condition among 
the other date images, which contain the atmospheric 
disturbance. Landsat-8 OLI is multispectral imagery that 
consists of 9 multispectral bands and a panchromatic band. 
The multispectral bands have 30 m spatial resolution and 16 
days revisit time. We did not include band 1 (coastal 
aerosol). Band 9 (cirrus) was used to apply cirrus correction; 
hence this study used 7 bands (band 2-7 and 9) to examine 
the topographic correction. Landsat-8 imageries are freely 
accessed from http://earthexplorer.usgs.gov. Landsat-8 has 
been widely used and is reliable for vegetation studies on a 
medium scale. Although its level is on the geometrically 
corrected level, we conducted geometric correction based on 
the local topographic map.  

Shuttle Radar Topography Mission (SRTM) 1 arc-second 
was used as a Digital Elevation Model (DEM) [9]. Since the 
topographic condition depicted on the Landsat image is the 
surface elevation, the use of the Digital Surface Model 
(DSM) from SRTM is more appropriate than the terrain 
model [18]. SRTM DEM provides widely digital elevation 
data covering 60º Northern to 56º Southern Latitude 
acquired on 11-22 February 2000. The spatial resolution of 
this level is the same as 30 m of Landsat-8 pixel size. 

B. Canopy Density Measurement 

Unmanned Aerial Vehicle (UAV) with a small format 
camera was used to measure canopy density downwardly. 

UAV method was chosen because this indirect measurement 
is easily conducted over the mountainous area, and it 
provides good results quite similar to the hemispherical 
photography method that has been widely used [19]. We 
equipped Color-Infrared (CIR) camera on DJI Phantom 
quad-copter. This camera is more sensitive to the vegetation 
aspect than the true-color camera. Several photo mosaics 
were made, and cropped in 45x45 m, with the center 
coordinate is the same as sample coordinate in Landsat-8 
image. We considered using of 45x45 m grid to anticipate 
geometric shifting on the image. Aerial photographs 
processing used decision tree analysis to distinguish between 
the canopy and non-canopy object. We obtained a total of 93 
canopy density data. 

C. Atmospheric Correction 

Surface reflectance was the result of calibration and 
atmospheric corrections of Landsat-8 image. We applied two 
atmospheric correction methods, i.e., cirrus correction and 
histogram adjustment correction. Calibration was purposed 
to convert a digital number (DN) of 1T level Landsat-8 to 
top-of-atmosphere (TOA) reflectance. Cirrus correction was 
applied firstly in the DN level using Cirrus Band as the 
subtraction parameter. After that, we converted the corrected 
DN cirrus to TOA reflectance. Histogram adjustment was 
conducted by subtracting the minimum value of TOA 
reflectance at each band to generate the reflectance value of 
the object. 

D. Topographic Correction 

Topographic correction is divided into two methods, i.e., 
band ratios and DEM-used correction [20]. We used the 
second one, hence SRTM DEM was required in this method 
to calculate the incident angle, which is the angle between 
normal angle and solar light [21]. The value of illumination, 
cosine of the incident angle, depends on the relative 
orientation of pixel towards sun position. Illumination ranges 
from -1 to 1, which is obtained from the equation: 

 IL = cos � cos θ
 + sin � sin θ
 cos(ϕ� − ϕ�)   (1) 

where IL is the illumination; � is the slope angle; θ
 is the 
solar zenith angle; ϕ� is the solar azimuth angle; and ϕ� is 
the aspect angle [20]. We evaluated the effect of topographic 
correction on canopy density estimation using three methods: 
C-Correction, Minnaert, and Sun-Canopy-Sensor+C. 

1) C-Correction: C-Correction is semi-empirical method 
that assumes the linear correlation between reflectance on 
each band and IL [20]. The equation of this semi-empirical 
is: 

ρ� =  a + b IL (2) 

where ρT is the surface reflectance each band; b is the slope 
of regression line each band, and a is the intercept of 
regression. C-Correction is defined with the equation: 

ρ� = ρ�   �cos θ
 + c
IL + c � (3) 

where ρT is the corrected surface reflectance, this model 
introduced the c parameter as the quotient between slope (b) 
and intercept (a) of the regression equation, versus IL [20]. 
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2) Minnaert: Non-Lambertian method is based on the 
ideas of Minnaert in 1941, who is the first person to propose 
a semi-empirical equation to assess the roughness of the 
moon’s surface [20]. The equation of the Minnaert method is: 

