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Abstract— Denial of Service (DoS) is a type of attack that has a huge impact on a computer system. This can deplete and shorten the 
lifetime of wireless sensor networks (WSNs). Signature-based DoS is a kind of DoS attack that exploits the high computation of a 
public key cryptography based authentication. The adversaries have the opportunity to send a large number of a fake signature to the 
WSNs. Message Specific Puzzle (MSP) was developed to defend against this type of attack. This scheme utilizes a hash function as an 
irreversible method to create a puzzle and produce a session key. Furthermore, this has low complexity in the sender and receiver for 
construction and verification process. However, the sender-side delay occurred. The higher the security expected for the system leads 
to the more time is needed for the user to send messages. The number of hash iteration in the puzzle construction cannot be 
controlled. This paper proposes the Dynamic Message Puzzle scheme that uses the power of first quartile (Q1power1) and the 
exponential of second quartile (Q2exp) threshold functions. These limit the maximum number of hash iterations for each puzzle 
construction. Consequently, this mechanism can decrease sender-side delay by at least 60%. Besides avoiding zero solution and has a 
high value of mean absolute deviation, this scheme also increases the adversaries’ complexity in attacking the system. The proposed 
scheme transmits index implicitly. This obscures the portion of each parameter in the transmitted packet. 
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I. INTRODUCTION 

The commonly used communications between nodes in 
wireless sensor networks (WSNs) are broadcast [1], [2]. This 
communication is efficient but lacks protection against 
denial of service (DoS) attacks. Such attacks can have a 
huge impact on a computer system by sending large numbers 
of false messages. This makes the system so busy verifying 
received packets that authenticated users cannot access the 
attacked sensor node. Apart from that, it can reduce WSN 
lifetime because node sensors are exhausted by verifying all 
the fake messages. 

A signature-based DoS attack is an action that sends a 
large number of fake signatures [3]. The main target of this 
attack is the high complexity of digital signature verification, 
which uses more energy than receiving messages [3]. 
Therefore, additional protection is needed to accompany 
public key cryptography based authentication.  

Several filtering methods have been developed against 
signature-based DoS attacks [3], [7]–[9], [11]–[13]. In 2000, 
Aura et al. developed a mechanism to resist DoS attacks in 
client-server environments [11]. This method, called MSP, 
was improved to allow for implementation in WSNs [3]. 
Instead of a puzzle, Du et al. used several key chains to 

represent each network user [7]. This approach is not 
scalable, because the number of key chains increases with 
the number of connected users. Later, Chuchaisri et al. 
developed key-pool and key-chain schemes [12]. These 
mechanisms incorporate the Bloom Filter Vector as the 
process of membership verification. They still have 
limitations in handling false positive packets. 

Furthermore, they use a forwarding key chain that is weak 
against compromised keys. In 2013, Dong et al. developed 
three filtering methods, namely a group-based filter, a 
keychain-based filter, and a hybrid filter [8]. The security 
performance of the group-based filter was less good due to 
the number of compromised nodes was high. The keychain-
based filter only had better security if the number of 
legitimate packets was low. Also, the computation overhead 
for the key-chain based filter was higher than for the group-
based filter. The hybrid filter combined both filters in order 
to reduce security limitations, but its implementation had 
high complexity. In the same year, Tan et al. added 
confidentiality and constructed a cipher puzzle mechanism 
for advertisement packets [9]. It has high security because 
every packet contains an encrypted message. However, this 
means it has high complexity, especially for resource-
constrained devices. In 2016, Kim et al. built a mechanism 
that randomly drops received packets based on sensor node 
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capacity, which depends on reservoir sampling as the packet 
selection algorithm. However, this method could drop 
legitimate messages as false harmful packets and forward 
fake messages as false positive packets. Among these 
filtering methods, MSP has the lowest complexity in the 
receiver verification process [14]. It only needs two hash 
operations to verify the puzzle solution and session key. 
Furthermore, no false positive or false negative packets can 
be received. Therefore, the Message Specific Puzzle (MSP) 
[3] is one of the most promising pre-authentication methods 
for unencrypted messages. 

