International Journal on Vol.9 (2019) No. 2
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

Logical Approach: Consistency Rules between Activity Diagram and
Class Diagram
Noraini Sulaimaft, Sharifah Sakinah Syed Ahnfa&abrina Ahmald

#*Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Melaka, Malaysia
E-mail: *sakinah@utem.edu.mysulaiman_noraini@yahoo.corfsabrinaa@utem.edu.my

Abstract— Requirements engineering (RE) is a fundamental in software development process. Requirements engineering
encompasses activities ranging from requirements elicitation and analysis to specification, verification and validation. Poor
requirements have been proved to be a major cause of software problems such as cost overruns, delivery delays, failure to meet
expectation and degradation. Requirements validation especially models validation has gained quite an interest from a lot of
researchers. In recent times, several researchers have expressed a great deal of interest in requirements validation, specifically models
validation. The field of research related to consistency checking has undergone a considerable boom from time to time. Numerous
methods, approaches and techniques have been recommended to address the requirements inconsistency issues, particularly in
models validation. In the software development industry, UML modelling has been extensively used. The different forms of the UML
model that characterise the system from various perspectives somehow establish a relation among the models to keep them
inseparable from one another. This is the reason why the inconsistency becomes unavoidable. The inconsistency in the models arises
when there is an overlap of the elements of the various models representing the different parts of the system and an absence of
cooperation. In this paper, the emphasis is given on the consistency rules that exist between the two models. The focus is also on the
class diagrams and activity, and the conversion of the rules into logical predicates, where the logical predicates are assessed with a
sample case study that constitutes of the two models.

Keywords— requirements engineering; UML modeling; logical approach; consistency rules; activity diagram.

I. INTRODUCTION be expressed into a single requirement. Tools and techniques

Requirements engineering (RE) is the first phase of the Were introduced to translate this NL into logic statements by

software development process to develop software that isUSing logic and mathematical formulas [1]. _
The use of logic is theoretically proved effective to model

working perfectly and fulfill the client's needs.) X L i

Requirements engineering encompasses activities rangindl€ requirements by using Unified Modeling Language

from requirements elicitation and analysis to specification, (UML). UML is a standard modeling language to represent
the requirements of the system in diagrammatic notations in

verification, and validation. Poor requirements have been" ™ X ;
proved a major cause of software problems such as cospbiect-oriented development practices. The UML currently

overruns, delivery delays, failure to meet expectation andProvides 14 diagrams to visualize the requirements of the
degradation. The requirements inconsistencies normallySystem from different aspects [2]. For example, Use Case
happen during requirements elicitation phase that makesiagram (UCD) models the functionalities of the system,
customer's needs usually uncertain and sketchy. It couldACtivity diagram (AD) describes the flows of activities and
lead to an inadequate, incomplete, inconsistent, or actions of the system, and Class d|agr§1m (CD) describes the
ambiguous Software Requirements Specification (SRS).Structure of the system [3]. However, it may not always be
These drawbacks in SRS have a critical impact on thePOssible to get consistent models. The more overwhelming a
quality of software development. SRS is written in Natural SYS€M is, the more its development obliges an accumulation
Language (NL). This NL is prone to misunderstanding of distinctive models. The vast scale modern system may

because of the lack of clarity. It is sometimes difficult to use N¢lude several software engineers taking a shot at many
language in a precise and ambiguous way without makingd'St'nCt'Ve however related models speaking to parts of the

the document wordy and difficult to read. Sometimes it leads €"ire System detail. Guaranteeing consistency between
to requirements confusion. The developer could not those models gets to be basic as even a minor inconsistency

distinguish whether it is a functional requirement or non- C&n Prompt critical faults in the system [4].
functional requirement; sometimes several requirements may

552

Therefore, we need to do requirements validation, which several classes related to class aggregation. Using external
is a concern with checking the requirements for consistency,events, we can even synchronize several activity diagrams.
completeness, and correctness (three Cs) Zowghi andVNe then validated the rules by providing examples of
Gervasi stated in their paper about the relationship betweermrmodels from a case study.
these three Cs [5]. To preserve the consistency in
requirements, we often failed to preserve their completeness;
therefore, it affects the correctness of the conditions because
generally in an attempt to complete the requirements, we o

. . . Application
tend to add more requirements, which increase the Domain
possibility of inconsistency to happen. Hypothetically, the
increasing of completeness will decrease the consistency and
correctness of requirements.

