

Vol.9 (2019) No. 1

ISSN: 2088-5334

Dynamic Message Puzzle as Pre-Authentication Scheme in Wireless
Sensor Networks

Farah Afianti #, Wirawan #, Titiek Suryani #
#Department of Electrical Engineering, Faculty of Electrical Technology, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

E-mail: farah.afianti16@mhs.ee.its.ac.id; wirawan@ee.its..ac.id; titiks@ee.its.ac.id

Abstract— Denial of Service (DoS) is a type of attack that has a huge impact on a computer system. This can deplete and shorten the
lifetime of wireless sensor networks (WSNs). Signature-based DoS is a kind of DoS attack that exploits the high computation of a
public key cryptography based authentication. The adversaries have the opportunity to send a large number of a fake signature to the
WSNs. Message Specific Puzzle (MSP) was developed to defend against this type of attack. This scheme utilizes a hash function as an
irreversible method to create a puzzle and produce a session key. Furthermore, this has low complexity in the sender and receiver for
construction and verification process. However, the sender-side delay occurred. The higher the security expected for the system leads
to the more time is needed for the user to send messages. The number of hash iteration in the puzzle construction cannot be
controlled. This paper proposes the Dynamic Message Puzzle scheme that uses the power of first quartile (Q1power1) and the
exponential of second quartile (Q2exp) threshold functions. These limit the maximum number of hash iterations for each puzzle
construction. Consequently, this mechanism can decrease sender-side delay by at least 60%. Besides avoiding zero solution and has a
high value of mean absolute deviation, this scheme also increases the adversaries’ complexity in attacking the system. The proposed
scheme transmits index implicitly. This obscures the portion of each parameter in the transmitted packet.

Keywords—broadcast authentication; pre-authentication; wireless sensor networks; signature based DoS; puzzle scheme.

I. INTRODUCTION

The commonly used communications between nodes in
wireless sensor networks (WSNs) are broadcast [1], [2]. This
communication is efficient but lacks protection against
denial of service (DoS) attacks. Such attacks can have a
huge impact on a computer system by sending large numbers
of false messages. This makes the system so busy verifying
received packets that authenticated users cannot access the
attacked sensor node. Apart from that, it can reduce WSN
lifetime because node sensors are exhausted by verifying all
the fake messages.

A signature-based DoS attack is an action that sends a
large number of fake signatures [3]. The main target of this
attack is the high complexity of digital signature verification,
which uses more energy than receiving messages [3].
Therefore, additional protection is needed to accompany
public key cryptography based authentication.

Several filtering methods have been developed against
signature-based DoS attacks [3], [7]–[9], [11]–[13]. In 2000,
Aura et al. developed a mechanism to resist DoS attacks in
client-server environments [11]. This method, called MSP,
was improved to allow for implementation in WSNs [3].
Instead of a puzzle, Du et al. used several key chains to

represent each network user [7]. This approach is not
scalable, because the number of key chains increases with
the number of connected users. Later, Chuchaisri et al.
developed key-pool and key-chain schemes [12]. These
mechanisms incorporate the Bloom Filter Vector as the
process of membership verification. They still have
limitations in handling false positive packets.

Furthermore, they use a forwarding key chain that is weak
against compromised keys. In 2013, Dong et al. developed
three filtering methods, namely a group-based filter, a
keychain-based filter, and a hybrid filter [8]. The security
performance of the group-based filter was less good due to
the number of compromised nodes was high. The keychain-
based filter only had better security if the number of
legitimate packets was low. Also, the computation overhead
for the key-chain based filter was higher than for the group-
based filter. The hybrid filter combined both filters in order
to reduce security limitations, but its implementation had
high complexity. In the same year, Tan et al. added
confidentiality and constructed a cipher puzzle mechanism
for advertisement packets [9]. It has high security because
every packet contains an encrypted message. However, this
means it has high complexity, especially for resource-
constrained devices. In 2016, Kim et al. built a mechanism
that randomly drops received packets based on sensor node

204

capacity, which depends on reservoir sampling as the packet
selection algorithm. However, this method could drop
legitimate messages as false harmful packets and forward
fake messages as false positive packets. Among these
filtering methods, MSP has the lowest complexity in the
receiver verification process [14]. It only needs two hash
operations to verify the puzzle solution and session key.
Furthermore, no false positive or false negative packets can
be received. Therefore, the Message Specific Puzzle (MSP)
[3] is one of the most promising pre-authentication methods
for unencrypted messages.