MSP can be used in any application, especially the 
Internet of Things applications that exchange plaintext 
messages, to avoid signature-based DoS attacks [4]–[6]. This 
mechanism acts as a filter of the main digital signature. It 
only uses two hash function operations in the verification 
process. It has low computation complexity and is 
appropriate for the characteristics of sensor nodes. However, 
a drawback is a sender-side delay [7], [8]. The more security 
expected for the system, the higher the number of hash 
iterations needed to produce a puzzle solution. The higher 
number of hash iterations increases the delay or time needed 
for processing on the sender side. 

Furthermore, the pattern content and puzzle strength for 
each packet are fixed [7], [9], [10] so that adversaries can 
use copied packets as the sender. In order to resolve this 
limitation, this paper proposes a Dynamic Message Puzzle, 
which uses a threshold function. The pattern content is zero, 
but the length of the pattern or the puzzle strength is 
dynamic for each transmitted packet. The objective of this 
method is to control the sender-side delay by decreasing the 
puzzle strength if it exceeds a threshold value. We 
constructed a tag that consists of an implicit value for the 
index, the current and the previous puzzle strength. Its length 
is dynamic. The process of tagging obscures the index and 
puzzle strength. Also, it increases the attacker’s computing 
complexity in finding the puzzle solution. 

The following are two of the main contributions in this 
paper: 

• The development of dynamic puzzle strength in the 
Message Specific Puzzle (MSP) to decrease sender-
side delay while ensuring that there is a solution to 
each constructed puzzle. 

• It is obscuring packet transmission. The scheme does 
not send the index explicitly. It increases the computing 
complexity of the adversary by making it difficult to 
distinguish between the indexes and puzzle strength 
values. 

This paper is organized as follows: Section II briefly 
discusses the preliminary research and the proposed methods. 
The preliminary reviews the keychain that is used as a 
session key generator and MSP mechanism. Section III 
explains the design of the experiment, the result and its 
discussion including the security analysis of the proposed 
method. The concluding section summarizes this paper’s 
contribution. 

II.  MATERIAL AND METHOD  

This section provides a discussion of the MSP as the 
preliminary studies and the DMP as the proposed methods. 

A. MSP overview 

MSP was developed as a weak algorithm that acts as an 
addition to the main signature in order to counter DoS 
attacks [3]. This scheme is implemented in WSN 
environments. It consists of three main steps: one-way 
keychain as a method to generate a session key, digital 
signature creation, and puzzle solution construction. 

1) One-Way Keychain 

The one-way keychain is utilized to produce the session 
key in each transmitted packet. This mechanism blocks a 
fake message from the adversaries [3]. If the session key is 
not valid, then the packet will be dropped. Therefore the 
next steps cannot be continued. The limitation of this 
mechanism is the finite value of the key number that must be 
declared in the initialization phase [14]. 

A hash function is utilized as the basic algorithm for a 
one-way keychain. This starts with generating random value 
that is used to fill the last keychain. The rest of the key set is 
calculated using Equation (1) [7]: 

 
 1( )n H nK F K +=  (1) 
 
The calculation is stopped while the expected number of 

key is fulfilled.  The overall session key that utilized by the 
system is formulized by Equation (2). 
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Commitment key is the name for initial session key that is 
transmitted to the receiver. This parameter is utilized for the 
verification process. 

2) Digital Signature 

The high computation of digital signature generation 
provides challenge especially for the sensor nodes. This 
drawback is minimized by limiting the number of signature 
or modifies the main algorithm. The successful 
implementation of the public key cryptography (PKC) based 
authentication in the resource constraint device was 
presented [15]–[18]. 