ρ� = ρ�  �cos θ

IL �

�
   (4) 

where k is the Minnaert that showed non-Lambertian 
behavior [21]. The value of k ranges between 0 and 1. K is 
obtained from the regression equation of linearization 
regression of previous semi-empirical method 
logarithmically that formulated as follows: 

log( ρ�cos �) = log ρ� +  k log (cos � IL) (5) 

3) Sun-Canopy-Sensor+C: Sun-Canopy-Sensor (SCS) 
method removes topographic effects by projecting the sloped 
surface to the horizontal surface with preserving the 
geometry of the canopy structure vertically [22]. The 
assumption used in this method is the geometry of terrain 
and trees is consistent. This term is different from C-
Correction and Minnaert. Because the sun-canopy geometry 
is vertically upright, the SCS model is more appropriate than 
other methods. SCS model provides an overcorrection result. 
Hence Soenen et al. modified it by adding the C coefficient 
to become SCS+C [23]. The SCS+C method is expressed by: 

ρ� = ρ�   �cos � cos θ
 + c
IL + c �  (6) 

E. Vegetation Indices 

Vegetation indices based on multispectral data are more 
sensitive to vegetation phenomena than single bands can do. 
There are several vegetation indices, and each index has 
unique characteristics. Canopy density estimation using a 
vegetation index is widely used. This study used three 
vegetation indices, i.e., NDVI [24], MSAVI [25], and AFRI 
[26]. Landsat-8 has two shortwave-infrared bands, so AFRI 
has 2 indices, AFRI 1.6 and AFRI 2.1. The equations are 
formulated as follows: 

 
NDVI = (ρNIR - ρRed) / (ρNIR + ρRed)  (7) 

MSAVI = ((ρNIR - ρRed) / (ρNIR + ρRed + L)) x (1+L) (8) 
where L = 1 – (2s x NDVI x WDVI)   (9) 

AFRI 1.6 = (ρNIR – (0.66 x ρ1.6)) / (ρNIR + (0.66 x ρ1.6)   (10) 
AFRI 2.1 = (ρNIR – (0.5 x ρ2.1)) / (ρNIR + (0.5 x ρ2.1)   (11) 

III.  RESULTS AND DISCUSSION 

A. Illumination 

Illumination (IL) was generated according to equation (1). 
This equation required slope angle, aspect angle, solar zenith 
angle, and solar azimuth angle. Slope and aspect angle were 
generated from SRTM DEM, while solar zenith and solar 
azimuth angle were provided in Landsat-8 metadata. 
Although SRTM DEM is DSM, this data is suitable for the 
application of vegetation, because the height of objects can 
represent different slope and aspect. According to the 
metadata of Landsat-8, the solar zenith angle is 
0.54393844232251 (radiance of 90°-SUN_ELEVATION), 
and the solar azimuth angle is 1.71274202295465 (radiance 
of SUN_AZIMUTH). 

IL represents the cosine of the angle between the normal 
angle to the ground and the solar light. The value of IL 
represents the proportion of direct sun radiation to image 
pixels [27]. Visually, IL seems like hill-shading. It 
represents the actual sun exposure on 22 February 2015 at 
09:47:56.1368875 Western Indonesian Time (GMT+7). 
SRTM DEM is global geometrically corrected, but it is 
required to be corrected to have the same geometric location 
as the Landsat-8 image. We conducted geometric correction 
on IL because it has better topography visualization than 
DEM. The study area is a complex mountainous area, as it is 
seen on IL value that ranges from 0 to 1 (see Figure 1). IL 
has the maximum value of 1 when the solar light is perfectly 
perpendicular to the ground, and it is decreasing as the angle 
is getting further from the normal line. 

B. C and K Coefficient 

C and K were obtained by applying empirical calculation 
between IL and surface reflectance of Landsat-8 image in 
the same land cover [28]. This study focused on the 
vegetation object. Hence we took samples of vegetation 
objects with the same characteristics. Samples were taken on 
various slope and aspect conditions. The number of 5,000 
samples in this empirical method is recommended by Gao et 
al. [28], and we did so. 