MSP can be used in any application, especially the
Internet of Things applications that exchange plaintext
messages, to avoid signature-based DoS attacks [4]–[6]. This
mechanism acts as a filter of the main digital signature. It
only uses two hash function operations in the verification
process. It has low computation complexity and is
appropriate for the characteristics of sensor nodes. However,
a drawback is a sender-side delay [7], [8]. The more security
expected for the system, the higher the number of hash
iterations needed to produce a puzzle solution. The higher
number of hash iterations increases the delay or time needed
for processing on the sender side.

Furthermore, the pattern content and puzzle strength for
each packet are fixed [7], [9], [10] so that adversaries can
use copied packets as the sender. In order to resolve this
limitation, this paper proposes a Dynamic Message Puzzle,
which uses a threshold function. The pattern content is zero,
but the length of the pattern or the puzzle strength is
dynamic for each transmitted packet. The objective of this
method is to control the sender-side delay by decreasing the
puzzle strength if it exceeds a threshold value. We
constructed a tag that consists of an implicit value for the
index, the current and the previous puzzle strength. Its length
is dynamic. The process of tagging obscures the index and
puzzle strength. Also, it increases the attacker’s computing
complexity in finding the puzzle solution.

The following are two of the main contributions in this
paper:

• The development of dynamic puzzle strength in the
Message Specific Puzzle (MSP) to decrease sender-
side delay while ensuring that there is a solution to
each constructed puzzle.

• It is obscuring packet transmission. The scheme does
not send the index explicitly. It increases the computing
complexity of the adversary by making it difficult to
distinguish between the indexes and puzzle strength
values.

This paper is organized as follows: Section II briefly
discusses the preliminary research and the proposed methods.
The preliminary reviews the keychain that is used as a
session key generator and MSP mechanism. Section III
explains the design of the experiment, the result and its
discussion including the security analysis of the proposed
method. The concluding section summarizes this paper’s
contribution.

II. MATERIAL AND METHOD

This section provides a discussion of the MSP as the
preliminary studies and the DMP as the proposed methods.

A. MSP overview

MSP was developed as a weak algorithm that acts as an
addition to the main signature in order to counter DoS
attacks [3]. This scheme is implemented in WSN
environments. It consists of three main steps: one-way
keychain as a method to generate a session key, digital
signature creation, and puzzle solution construction.

1) One-Way Keychain

The one-way keychain is utilized to produce the session
key in each transmitted packet. This mechanism blocks a
fake message from the adversaries [3]. If the session key is
not valid, then the packet will be dropped. Therefore the
next steps cannot be continued. The limitation of this
mechanism is the finite value of the key number that must be
declared in the initialization phase [14].

A hash function is utilized as the basic algorithm for a
one-way keychain. This starts with generating random value
that is used to fill the last keychain. The rest of the key set is
calculated using Equation (1) [7]:

 1()n H nK F K += (1)

The calculation is stopped while the expected number of

key is fulfilled. The overall session key that utilized by the
system is formulized by Equation (2).

 ()
1

1

 ;
keyN

i
H

i

Keychain F x x x random
−

=

= ∈U U (2)

Commitment key is the name for initial session key that is
transmitted to the receiver. This parameter is utilized for the
verification process.

2) Digital Signature

The high computation of digital signature generation
provides challenge especially for the sensor nodes. This
drawback is minimized by limiting the number of signature
or modifies the main algorithm. The successful
implementation of the public key cryptography (PKC) based
authentication in the resource constraint device was
presented [15]–[18].