MSP utilizes the Elliptic Curve Digital Signature 
Algorithm (ECDSA) as the main signature generation [3]. 
As a part of  Elliptic-Curve Cryptography (ECC) [19], this 
method is suitable for sensor nodes environments [20]. It is 
because of the efficient length of the key. The ECDSA’s key 
length is 40 bytes. This can produce signature that has length 
40 bytes while RSA requires 128 bytes [21]. The key length 
of RSA is longer than ECDSA.   

3) Puzzle Solution 

The last step before transmitting the packet is puzzle 
generation. The aim is looking for the hash result that has L 
bits consecutive zeroes value. It begins with a concatenation 
process, which aggregates several sent parameters and then 
hashes them. The output of the concatenation process is 
compared with the pattern. The MSP pattern has zero value 
and has a length of L bits. It is expressed in Equation (3): 
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B. Dynamic Message Puzzle 

This paper proposes a Dynamic Message Puzzle (DMP), 
which uses a threshold function. It can control the number of 
hash iterations so that sender-side delay can be reduced. 

Furthermore, dynamic puzzle strength increases the 
attacker’s complexity. The detailed of the system is 
presented as a block diagram that is shown in Fig. 1.  

 
 
The step starts with the offline initialization. This aims to 

generate the threshold function that is used in the real 
system. This step starts with an experimental process. Then, 
the value from its result is used as a starting point in the 
fitting process. The function from the fitting process is 
selected from some candidates based on certain parameters. 

Through an experimental process, values from the MSP 
puzzle generation activity were gathered. This process was 
repeated until a small sample was gathered for each different 
condition. The number of repetitions was set to 60 as a 
representation of the expected overall system behavior. An 
illustration of this mechanism is shown in Fig. 2.  

 
 

 
 
The statistic information on the characteristics of MSP is 

required to be analyzed. More specifically, the detailed 
information about the number of hash iterations required for 
each puzzle strength (L) variant. The average value of the 

 
Fig. 2 Diagram of Experimental process. 

 
Fig. 1 Block diagram of the proposed method. 
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number of hash iterations in each puzzle strength is 2L [3]. 
However, this paper aims to reduce this value because 
therefore sender-side delay can be decreased. The quartiles 
are utilized instead of the mean value. There are three 
quartiles, each of which represents part of the data. 

Another sent parameter that has variable length is 
Message. We observed five message length variants, i.e., 6, 
11, 22, 33 and 48 bits and chose to represent 2 variant blocks 
in the hash function. MSP uses SHA1. Its blocks are 
multiplications of 512 bits. The particular positions for each 
message length variant can be seen in Fig. 3.  

 

 
Hence, the possible value of the first quartile threshold 

value for each puzzle strength (L) was five, as the number of 
message variants. We had to select one of them to represent 
all message variants. In this work, we chose the maximum 
value because this could cover all message length variants. 
The same condition occurred in the second and third quartile. 
Furthermore, the value of the quartile threshold in each 
puzzle strength can be collected from the experimental 
process. 

The second step of the initialization process is fitting. 
This is aimed at creating a mathematical model in the form 
of a function from the experimental values. The values 
collected for each puzzle strength are fitted in a curve 
equation. A detailed illustration is shown in Fig. 4.  
 

 
For simplicity, the curve was fitted using MATLAB 

2015a. The function consists of an independent variable, i.e., 
puzzle strength max { :1 , }L L L L Z≤ ≤ ∈ , and a dependent 

variable, i.e., the number of hash iterations. Moreover, there 
are several functions that approximate experimental values. 

Several parameters can be used to calculate the function 
that is appropriate to represent the threshold value from the 
experiment. We selected two parameters. First, the 
coefficient of determination, or R-squared, in a range from 
zero to one. This compares the variants based on the original 
and the estimated values. The high R-squared values reflect 

the estimated values that are close to their original or actual 
value. It means that the highest value of R-squared, one, 
indicates that the predicted value is equal to the original 
value. Moreover, this parameter has been tested to measure 
the exponential family regression model [22]. This is 
formulated in Equation (4), the most general form of R-
squared:  
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Where: X[i]  denotes actual value in i th trial, Y[i]  means 

estimated value in i th trial and Y describes the average of 
the estimated value. 