 
Fig. 1.  Illumination (IL) image of the study area 

The regression analysis put the IL as the independent 
variable (x-axis) and surface reflectance of each band as the 
dependent variable (y-axis). We involved all the Landsat-8 
multispectral bands (2-7). As was mentioned before, the C 
coefficient was obtained from the quotient of the gradient 
and intercept of the regression line. Meanwhile, K was 
derived from the slope of the regression line by applying 
logarithmic linearization on each variable on the previous 
regression. 
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Table 1 shows the C and K coefficient on each band. C 
coefficient is the highest on the blue band (band 2), and it is 
getting lower as the length of the wavelength, and the lowest 
C is on the band 7. Conversely, the K coefficient has the 
highest value on band 7, and the lowest is on band 2. 
Mathematically, the C and K coefficient has the same effect 
in the correction [27]. C coefficient increases the 
denominator and weakens the overcorrection of faintly 
illuminated pixels consequently [27]. K value ranges 0-1. 
The smaller K, the weaker is the influence of the quotient in 
the Minnaert equation. The increase and decrease the value 
of C and K are due to the anisotropy reflection into 
Lambertian reflection to all direction, which on the same 
objects, the more increasing wavelength, the Lambertian 
reflection is getting closer to Lambertian reflection [29], and 
this is the same as our K calculation results. 

TABLE I 
C AND K COEFFICIENT ON EACH BAND 

Coefficient Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

C 1.3611 0.3008 0.3768 0.1892 0.1526 0.0893 

K 0.3781 0.6357 0.6074 0.6977 0.7153 0.7403 

C. Visual Analysis 

All three topographic correction methods were applied to 
each band (band 2-7) of Landsat-8. We analyzed visually to 
find out whether the topographic correction was a success in 
reducing the effects of slope and aspect or not. The 
comparison can be seen in Figure 2. The uncorrected images 
visualized the topographic condition, apparently the same as 
the IL image. After it was corrected, the topographic 
condition that previously seems hilly and mountainous, 
became flat. 

As they are analyzed visually, all methods are capable of 
reducing the topographic effects, but when we see in more 
detail, C-Correction was less success rather than Minnaert 
and SCS+C. Band composite of 654 in the C-Correction 
image shows the slopes facing the solar light are brighter, 
among other corrections. SCS+C is finer in error reduction 
compared to Minnaert.  

Although all methods can reduce the effects of slope and 
aspect, several pixels could not be corrected. It is possible to 
happen in the extremely steepest slope, in which there is no 
solar energy hits the surface objects. It means the surface 
reflectance mostly does not represent the object accurately. 
Although it has been applied the topographic correction, it is 
almost impossible to bring back the real surface reflectance. 

D. Statistical Analysis 

Besides visual analysis, statistical analysis is more 
reliable to find out the success of topographic correction. 
The examination is conducted by testing standard deviation 
and correlation value [28]. Hantson and Chuvieco reported 
the decreasing value of standard deviation indicates the 
reducing illumination effect on slopes [4]. 

Table 2 shows the standard deviation of 5,000 samples of 
surface reflectance as the same as the samples we used in the 
empirical calculation of IL. All methods have a decreasing 
value on each band of Landsat-8 image after it was corrected. 
The declining value of the standard deviation means the 
surface reflectance value of vegetation objects is getting 

more homogeneous. All standard deviations of each band are 
decreasing as it was corrected. SCS+C method has the 
lowest value among the others. 

Correlation analysis between IL and surface reflectance 
can also be used to determine the success of topographic 
correction (Table 3). The parameters we considered are the 
correlation coefficient and slope of the relationship graph. In 
the analysis, we placed IL as the independent variable, and 
surface reflectance as the dependent variable. The higher 
value of correlation means there is a strong relationship 
between IL and surface reflectance. All bands of uncorrected 
images have a strong relationship, and it means the 
illumination is greatly influenced the surface reflectance 
value. After it was corrected, the correlation is decreasing 
and getting close to zero value, which means it almost does 
not have a relationship at all. Besides the correlation value, 
the slope is also used as an indication of the slope effect [28]. 
Same with correlation, the slope value is decreasing, and it 
means the topographic effect has been successfully reduced. 
SCS+C has half of all bands with the lowest value of 
correlation and slope values. 