MSP utilizes the Elliptic Curve Digital Signature
Algorithm (ECDSA) as the main signature generation [3].
As a part of Elliptic-Curve Cryptography (ECC) [19], this
method is suitable for sensor nodes environments [20]. It is
because of the efficient length of the key. The ECDSA’s key
length is 40 bytes. This can produce signature that has length
40 bytes while RSA requires 128 bytes [21]. The key length
of RSA is longer than ECDSA.

3) Puzzle Solution

The last step before transmitting the packet is puzzle
generation. The aim is looking for the hash result that has L
bits consecutive zeroes value. It begins with a concatenation
process, which aggregates several sent parameters and then
hashes them. The output of the concatenation process is
compared with the pattern. The MSP pattern has zero value
and has a length of L bits. It is expressed in Equation (3):

 () {|| 00|| || || 0...H idx idx

L

F index M Sig K P XXX= … (3)

205

B. Dynamic Message Puzzle

This paper proposes a Dynamic Message Puzzle (DMP),
which uses a threshold function. It can control the number of
hash iterations so that sender-side delay can be reduced.

Furthermore, dynamic puzzle strength increases the
attacker’s complexity. The detailed of the system is
presented as a block diagram that is shown in Fig. 1.

The step starts with the offline initialization. This aims to

generate the threshold function that is used in the real
system. This step starts with an experimental process. Then,
the value from its result is used as a starting point in the
fitting process. The function from the fitting process is
selected from some candidates based on certain parameters.

Through an experimental process, values from the MSP
puzzle generation activity were gathered. This process was
repeated until a small sample was gathered for each different
condition. The number of repetitions was set to 60 as a
representation of the expected overall system behavior. An
illustration of this mechanism is shown in Fig. 2.

The statistic information on the characteristics of MSP is

required to be analyzed. More specifically, the detailed
information about the number of hash iterations required for
each puzzle strength (L) variant. The average value of the

Fig. 2 Diagram of Experimental process.

Fig. 1 Block diagram of the proposed method.

206

number of hash iterations in each puzzle strength is 2L [3].
However, this paper aims to reduce this value because
therefore sender-side delay can be decreased. The quartiles
are utilized instead of the mean value. There are three
quartiles, each of which represents part of the data.

Another sent parameter that has variable length is
Message. We observed five message length variants, i.e., 6,
11, 22, 33 and 48 bits and chose to represent 2 variant blocks
in the hash function. MSP uses SHA1. Its blocks are
multiplications of 512 bits. The particular positions for each
message length variant can be seen in Fig. 3.

Hence, the possible value of the first quartile threshold

value for each puzzle strength (L) was five, as the number of
message variants. We had to select one of them to represent
all message variants. In this work, we chose the maximum
value because this could cover all message length variants.
The same condition occurred in the second and third quartile.
Furthermore, the value of the quartile threshold in each
puzzle strength can be collected from the experimental
process.

The second step of the initialization process is fitting.
This is aimed at creating a mathematical model in the form
of a function from the experimental values. The values
collected for each puzzle strength are fitted in a curve
equation. A detailed illustration is shown in Fig. 4.

For simplicity, the curve was fitted using MATLAB

2015a. The function consists of an independent variable, i.e.,
puzzle strength max { :1 , }L L L L Z≤ ≤ ∈ , and a dependent

variable, i.e., the number of hash iterations. Moreover, there
are several functions that approximate experimental values.

Several parameters can be used to calculate the function
that is appropriate to represent the threshold value from the
experiment. We selected two parameters. First, the
coefficient of determination, or R-squared, in a range from
zero to one. This compares the variants based on the original
and the estimated values. The high R-squared values reflect

the estimated values that are close to their original or actual
value. It means that the highest value of R-squared, one,
indicates that the predicted value is equal to the original
value. Moreover, this parameter has been tested to measure
the exponential family regression model [22]. This is
formulated in Equation (4), the most general form of R-
squared:

 []

[]

2
[]12

2
1

()
1

()

n
iii

n

ii

Y X
R

Y Y

=

=

−
≡ −

−

 (4)

Where: X[i] denotes actual value in i th trial, Y[i] means

estimated value in i th trial and Y describes the average of
the estimated value.