Secondly, the root means square error (RMSE) is 
calculated. This value is often used to measure the deviation 
from original and estimated values from a population, as 
formulated in Equation (5):  
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Based on these two parameters, there were several 
functions as candidate threshold functions that fit well 
enough to the values from the experimental process. These 
functions cannot be used directly by the system. It is 
important to find the best threshold function that is 
appropriate for MSP puzzle generation. Therefore, three 
parameters were added to analyze threshold functions 
behavior. The details of these parameters are given in 
TABLE I. 

 
The number of hash iterations (nH) represents the delay 

on the sender side. The hash function has low complexity. 
This is different when the function is repeated for about 2L 

times, in which case there will be a delay. Furthermore, the 
mean absolute deviation of L (MADL) is used to count the 
distance from L to the maximum puzzle strength (Lmax). 
Although it is dynamic, the puzzle strength value is expected 
to approach the maximum puzzle strength. It measures the 
mean of the distance between other points to the central 
point. In our case, the central point is the maximum puzzle 
strength. For this goal Equation (6) is used:  
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If the hash iteration is confined, the zero solution may 
occur. Therefore, the puzzle solution probability must be 
measured. The probability of finding a solution in nH 
iterations for puzzle strength L is expressed in Equation (7) 
[3]:  

Fig. 4 Fitting process. 

TABLE I 
PARAMETER SELECTION FOR THE BEST THRESHOLD FUNCTION 

Parameter Description 
nH  Information about delay on the sender side 

LMAD  Mean of the distance in a set of L to the 
maximum value (Lmax) 

Puzzle 
Solution 
Probability 

Information whether puzzle scheme has a 
solution 

 

 
Fig. 3 Padding process on SHA1. 
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The communication from the user to the sensor node can 
be started after getting the best threshold function. The 
detailed process of real communication in Figure 1 is 
expressed by Algorithm 1 and Algorithm 2 that is 
implemented in the sender and receiver side. 

 

 
 

 
 

The activity on the sender side starts with signing the 
message using ECDSA (line 1 of Algorithm 1). The default 
value of the current and the previous puzzle strength (if the 

index is equal to 1 or the first packet is sent) is the maximum 
puzzle strength (line 3 of Algorithm 1). This value is set to 
22 bits. This is an acceptable number [3] regarding the 
amount of delay. The threshold variable contains the highest 
number of hash iterations for L-bit puzzle strength (line 5 of 
Algorithm 1). 

Meanwhile, the number of hash iterations for finding the 
puzzle’s solution is compared with the threshold value (line 
8 of Algorithm 1). The puzzle strength will be decreased, 
and the threshold value recomputed only if the hash 
iterations surpass the threshold value. This will stop when 
the puzzle is found, or zero solution (no solution) is reached. 

The last activity in the Dynamic Message Puzzle scheme 
is tagging. The first step is the summation of the index, and 
the previous and current puzzle strength (line 19 of 
Algorithm 1). The tag is the output of the hashing function 
for the summation and is cut into the first L bits. The last 
activity in Algorithm 1 is sending the packet, which consists 
of Message, Signature, Session Key, Puzzle Solution, and 
Tag. The length of each value is shown in TABLE.  

 
TABLE II 

PARAMETERS OF PACKET 

Parameter Length (bits) 
Tag  1, 2, 3, ..., L 

M  1, 2, 3,...., 384 
Sig 320 

idxK  64 

idxP  32 

 
The total length of the sent packet is 102 bytes referring to 

the IEEE standard for 802.15.4 [23]. Sending the index 
explicitly is avoided. Instead, the tag is used, which contains 
index value implicitly. This also reduces communication 
overhead and increases the attacker’s complexity by 
obscuring the values of the index and the current and 
previous puzzle strength by using a hash function. 