Consistency checking rules can emerge from several

Notation Local

sources such as (see Figure 1); Notation definitions; for Definition Contigencies
example, in a strongly typed programming language, the .
. . . . Consisntecy
notation requires that the use of each variable be consistent Checking
with its declaration. Development methods; for example, a Rule Sources

method for designing distributed systems might require that
for any pair of communicating subsystems, the data items to
be communicated must be defined consistently in each
subsystem interface. Development process models; a process
model typically defines development steps, entry and exit De‘,(j;‘t’ﬁg“de“‘ P'Drg‘c’:'s‘;p,\’/‘l“jg;
conditions for those steps, and constraints on the products of

each step. Local contingencies; sometimes a consistency
relationship occurs between descriptions, even though the
notation, method, or process model does not predetermine
this relationship. For example, a particular timing constraint
@n requi_rement A must pe t_he same as the timing cc_)nstraint Il. MATERIAL AND METHODS
in requirement B. Application domains; many consistency

rules arise from domain-specific constraints. For example, A. Background Studies

the telecommunication domain might impose copstraints On There are several approaches proposed by the researchers
the nature of a telephone call. Such constraints can be(egarding consistency checking between UML models. A
specified as consistency rules to be checked duringpew approach called View Integra to use consistent
development. transformation to detect the inconsistency by converts the
There are several techniques or approaches to validate thgoyrce diagrams into targeted diagrams that need to be
requirements such as requirements review, prototyping,compared with (Egyed & Rey 2001). The converted
model validation, requirements testing, etc. Different giagrams are called “interpreted” diagrams. They presented a
approaches and tools [6]-[9] have been proposed by th&ransformation framework for five UML diagrams; class,
researchers in different ranging of inconsistency opject, sequence, collaboration, and state machine but there
management, from diagnosing to handling the 3re no consistency rules listed in their work. Shinkawa
inconsistencies. Every researcher stated that how importanfgentified the consistency for UML inter-models using
it is to have good techniques to manage the inconsistenciegolored Petri Net (CPN) formalism, where all the models
in requirements regardless at any phase in softwareare represented by a common notation [11]. They focused on
development it is being implemented. _ four diagrams; use case, activity, state machine, and
In this research, we aim to justify the consistency sequence. The drawback from this approach is, to get the
checking rules for two commonly used UML models in ¢onsistent models, the original models need to be converted
software development, which are Activity diagram (AD) and into CPN models then convert them back into their original
Class diagram (CD) by using a logical approach. Previousstates, which is taking quite a time to do that.
studies are still lack of concerns on these two models, even Sapna & Mohanty [12] chose to use direct approach by
though activity diagram is one of the top five most used proposing the rules for structural inter-model consistency
UML diagrams in industry and the fact that the number one pgsed on Object Constraint Language (OCL), which is
most used UML diagram is Class diagram are the reasongyimarily used to determine structural consistency rules and
why we chose to focus on these two models [10]. Thethe relationship between the diagrams then transformed the
feedback we got from the questionnaire regarding the mostyles into SQL triggers and applied the rules to diagrams
used UML diagrams, which the respondents chose activitysaved in a repository. Their focused diagrams are a use case,
diagram as their most used UML diagram in their activity, class, sequence and state machine. Kalibatiene et al.
development also has convinced us to focus on these m0d9|§)roposed a rule-based method to check consistency in UML
Activity diagrams are usually associated with a class as suchjjagrams [13]. The proposed method was assessed using
they model the operations flow inside the class. NevertheIes%ommraﬂve analysis and questionnaires. They elicited 50

the activity diagram also allows a hierarchical consistency rules from 11 reviewed papers and from the 50
decomposition, with sub activity states, and so it can model

Fig. 1 Consistency checking rule sources.