Secondly, the root means square error (RMSE) is
calculated. This value is often used to measure the deviation
from original and estimated values from a population, as
formulated in Equation (5):

[]

2
[]1

()

n
iii

X Y
RMSE

n
=

−
=

 (5)

Based on these two parameters, there were several
functions as candidate threshold functions that fit well
enough to the values from the experimental process. These
functions cannot be used directly by the system. It is
important to find the best threshold function that is
appropriate for MSP puzzle generation. Therefore, three
parameters were added to analyze threshold functions
behavior. The details of these parameters are given in
TABLE I.

The number of hash iterations (nH) represents the delay

on the sender side. The hash function has low complexity.
This is different when the function is repeated for about 2L

times, in which case there will be a delay. Furthermore, the
mean absolute deviation of L (MADL) is used to count the
distance from L to the maximum puzzle strength (Lmax).
Although it is dynamic, the puzzle strength value is expected
to approach the maximum puzzle strength. It measures the
mean of the distance between other points to the central
point. In our case, the central point is the maximum puzzle
strength. For this goal Equation (6) is used:

 1

n
i maxi

L

L L
MAD

n
=

−
= (6)

If the hash iteration is confined, the zero solution may
occur. Therefore, the puzzle solution probability must be
measured. The probability of finding a solution in nH
iterations for puzzle strength L is expressed in Equation (7)
[3]:

Fig. 4 Fitting process.

TABLE I
PARAMETER SELECTION FOR THE BEST THRESHOLD FUNCTION

Parameter Description
nH Information about delay on the sender side

LMAD Mean of the distance in a set of L to the
maximum value (Lmax)

Puzzle
Solution
Probability

Information whether puzzle scheme has a
solution

Fig. 3 Padding process on SHA1.

207

 (,)
1

1 1
2

H

H

nL

n LP

 = − −

 (7)

The communication from the user to the sensor node can
be started after getting the best threshold function. The
detailed process of real communication in Figure 1 is
expressed by Algorithm 1 and Algorithm 2 that is
implemented in the sender and receiver side.

The activity on the sender side starts with signing the
message using ECDSA (line 1 of Algorithm 1). The default
value of the current and the previous puzzle strength (if the

index is equal to 1 or the first packet is sent) is the maximum
puzzle strength (line 3 of Algorithm 1). This value is set to
22 bits. This is an acceptable number [3] regarding the
amount of delay. The threshold variable contains the highest
number of hash iterations for L-bit puzzle strength (line 5 of
Algorithm 1).

Meanwhile, the number of hash iterations for finding the
puzzle’s solution is compared with the threshold value (line
8 of Algorithm 1). The puzzle strength will be decreased,
and the threshold value recomputed only if the hash
iterations surpass the threshold value. This will stop when
the puzzle is found, or zero solution (no solution) is reached.

The last activity in the Dynamic Message Puzzle scheme
is tagging. The first step is the summation of the index, and
the previous and current puzzle strength (line 19 of
Algorithm 1). The tag is the output of the hashing function
for the summation and is cut into the first L bits. The last
activity in Algorithm 1 is sending the packet, which consists
of Message, Signature, Session Key, Puzzle Solution, and
Tag. The length of each value is shown in TABLE.

TABLE II

PARAMETERS OF PACKET

Parameter Length (bits)
Tag 1, 2, 3, ..., L

M 1, 2, 3,...., 384
Sig 320

idxK 64

idxP 32

The total length of the sent packet is 102 bytes referring to

the IEEE standard for 802.15.4 [23]. Sending the index
explicitly is avoided. Instead, the tag is used, which contains
index value implicitly. This also reduces communication
overhead and increases the attacker’s complexity by
obscuring the values of the index and the current and
previous puzzle strength by using a hash function.