The base station as the first receiver broadcasts the packet 
to the node sensor as the actual receiver. The activity at the 
receiver’s side starts with tag verification (line 6 of 
Algorithm 2). The sensor node as the receiver tries the 
possible puzzle strength value based on the stored index and 
puzzle strength. The highest number of trials for each 
received packet is equal to Lmax. First, it tries the maximum 
puzzle strength as the current puzzle strength. If this fails, 
then the puzzle strength is decreased by one. The result of 
this process is that either the current puzzle strength is larger 
than zero (valid tag) or the current puzzle strength is zero 
(invalid tag). The process is continued with puzzle solution 
verification (line 14 of Algorithm 2) only if the tag is 
verified. This next process verifies whether the hash function 
result is matched with L bits of zeroes. The input parameter 
of the hash function is the concatenation of the stored index 
and other parameters from the received packet (line 15 of 
Algorithm 2). If this is the case, then the puzzle solution is 
valid, and the algorithm continues to session key verification 
(line 17 of Algorithm 2). This mechanism is part of the 
puzzle solution verification. It aims to avoid fake puzzle 
with the same consecutive zero patterns. The sensor node 
repeats the hash function (index+1) times on the received 

Algorithm 2 DMP Constructor on the Sender Side 

 

Algorithm 1 DMP Verification on the Receiver Side 
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session key. After that, it has to check whether the result is 
the same as the commitment key it has stored. If it is the 
same, then the algorithm continues to the last verification 
step, i.e., ECDSA verification (line 20 of Algorithm 2). This 
process needs information about the public key of the 
sender, message, and signature it has received. The details of 
this process can be found in [19].  

III.  RESULTS AND DISCUSSION  

This section contains a discussion of the experimental 
design including its result and security analysis.  

A. Experimental Design 

We implemented our proposed scheme using Network 
Simulator-3 (NS-3), version 3.20 with a WSN module. The 
detailed network construction for our scheme is displayed in 
Fig. 5 

 

 
The sender-side consists of Administrator, namely STA1, 

and the R1 router. The receiver-side consists of the R2 router, 
base station, and some sensor nodes. There is no fixed 
number for the number of sensor nodes; it can be increased 
to fulfill the requirement. Furthermore, the data rate from the 
sender’s router to the base station is 5 Mbps because it is 
operated through the cloud. In contrast, the data rate from 
the base station to the wireless sensor nodes is 250 kbps as it 
is a resource-constrained device. 

The testing scenario for communication between the 
sender and the wireless sensor network was divided into five 
types based on the contents of the message. Details of the 
contents of each message can be seen in TABLE III.  

 
TABLE III 

MESSAGE CONTENTS 

Message Sample Length 
(bits) 

silent 6 
so shutdown 11 
save key delete repair 22 
recovery share send add max power 33 
wireless sensor network stop-start 
shutdown play 

48 

 

 

B. Performance Analysis 

From the offline initialization, we got the experimental 
values as shown in Fig. 6. These values are the maximum 
numbers for each variant of message length. The higher the 
puzzle strength, the higher the number of hash iterations in 
each quartile.  
 

 
 
Based on the quartile value from the experimental 

process, we got candidate mathematical models for each 
quartile. The functions consisted of an independent variable, 
i.e., puzzle strength ranging from 1 to 22, and a dependent 
variable, i.e., the number of hash iterations. Two types of 
functions are appropriate in this case, i.e., power functions 
and exponential functions. Furthermore, we used two power 
functions to differentiate the puzzle strength used. The first 
power function used the constant value as the base and the 
puzzle strength variable as the exponent. The second power 
function used the puzzle strength variable as the base and the 
constant value as the exponent. The last function was an 
exponential function followed by constant multiplication. 
TABLE shows the particular functions for each quartile and 
the type of function, followed by the measurement to find 
the best approximate function.  
 