TABLE II 
THE STANDARD DEVIATION OF VEGETATION OBJECT SAMPLES ON EACH 

BAND 

 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Uncorrected 0.0023  0.0060  0.0035  0.0694  0.0284  0.0111  

C-Correction 0.0020  0.0044  0.0028  0.0470  0.0200  0.0089  

Minnaert 0.0021  0.0046  0.0028  0.0479  0.0201  0.0087  

SCS+C 0.0019  0.0038  0.0025  0.0376  0.0156  0.0070  

 
TABLE III 

CORRELATION AND SLOPE VALUE OF REGRESSION ANALYSIS BETWEEN IL  

AND SURFACE REFLECTANCE 

 Correlation 

 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Uncorrected 0.5417 0.7204 0.6798 0.8201 0.7964 0.7202 

C-Correction -0.0164 -0.0529 -0.0383 -0.0906 -0.0915 -0.0939 

Minnaert -0.1068 0.0280 0.0062 0.0529 0.0695 0.0893 

SCS+C 0.0398 0.0459 0.0472 0.0440 0.0321 0.0053 

 Slope 

 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Uncorrected 0.0072 0.0246 0.0138 0.3267 0.1297 0.0459 

C-Correction -0.0002 -0.0014 -0.0006 -0.0245 -0.0105 -0.0048 

Minnaert -0.0013 0.0007 0.0001 0.0145 0.0080 0.0044 

SCS+C 0.0004 0.0010 0.0007 0.0095 0.0029 0.0002 

 
We applied vegetation index transformations on corrected 

and uncorrected images. Both standard deviation and 
correlation values were also derived using the same 5,000 
sample points. Based on Figures 3, 4, 5, 6, we can see NDVI, 
AFRI 1.6, and AFRI 2.1 have a slight difference between 
corrected and uncorrected images; however, MSAVI images 
are changed significantly. 

Table 4 and Table 5 show the standard deviation and 
correlation. The standard deviation, as well as correlation 
value, are decreasing slightly, except on MSAVI. MSAVI 
images extremely changed after it was corrected. The 
correlation on MSAVI images was very high firstly; in 
contrast, the correlation reduced extremely after they were 
applied topographic correction (Table 5). Although they 
have a little reduction, NDVI, AFRI 1.6, and AFRI 2.1 have 
a lower standard deviation and correlation compared to 
MSAVI. 

1320



TABLE IV 
THE STANDARD DEVIATION OF VEGETATION OBJECT SAMPLES ON EACH 

VEGETATION INDEX 

 Standard deviation 
NDVI MSAVI AFRI 1.6 AFRI 2.1 

Uncorrected 0.01403 0.11716 0.02218 0.01460 
C-Correction 0.01357 0.07864 0.02214 0.01469 

Minnaert 0.01363 0.07890 0.02211 0.01455 
SCS+C 0.01367 0.06567 0.02200 0.01439 

TABLE V 
A CORRELATION VALUE OF IL  AND VEGETATION INDEX 

 Correlation 
 NDVI MSAVI AFRI 1.6 AFRI 2.1 

Uncorrected 0.20912 0.81195 -0.10302 -0.15466 
C-Correction -0.01372 -0.07790 0.02053 0.04038 

Minnaert 0.06307 0.08704 -0.03994 -0.07486 
SCS+C 0.00287 0.04352 0.01140 0.02630 

 

  
(a) (b) (c) (d) 

Fig. 2.  654 color composite of Landsat image (a) uncorrected topographic correction, (b) C Correction, (c) Minnaert, (d) SCS+C 
 

  
(a) (b) (c) (d) 

Fig. 3.  NDVI images of study area (a) uncorrected topographic correction, (b) C Correction, (c) Minnaert, (d) SCS+C 
 

  
(a) (b) (c) (d) 

Fig. 4.  MSAVI images of study area (a) uncorrected topographic correction, (b) C Correction, (c) Minnaert, (d) SCS+C 
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         (a)                        (b)             (c)                      (d) 

Fig. 5.  AFRI 1.6 images of study area (a) uncorrected topographic correction, (b) C Correction, (c) Minnaert, (d) SCS+C 
 

 
         (a)                        (b)             (c)                      (d) 

Fig. 6.  AFRI 2.1 images of study area (a) uncorrected topographic correction, (b) C Correction, (c) Minnaert, (d) SCS+C 
 

The algorithms of vegetation index have different 
responses on the topographic correction. NDVI, AFRI 1.6, 
and AFRI 2.1 are categorized as ratio vegetation indices, 
while MSAVI is a non-ratio vegetation index. NDVI, as the 
ratio algorithm, can reduce multiplicative disturbance, such 
as sun illumination, cloud shadows, atmospheric effect, and 
topographic variation [1]. AFRI 1.6 and AFRI 2.1 that have 
the same type of algorithm also possess similar 
characteristics to NDVI. 