The base station as the first receiver broadcasts the packet
to the node sensor as the actual receiver. The activity at the
receiver’s side starts with tag verification (line 6 of
Algorithm 2). The sensor node as the receiver tries the
possible puzzle strength value based on the stored index and
puzzle strength. The highest number of trials for each
received packet is equal to Lmax. First, it tries the maximum
puzzle strength as the current puzzle strength. If this fails,
then the puzzle strength is decreased by one. The result of
this process is that either the current puzzle strength is larger
than zero (valid tag) or the current puzzle strength is zero
(invalid tag). The process is continued with puzzle solution
verification (line 14 of Algorithm 2) only if the tag is
verified. This next process verifies whether the hash function
result is matched with L bits of zeroes. The input parameter
of the hash function is the concatenation of the stored index
and other parameters from the received packet (line 15 of
Algorithm 2). If this is the case, then the puzzle solution is
valid, and the algorithm continues to session key verification
(line 17 of Algorithm 2). This mechanism is part of the
puzzle solution verification. It aims to avoid fake puzzle
with the same consecutive zero patterns. The sensor node
repeats the hash function (index+1) times on the received

Algorithm 2 DMP Constructor on the Sender Side

Algorithm 1 DMP Verification on the Receiver Side

208

session key. After that, it has to check whether the result is
the same as the commitment key it has stored. If it is the
same, then the algorithm continues to the last verification
step, i.e., ECDSA verification (line 20 of Algorithm 2). This
process needs information about the public key of the
sender, message, and signature it has received. The details of
this process can be found in [19].

III. RESULTS AND DISCUSSION

This section contains a discussion of the experimental
design including its result and security analysis.

A. Experimental Design

We implemented our proposed scheme using Network
Simulator-3 (NS-3), version 3.20 with a WSN module. The
detailed network construction for our scheme is displayed in
Fig. 5

The sender-side consists of Administrator, namely STA1,

and the R1 router. The receiver-side consists of the R2 router,
base station, and some sensor nodes. There is no fixed
number for the number of sensor nodes; it can be increased
to fulfill the requirement. Furthermore, the data rate from the
sender’s router to the base station is 5 Mbps because it is
operated through the cloud. In contrast, the data rate from
the base station to the wireless sensor nodes is 250 kbps as it
is a resource-constrained device.

The testing scenario for communication between the
sender and the wireless sensor network was divided into five
types based on the contents of the message. Details of the
contents of each message can be seen in TABLE III.

TABLE III

MESSAGE CONTENTS

Message Sample Length
(bits)

silent 6
so shutdown 11
save key delete repair 22
recovery share send add max power 33
wireless sensor network stop-start
shutdown play

48

B. Performance Analysis

From the offline initialization, we got the experimental
values as shown in Fig. 6. These values are the maximum
numbers for each variant of message length. The higher the
puzzle strength, the higher the number of hash iterations in
each quartile.

Based on the quartile value from the experimental

process, we got candidate mathematical models for each
quartile. The functions consisted of an independent variable,
i.e., puzzle strength ranging from 1 to 22, and a dependent
variable, i.e., the number of hash iterations. Two types of
functions are appropriate in this case, i.e., power functions
and exponential functions. Furthermore, we used two power
functions to differentiate the puzzle strength used. The first
power function used the constant value as the base and the
puzzle strength variable as the exponent. The second power
function used the puzzle strength variable as the base and the
constant value as the exponent. The last function was an
exponential function followed by constant multiplication.
TABLE shows the particular functions for each quartile and
the type of function, followed by the measurement to find
the best approximate function.

TABLE IV
THRESHOLD FUNCTIONS

Threshold Function Name R-squared RMSE
Q1power1 = 0.9874 2.8085e+04

Q1power2 = 0.9892 2.5977e+04

Q1exp = 0.9881 2.7198e+04

Q2power1 = 0.9760 8.7320e+04

Q2power2 = 0.9939 4.4053e+04

Q2exp = 0.9912 5.3044e+04

Q3power1 = 0.9861 1.5488e+05

Q3power2 = 0.9987 4.6620e+04

Q3exp= 0.9989 4.4073e+04

It can be seen that the second power function had the best

value for both parameters. It had the highest R-squared
approximating one and the lowest RMSE. Furthermore, the
first power function had the lowest value of R-Squared and

Fig. 6 Quartiles of hash iteration values in MSP from experimental
process.