TABLE IV 
THRESHOLD FUNCTIONS 

Threshold Function Name R-squared RMSE 
Q1power1 =  0.9874 2.8085e+04 

Q1power2 =   0.9892 2.5977e+04 

Q1exp =     0.9881 2.7198e+04 

Q2power1 =  0.9760 8.7320e+04 

Q2power2 =  0.9939 4.4053e+04 

Q2exp =      0.9912 5.3044e+04 

Q3power1 = 0.9861 1.5488e+05 

Q3power2 =  0.9987 4.6620e+04 

Q3exp=  0.9989 4.4073e+04 

 
It can be seen that the second power function had the best 

value for both parameters. It had the highest R-squared 
approximating one and the lowest RMSE. Furthermore, the 
first power function had the lowest value of R-Squared and 

 
Fig. 6 Quartiles of hash iteration values in MSP from experimental 
process. 

 
Fig. 5 Network topology for simulation 
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the highest RMSE among the three types of threshold 
functions. The three-second power functions were the best 
three fitted functions. However, two parameters are not 
enough to justify the assumption that the best-fitted function 
is also the best threshold function. This needs more analysis 
based on other aspects because the deviation between the 
lowest (L = 1) and the highest (L = 22) puzzle strength in our 
case was very high. Especially the second power function 
tended to miss lower values of puzzle strength to be fitted 
compared to higher values, so that it had the highest 
estimated value under the original value among the three 
functions, even though a lower estimated value leads to zero 
solution. 

For further analysis, the average of hash iterations for 
each function is computed. The average of hash iterations 
value for each length message variant can be found in Fig. 7, 
which shows a comparison between the maximum puzzle 
strengths of MSP (MSP_L=22) and DMP with threshold 
function variants.  

 

 
A higher number of hash iterations mean a more sender-

side delay in sending messages. The higher the quartile 
number, the higher the average value of hash iterations. 
DMP_Q1power1 had the lowest average value of hash 
iterations, followed by DMP_Q1exp and DMP_Q1power2 
respectively. The average value of hash iterations for 22-bit 
puzzle strength was 222, or equal to 4194304. The highest 
average value of hash iterations in the first quartile (Q1) of 
DMP was about 1707555 for 33-bit messages of 
DMP_Q1power2, which is a decrease of about 60%. The 
DMP_Q2power2 had the lowest average value of hash 
iterations in the second quartile of DMP threshold functions, 
followed by DMP_Q2exp and DMP_Q2power1 respectively. 
Also, the overall value of DMP_Q3 was lower than the 
MSP_L=22. However, the mean numbers of hash iterations 
of DMP_Q3power2 for 11-bit messages and 
DMP_Q3power1 for 22-bit messages were higher than for 
MSP_L=22. This shows that the delay in the third quartile 
approached the original MSP. This is the reason the third 
quartile is not recommended for selection as the threshold 
value. The sender-side delay for those values is still high and 
could even exceed the mean number of hash iterations of the 
original MSP.  

Another consideration for choosing the best threshold 
function is the dynamic puzzle strength. We need to analyze 
whether the threshold function leads to zero solution. We 
utilized Equation (7) and the sum of hash iterations from the 
output of the threshold function to calculate the probability 
of finding the puzzle solution, as presented in Fig. 8.  

 

 
Based on their quartiles, it can be seen that 22-bit puzzle 

strength is grouped into two. The higher value of the quartile 
means the higher value of the finding solution probability at 
22-bit puzzle strength. The probability for the first quartile at 
22-bit puzzle strength was about 0.22, while the probability 
for the second quartile was about 0.43. The threshold 
function with the highest probability of finding a solution 
was Q2exp, followed by Q2power1 and Q2power2 
respectively. 

In the first quartile, the second power threshold function 
(Q1power2) had a high probability of leading to zero 
solution when approaching 8-bit puzzle strength. This was 
proved by the result of the dynamic puzzle strength 
experiment, as shown in Fig. 10.  

 

 
Almost all of the message length variants using 

DMP_Q1power2 approached zero solution. The use of the 

 
Fig. 7 The average of hash iterations in MSP and DMP. 

 
Fig. 8 Probability of finding puzzle solution with DMP. 