553

consistency rules; they evaluated the rules and removed théy checking the set of inferences rules (predicate logic) for
redundant rules. their validation. The paper focused on checking the

Meanwhile, Torre [14] has successfully introduced 190 consistency of class diagrams by translating the diagram into
consistency rules for all 14 UML diagrams out of 619 Web Ontology Language (OWL 2) ontology and used the
consistency rules through empirical research. Compared toOWL 2 reasoner to reason the translated ontology. OWL 2
[13], which was focused on technique to identify the provides axioms to translate UML elements into OWL 2
inconsistency and did not present any consistency rulessemantics.

Torre has presented the whole collection of the rules in their Ryndina and Jochen proposed an approach in their paper
paper. [18] to establish consistency between business process
Chanda et al. proposed a framework for models models and object life cycles using activity diagram and
verification that composes syntactic correctness rules,state machines diagram respectively. They defined two
consistency rules and traceability rules based on theconsistency notions for a process model and an object life
relationship between the models [15]. By using a context- cycle and expressed these in terms of conditions that must
free grammar (CFG) and UML 2.0 standard, they have hold between the given life cycle and the life cycle that
defined few rules of the syntactic correctness of the generated from the process model. Those consistency

diagrams, diagram traceability, and consistency based on theotions were transformed into predicate logic to form
common elements shared by the focused models. They havequivalence and refinement definitions.
used Lex and YACC to validate the CFG. They have defined In this paper, we try to justify consistency rules for
traceability rules to ensure the consistency between thebetween two models, activity and class diagrams since there
models by mapping the common elements from use case tis no research in justifying the consistency rules between
activity and from activity to class. these two models; activity and class diagram yet (refer Table
Ibrahim et al. proposed three structural consistency rulesl). A software project mostly comprises of many designs
between use case diagram and activity diagram using logicathat represent both static and behavior abstractions of the
approach [16]. They defined the elements of those twosoftware. In [19], Spanoudakis stated, “Structural
models gathered from other literature then formalized the consistency rules define the relationship that should hold
elements to construct their proposed consistency rules. Kharbetween the model elements regardless of the way they have
proposed to check the consistency of UML by using logical been constructed”. The common elements shared by the two
reasoner [17]. The approach proposed the translations of thenodels to be identified and defined. The rules then will be
UML based designs into the form of logic facts such as justified using a logical approach before they will be tested
predicate logic and then used an automatic logical reasoneusing a case study that consists of both of the models.
to infer the logic facts. A reasoner performed the reasoning

TABLE |
SUMMARY OF CONSISTENCY RULES APPROACH
Articles Approach Focused UML Diagram
UCD | AD |CD | SMD | SD OD | COD| Others
(eg: COMD, ID, DD,
CSD, TD 10D, PSMD)
[20] transformational 4 4 v v v
[11] transformational v v
[12] direct v v v v v
[21] knowledge base 4 4 4
[13] rule-based v v v v v v v v
[2] empirical research 4 v 4 4 v v v v
[15] logical v v v
[16] logical v v
[17] logical 4
[18] logical v v

The previous researches regarding the model'sobject-oriented development practices. The UML models
requirements consistency checking were mostly focused orrepresent the static structural and behavioral of the software
techniques how to detect the inconsistencies between the twaystem. The developers using class diagrams mostly describe
models and not the justification for consistency rules the static structural and the behavioral of the system can be
especially the rules between activity and class diagrams.depicted by using activity diagrams or sequence diagrams or
Regarding that matter, we chose to identify the rules for state diagrams. In short, the class diagram is used to
these two models and try to justify the rules using a logical understand the static structures of classes and activity
approach. diagram is used to understand the control flows of process or

, . i operation. The lack of researches regarding consistency rules
B. Consistency rules between Activity and Class diagrams 5, activity diagram even though activity diagram is one of

UML is a standard modeling language to represent thethe top five most used UML diagrams in the industry and the

requirements of the system in diagrammatic notations infact that the number one most used UML diagram is Class

554

diagram are the reasons why we chose to focus on these tw
models [10].
Ohnishi proposed in their paper [22], that to ensure the

Befinition 1. A UML Model is defined as a set
Model = {<AD>, <CD>}
Where

consistency of these two models, we need to check for threedD = {ad;| 1 < i <n} is finite set of activity diagrams.

things;

» Classes in AD and CD. The element of class in a class
diagram is equal to the element of swim lane or
partition in an activity diagram. Swim lane can be
referred to a class in an activity diagram.