Fig. 5 Network topology for simulation

209

the highest RMSE among the three types of threshold
functions. The three-second power functions were the best
three fitted functions. However, two parameters are not
enough to justify the assumption that the best-fitted function
is also the best threshold function. This needs more analysis
based on other aspects because the deviation between the
lowest (L = 1) and the highest (L = 22) puzzle strength in our
case was very high. Especially the second power function
tended to miss lower values of puzzle strength to be fitted
compared to higher values, so that it had the highest
estimated value under the original value among the three
functions, even though a lower estimated value leads to zero
solution.

For further analysis, the average of hash iterations for
each function is computed. The average of hash iterations
value for each length message variant can be found in Fig. 7,
which shows a comparison between the maximum puzzle
strengths of MSP (MSP_L=22) and DMP with threshold
function variants.

A higher number of hash iterations mean a more sender-

side delay in sending messages. The higher the quartile
number, the higher the average value of hash iterations.
DMP_Q1power1 had the lowest average value of hash
iterations, followed by DMP_Q1exp and DMP_Q1power2
respectively. The average value of hash iterations for 22-bit
puzzle strength was 222, or equal to 4194304. The highest
average value of hash iterations in the first quartile (Q1) of
DMP was about 1707555 for 33-bit messages of
DMP_Q1power2, which is a decrease of about 60%. The
DMP_Q2power2 had the lowest average value of hash
iterations in the second quartile of DMP threshold functions,
followed by DMP_Q2exp and DMP_Q2power1 respectively.
Also, the overall value of DMP_Q3 was lower than the
MSP_L=22. However, the mean numbers of hash iterations
of DMP_Q3power2 for 11-bit messages and
DMP_Q3power1 for 22-bit messages were higher than for
MSP_L=22. This shows that the delay in the third quartile
approached the original MSP. This is the reason the third
quartile is not recommended for selection as the threshold
value. The sender-side delay for those values is still high and
could even exceed the mean number of hash iterations of the
original MSP.

Another consideration for choosing the best threshold
function is the dynamic puzzle strength. We need to analyze
whether the threshold function leads to zero solution. We
utilized Equation (7) and the sum of hash iterations from the
output of the threshold function to calculate the probability
of finding the puzzle solution, as presented in Fig. 8.

Based on their quartiles, it can be seen that 22-bit puzzle

strength is grouped into two. The higher value of the quartile
means the higher value of the finding solution probability at
22-bit puzzle strength. The probability for the first quartile at
22-bit puzzle strength was about 0.22, while the probability
for the second quartile was about 0.43. The threshold
function with the highest probability of finding a solution
was Q2exp, followed by Q2power1 and Q2power2
respectively.

In the first quartile, the second power threshold function
(Q1power2) had a high probability of leading to zero
solution when approaching 8-bit puzzle strength. This was
proved by the result of the dynamic puzzle strength
experiment, as shown in Fig. 10.

Almost all of the message length variants using

DMP_Q1power2 approached zero solution. The use of the

Fig. 7 The average of hash iterations in MSP and DMP.

Fig. 8 Probability of finding puzzle solution with DMP.

Fig. 9 Threshold function summary.

210

threshold function became insignificant when the Q1power2
threshold function was used, so it is not recommended for
selection as the threshold value.

There were five functions left for threshold function
consideration. We analyzed the distance between puzzle
strength and maximum puzzle strength using MADL. The
result is rounded up and shown in Fig. 11.

Q2exp had the lowest MADL value, which means that the
puzzle strength of Q2exp was close to the maximum puzzle
strength (L = 22). It was followed by Q2power2, Q2power1,
and Q1exp respectively. Q1power1 reached the highest
value of MADL. The candidate threshold functions’
performances are summarized in the spider chart in Fig. 9.

Q1power1 had better performance than Q1exp for two

parameters that are the average value of hash iterations and
the puzzle solution probability. Also, Q2exp had better
performance than the other functions for the puzzle solution
probability and MADL. Two threshold functions are
recommended. If time is critical, then DMP using Q1power1
is preferred. However, if security is a more important aspect,
then DMP using Q2exp is selected.