 
Fig. 9 Threshold function summary. 
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threshold function became insignificant when the Q1power2 
threshold function was used, so it is not recommended for 
selection as the threshold value.  

There were five functions left for threshold function 
consideration. We analyzed the distance between puzzle 
strength and maximum puzzle strength using MADL. The 
result is rounded up and shown in Fig. 11.  

 
Q2exp had the lowest MADL value, which means that the 
puzzle strength of Q2exp was close to the maximum puzzle 
strength (L = 22). It was followed by Q2power2, Q2power1, 
and Q1exp respectively. Q1power1 reached the highest 
value of MADL. The candidate threshold functions’ 
performances are summarized in the spider chart in Fig. 9.  
 

 
Q1power1 had better performance than Q1exp for two 

parameters that are the average value of hash iterations and 
the puzzle solution probability. Also, Q2exp had better 
performance than the other functions for the puzzle solution 
probability and MADL. Two threshold functions are 
recommended. If time is critical, then DMP using Q1power1 
is preferred. However, if security is a more important aspect, 
then DMP using Q2exp is selected.  

The proposed method increases the overhead for both 
parties. On the sender side, there is no big impact because it 
only needs threshold function calculation and comparison 
between the threshold function and the hash iterations. 
However, the mechanism of puzzle strength transmission 
increases the storage and computation overhead on the 
receiver side. The index value (16 bits) and previous puzzle 
strength (4 bits) need to be stored, and there is the additional 
computation of the L hash and the (3.L + 1) sum operation. 
This operation is needed to check whether hashing the sum 
of the index, previous and current puzzle strength values 
matches the received tag. The node sensor has to check this 
starting from maximum puzzle strength down to one. The 
computation and storage addition is still acceptable.  

C. Security Analysis 

Static puzzle strength makes it easy for adversaries to 
send fake puzzle solutions. Even, the puzzle strength value 
can be equal to the system. This is called a probability attack 
[7], which is designed for puzzle systems with a fixed 
pattern content and length, such as MSP. Since our proposed 
scheme uses dynamic pattern length, the attacker can flood 
the system with fake puzzle solutions at low length. 
However, the attacker has to guess the values of the index, 
previous puzzle strength and session key in order to break 
the system verification. As mentioned above, the values for 
index, previous and current puzzle strength are sent 
implicitly. That information hides behind the value of the 
hash function, which is sent partially. 

Furthermore, the attacker has to guess the next session 
key from the keychain. Using the brute force, the attacker 
has to try 2L times to know the strength of the puzzle 
solution and 264 times to know the session key. As discussed 
above, the average value of hash iterations required for 
puzzle creation in DMP is under 2L divided by two. That 
value is under the trials number that is needed by the 
attacker, i.e., 2(64+L). 

IV.  CONCLUSIONS 

Dynamic Message Puzzle (DMP) scheme using the 
Q1power1 and Q2exp threshold functions was proposed. We 
built a tagging mechanism to transmit index and puzzle 
strength implicitly. This approach can decrease sender-side 
delay by reducing the average of the average value of hash 
iterations by about 60%. Furthermore, this increases the 
complexity of the attacker to guess the value behind the hash 
function that impacts on the obscurity of the transmitted 
packet.    

The complexity and additional storage on the receiver 
side are increased but still acceptable. Developing a scheme 
for multiple sender systems that are close to real system 
implementation becomes the next challenge for future 
research. 

NOMENCLATURE 

HF  hash function - 

idxK  a session key for index idx  byte 

L  puzzle strength bit 
nH  hash iteration times 

nH  average value of hash iteration times 

 
Fig. 11 MAD of dynamic puzzle strength in DMP. 

 

 
Fig. 10 Frequency of puzzle strength occurrence for DMP_Q1power2. 
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keyN  Number of keys - 

( )n M  length of message byte 

idxP  puzzle solution for index idx  byte 

Sig signature byte 
Subscripts 
index Number of packet transmission - 
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