E. Canopy Density Estimation Accuracy 

Canopy density field data with a total of 93 data were 
divided into two groups, 69 data to build the estimation 
model, and 24 to assess the accuracy. Simple linear 
regression was used to be the modeling method. Before 
applying the model, we examined the correlation analysis to 
find out the relationship between vegetation index and 
canopy density data. As is seen in Table 6, all the vegetation 
indices, whether they are corrected or uncorrected of 
topographic correction, have a strong relationship and could 
be continued to regression analysis. 

Simple linear regression was chosen because it can 
generalize the model based on samples, although the 
scatterplot composes non-linear relationships. In the 
regression analysis, vegetation index was plotted as the 
independent variable during canopy density data as the 
dependent variable. Each regression analysis produced a 
regression equation. These equations were applied to build 
the canopy density estimation model, with a total of 16 
models. 

The accuracy of each model was assessed by the 
maximum accuracy value derived from the Standard Error of 
Estimate (SE) with a 95% confidence level. We were not 
only conducted accuracy assessment using all of 24 canopy 

density data, but also divided it into 3 classes of the density 
(low, moderate, and high), and assessed the accuracy 
separately. 

TABLE VI 
CORRELATION VALUE BETWEEN VEGETATION INDEX AND CANOPY 

DENSITY DATA 
 NDVI MSAVI AFRI 1.6 AFRI 2.1 

Uncorrected 0.86419 0.69412 0.73288 0.74687 
C-Correction 0.86382 0.81017 0.73145 0.74580 

Minnaert 0.86407 0.80678 0.73217 0.74648 
SCS+C 0.86433 0.80856 0.73142 0.74551 

 

TABLE VII 
ACCURACY VALUE OF EACH MODEL 

NDVI 
Correction 

Uncorrected C Correction Minnaert SCS+C 

SE 8.122 7.960 8.003 7.949 

Accuracy (%) 88.740 88.964 88.905 88.980 

Increase (%)  0.224 0.166 0.241 

MSAVI 
Correction 

Uncorrected C Correction Minnaert SCS+C 

SE 10.469 9.662 9.599 10.002 

Accuracy (%) 85.486 86.605 86.692 86.134 

Increase (%)  1.119 1.207 0.648 

AFRI 1.6 
Correction 

Uncorrected C Correction Minnaert SCS+C 

SE 12.084 12.050 12.065 12.043 

Accuracy (%) 83.246 83.294 83.274 83.303 

Increase (%)  0.048 0.027 0.057 

AFRI 2.1 
Correction 

Uncorrected C Correction Minnaert SCS+C 

SE 12.785 12.770 12.777 12.761 

Accuracy (%) 82.276 82.296 82.286 82.308 

Increase (%)  0.020 0.011 0.032 

Table 7 shows that all models have a great accuracy value 
above 80%. Topographic corrections performed their ability 
to give better accuracy rather than uncorrected models. 
NDVI has the highest accuracy at all, although it was 
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uncorrected. The mean value of accuracy on NDVI models 
is 88.897%. Their accuracies became higher after they were 
corrected, with the mean of the increase is 0.210%, and 
reached the highest accuracy in the SCS+C method 
(88.980%). 

MSAVI model without topographic correction has an 
accuracy of 85.486%. Topographic correction increases the 
accuracy with the increasing mean value of the three models 
is 0.991%. MSAVI models have the most significant 
increase in accuracy among the other indices. Even though 
the mean improvement is less than 1% based on the 
validation samples, it was improved a lot by looking at the 
whole image visually. The highest accuracy is the Minnaert 
method (86.692%). The significant increase in this index is 
due to the characteristics of the non-ratio index that the 
uncorrected images showed the topographic condition 
apparently. 

Canopy density models using AFRI 1.6 and AFRI 2.1 
have a similar increasing value after they were corrected. 
AFRI 1.6 and AFRI 2.1 managed to obtain an increasing 
value of 0.044% and 0.021%, respectively. The mean values 
of accuracy in 3 correction methods are slightly different, 
which are 83.920% on AFRI 1.6 and 82.297% on AFRI 2.1. 
The highest accuracy of AFRI 1.6 and AFRI 2.1 on the 
SCS+C correction method. This similar accuracy due to both 
indices is the same type of vegetation index. The short-
wave-infrared included in AFRI 1.6 calculation is band 6 

(1.6 µm), while AFRI 2.1 used band 7 (2.1 µm). Although 
AFRI is included in the ratio vegetation index, the accuracy 
is below the MSAVI. AFRIs has the characteristic of 
reducing the atmospheric disturbance [26]. Since the 
observed area is free of atmospheric disturbance, the ability 
does not have a significant impact. MSAVI that can reduce 
soil disturbance performed better than AFRIs. 