The proposed method increases the overhead for both
parties. On the sender side, there is no big impact because it
only needs threshold function calculation and comparison
between the threshold function and the hash iterations.
However, the mechanism of puzzle strength transmission
increases the storage and computation overhead on the
receiver side. The index value (16 bits) and previous puzzle
strength (4 bits) need to be stored, and there is the additional
computation of the L hash and the (3.L + 1) sum operation.
This operation is needed to check whether hashing the sum
of the index, previous and current puzzle strength values
matches the received tag. The node sensor has to check this
starting from maximum puzzle strength down to one. The
computation and storage addition is still acceptable.

C. Security Analysis

Static puzzle strength makes it easy for adversaries to
send fake puzzle solutions. Even, the puzzle strength value
can be equal to the system. This is called a probability attack
[7], which is designed for puzzle systems with a fixed
pattern content and length, such as MSP. Since our proposed
scheme uses dynamic pattern length, the attacker can flood
the system with fake puzzle solutions at low length.
However, the attacker has to guess the values of the index,
previous puzzle strength and session key in order to break
the system verification. As mentioned above, the values for
index, previous and current puzzle strength are sent
implicitly. That information hides behind the value of the
hash function, which is sent partially.

Furthermore, the attacker has to guess the next session
key from the keychain. Using the brute force, the attacker
has to try 2L times to know the strength of the puzzle
solution and 264 times to know the session key. As discussed
above, the average value of hash iterations required for
puzzle creation in DMP is under 2L divided by two. That
value is under the trials number that is needed by the
attacker, i.e., 2(64+L).

IV. CONCLUSIONS

Dynamic Message Puzzle (DMP) scheme using the
Q1power1 and Q2exp threshold functions was proposed. We
built a tagging mechanism to transmit index and puzzle
strength implicitly. This approach can decrease sender-side
delay by reducing the average of the average value of hash
iterations by about 60%. Furthermore, this increases the
complexity of the attacker to guess the value behind the hash
function that impacts on the obscurity of the transmitted
packet.

The complexity and additional storage on the receiver
side are increased but still acceptable. Developing a scheme
for multiple sender systems that are close to real system
implementation becomes the next challenge for future
research.

NOMENCLATURE

HF hash function -

idxK a session key for index idx byte

L puzzle strength bit
nH hash iteration times

nH average value of hash iteration times

Fig. 11 MAD of dynamic puzzle strength in DMP.

Fig. 10 Frequency of puzzle strength occurrence for DMP_Q1power2.

211

keyN Number of keys -

()n M length of message byte

idxP puzzle solution for index idx byte

Sig signature byte
Subscripts
index Number of packet transmission -

ACKNOWLEDGMENT

The authors would like to thank the Indonesian
Endowment Fund for Education (Lembaga Pengelola Dana
Pendidikan / LPDP), Ministry of Finance, and the Republic
of Indonesia for providing a scholarship.

REFERENCES
[1] A. Mahmood, H. Yiğitler, R. Virrankoski, and R. Jäntti, “Recursive

clock skew estimation for wireless sensor networks using reference
broadcasts,” IET Wirel. Sens. Syst., vol. 2, no. 4, pp. 338–350, 2012.

[2] D. R. Wijaya, R. Sarno, E. Zulaika, and S. I. Sabila, “Development
of mobile electronic nose for beef quality monitoring,” in Procedia
Computer Science, 2017, vol. 124, pp. 728–735.

[3] P. Ning and A. N. Liu, “Mitigating DoS Attacks against Broadcast
Authentication in Wireless Sensor Networks,” ACM Trans. Sens.
Networks, vol. 4, no. 1, pp. 1–35, 2008.

[4] S. Hyun and P. Ning, “Seluge: Secure and dos-resistant code
dissemination in wireless sensor networks,” in In Information
Processing in Sensor Networks, 2008. IPSN’08, 2008, pp. 445–456.

[5] R. Zhang, J. Zhang, Y. Zhang, J. Sun, and G. Yan, “Privacy-
preserving profile matching for proximity-based mobile social
networking,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 656–
668, 2013.

[6] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle, “DTLS
based security and two-way authentication for the Internet of
Things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2710–2723, 2013.

[7] X. Du and H. Chen, “Defending DoS Attacks on Broadcast
Authentication in Wireless Sensor Networks,” in 2008 IEEE
International Conference on Communications, 2008, pp. 1653–1657.

[8] Q. Dong, D. Liu, and P. Ning, “Providing DoS resistance for
signature-based broadcast authentication in sensor networks,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 3, pp. 1–26, 2013.

[9] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and DoS-
resistant multi-hop code dissemination protocol for wireless sensor
networks,” Comput. Secur., vol. 32, pp. 36–55, 2013.

[10] D. He, S. Chan, and M. Guizani, “Cyber Security Analysis and
Protection of Wireless Sensor Networks for Smart Grid Monitoring,”
IEEE Wireless. Commun., vol. PP, no. 99, pp. 2–7, 2017.

[11] T. Aura, P. Nikander, and J. Leiwo, “DOS-resistant authentication
with client puzzles,” in In International workshop on security
protocols, 2000, pp. 170–177.

[12] P. Chuchaisri and R. Newman, “Fast response PKC-based broadcast
authentication in wireless sensor networks,” Mob. Networks Appl.,
vol. 17, no. 4, pp. 508–525, 2012.

[13] D. Kim, S. Member, and S. An, “PKC-based DoS Attacks-Resistant
Scheme in Wireless Sensor Networks,” IEEE Sens. J., vol. 16, no. 8,
pp. 2217–2218, 2016.

[14] F. Afianti, Wirawan, and T. Suryani, “Filtering methods for
broadcast authentication against PKC-based denial of service in
WSN: a survey,” in Fifth International Conference on Wireless and
Optical Communications, 2017, vol. 10465, p. 1046503.

[15] A. Liu and P. Ning, “TinyECC : A Configurable Library for Elliptic
Curve Cryptography in Wireless Sensor Networks,” in Proceedings
of the 7th international conference on Information processing in
sensor networks, 2008, pp. 245–256.

[16] G. De Meulenaer, F. Gosset, F. X. Standaert, and O. Pereira, “On the
Energy Cost of Communication and Cryptography in Wireless
Sensor Networks,” in WIMOB’08 IEEE International Conference on
Wireless and Mobile Computing, 2008, pp. 580–585.

[17] M. Sethi, J. Arkko, and A. Keranen, “End-to-end Security for Sleepy
Smart Object Networks,” in IEEE 37th Conference on Local
Computer Networks Workshops (LCN Workshops), 2012, pp. 964–
972.

[18] A. Xu, M. Li, J. Cai, N. Xue, J. Zhang, D. Liu, P. Craig, and X.
Huang, “Improving Efficiency of Authenticated OpenFlow
Handshake using Coprocessors,” in IEEE 8th International
Conference on Information Technology in Medicine and Education
(ITME), 2016, pp. 576–580.

[19] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve
Digital Signature Algorithm (ECDSA),” Int. J. Inf. Secur., vol. 1, no.
1, pp. 36–63, 2001.

[20] X. Cao, W. Kou, L. Dang, and B. Zhao, “IMBAS: Identity-based
multi-user broadcast authentication in wireless sensor networks,”
Comput. Commun., vol. 31, no. 4, pp. 659–667, 2008.

[21] Y. Liu, J. Li, and M. Guizani, “PKC based broadcast authentication
using signature amortization for WSNs,” IEEE Trans. Wirel.
Commun., vol. 11, no. 6, pp. 2106–2115, 2012.

[22] A. C. Cameron and A. G. F. Windmeijer, “An R-squared measure of
goodness of fit for some common nonlinear regression models,” J.
Econom., vol. 77, no. I, pp. 329–342, 1997.

[23] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of IPv6 Packets over IEEE 802.15.4 Networks,” No.
RFC 4944, 2007.

212