The 24 validation data were divided equally (8 data) into 
three classes based on the canopy density, consist of below 
55%, 55-75%, and above 75% that represent low, moderate, 
and high canopy density, respectively. The accuracy value 
was obtained with the same method as the previous 
assessment.  

Figure 7 shows the accuracy of each level of canopy 
density on each vegetation index and topographic correction 
method. We can see there is an extreme difference between 
the accuracies on low and moderate-high canopy density in 
NDVI and AFRI, but accuracies on MSAVI have a slight 
difference accuracy on each level. We found that the highest 
accuracy on moderate canopy density level is on the best 
correction method of vegetation indices that have been 
analyzed previously, SCS+C on NDVI and AFRI, and 
Minnaert on MSAVI. We analyzed that the increase of each 
level of canopy density depends on the regression analysis 
that was applied before building the model. The few 
validation data also affects the results. We recommend using 
a lot of validation data to do this analysis. 

 
 

 
Fig. 7.  Accuracy value of canopy density model on each model and canopy density class 

 
Each vegetation index has a different reaction to 

topographic normalization. The ratio vegetation index type 
has already corrected the topographic condition based on the 
algorithm. Indirectly, the ratio algorithm has included the 
topographic correction method applied without DEM data. 
Because the bands used in the vegetation index have been 
corrected, it means the topographic normalization is applied 
twice. Hence, topographic correction is not essential applied 
to the ratio vegetation index, but it will be better if this 
method is applied. Conversely, the non-ratio vegetation 
index needs the topographic correction because the 
algorithm does not reduce the topographic effect. 

The fundamental difference between the three correction 
methods is the assumption they used. C-Correction used the 
Lambertian assumption, which means a perfect diffuse 
reflection on the surface. This assumption provides 
overcorrection; hence C coefficient affords to control the 
overcorrection. Minnaert uses non-Lambertian assumptions 
due to the not applicable Lambertian assumption on the 
natural surface on earth. The non-Lambertian function was 
applied using the K coefficient, where the smaller K, the 
more non-Lambertian surface appears. 

SCS+C method achieved the best accuracy of the canopy 
density model in NDVI, AFRI 1.6, and AFRI 2.1. This result 
is supported by the term SCS+C method that considers the 
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canopy geometry aspect, which erects the canopy objects. 
Meanwhile, canopy objects in C-Correction and Minnaert 
still follow the slope condition.  

C-Correction is the second highest of accuracy in all 
vegetation index. Minnaert is the lowest accuracy in all 
models, except in MSAVI that reached the highest accuracy. 
In overall, increasing accuracy in C-Correction and Minnaert 
has a slightly different, according to the value of NDVI, 
AFRI 1.6 and AFRI 2.1 are 0.059%, 0.021%, and 0.009%, 
respectively. It means the Lambertian assumption that is 
used in C-Correction is slightly different from the non-
Lambertian of Minnaert because both methods use C and K 
coefficient, respectively, to avoid the overcorrection. 

IV.  CONCLUSION 

The topographic correction can reduce slope and aspect 
effects according to visual and statistical analysis using 
standard deviation and correlation analysis. Overall, 
topographic correction can increase the accuracy of canopy 
density estimation. Ratio vegetation indices, such as NDVI 
and AFRIs, are not significantly affected due to their ability 
to reduce the several disturbances, including illumination 
and topographic effects, although it would be better if 
applying the topographic correction. MSAVI, the non-ratio 
vegetation index, is very significantly affected by the 
topographic correction. NDVI is the best index to estimate 
canopy density, whether it was corrected or not. Even 
though it has been topographically corrected, AFRI 1.6 and 
AFRI 2.1 have lower accuracy than MSAVI due to the 
ability of MSAVI to reduce soil disturbance. We found that 
SCS+C is the most consistent method among C-Correction 
and Minnaert according to the visual and statistical analysis 
of every single band and vegetation index, and the accuracy 
analysis of canopy density estimation. 
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