» Actions in AD and operations in CD and Element of
action in activity diagram are equal to the element of
operation in the class diagram.

Control flows between classes in AD and associations
in CD. The element of control flows between swim

lanes is equal to the association between classes in a

class diagram.

1) Rules Collection

Based on the literature reviews from other researchers [2],
[12], [15], [16], there is a total of five rules between activity

CD = {cdqq,| 1 <i<n}is finite set of class diagrams for
an activity.

Definition 1 descries a UML model that consists of at least
one activity diagram and one class diagram.

1) Formalization of AD

The activity diagram (AD) consists of elements in term of;
Activities or activity states represent the invocation of
an operation, a step in a business process.
Transitions or threads represent the flow of control
from one activity to another through a link between
the activities.

Swim lanes represent a mechanism to group activities
performed by the same organizational units.

Definition 2. Activity diagram,ad is defined as a set

diagram and class diagram have been identified. Table 2 listgq = {<N>, <AE>, <C>},

the rules between AD and CD.

TABLE Il
RULES BETWEENAD AND CD

No Rules

1 | Aclass name that appears in an activity diagram also
appears in the class diagram.

2 Swim lanes/partition in Activity diagram (represented
as class Name in activity state) must be present ag a
unique class in the class diagram.

3 Each activity in an activity diagram must have a
corresponding operation in the class diagram.

4 | An action that appears in an activity diagram must
also appear in the class diagram as the operation of a
class.

2) Rules Refinement

In this step, we removed the duplicates of UML
consistency rules that are either identical to or are implied by

where

N = {nodes|1<i <n }is a finite set of nodes,
AE_-{ae|1l<i<n}is an edge that connected the nodes,
C={ci|1<i <n}is a containment elements

Definition 3. N is a collection of nodes in the AD,
Ngq, = {<CN>, <ON>, <AC>}

where

CN ={cn|1<i <n}is a finite set of control nodes,
ON_: {onj]1<i < n }is a finite set of object nodes,
AC= {ac|1<i <n}is a finite set of action nodes.

Definition 4. AE is an activity edges,

AE = {<CF>, <OF>}

where

CF ={cf;|1<i <n } is a finite set of control flows,
ON.: {ofi|1<i < n }is a finite set of object flows.

another rule [23]. We do not need two or more rules that Definition 5. C is a containment element
have the same meaning. For example; Rule 1 and 2 for ADe - {<ACT>' <AP>})
and CD (refer to Table 2) are kind of have the same meaningNhere ’

a) Rule 1: A class name that appears in an activity
diagram also appears in the class diagram.

b) Rule 2: Swim lanes/partition in Activity diagram
(represented as class Name in activity state) must be prese

ACT = {act|1<i <n }is a finite set of activities,
AP {apj|1<i < n}is a finite set of activity partitions.

Definition 6. CN is set of control nodes and defined as
isjoint set,

as a unique class in the class diagram. Both of Rule 1 anq ; Ak y FFUDSUJUFK U M

Rule 2 above give out the same meaning where the eleme
of swim lane of an activity diagram also represented as clas
Name should appear as a class in a class diagram. Therefor
we can remove one of the rules or we can create another rul
that has the same meaning as those two rules.

¢) Rule 3: Each activity partition in an activity must
have a corresponding class in the class diagram.

C. Formalize the Models
In this section, we described the formalization of the

§={i|1<i

here

<n }is afinite set of initial nodes,
&F_{af|1<i < n}is a finite set of activity final nodes,
Br ={ff;|1<i < n}is a finite set of flow final nodes,
DS: {ds|1<i < n}is a finite set of decision nodes,
J={ji|1<i < n}is a finite set of join nodes,

FK - {fkj|1<i < n}is a finite set of fork nodes,

M- {m;|1<i < n}is a finite set of merge nodes.

2) Formalization of Class Diagram (CD)

elements of these three models and then, the consistency The class diagram (CD) consists of elements in terms of;

rules between them could be shown [16].

555

Objects grouped into classes

operations
Relationships between classes called associations

Definition 7. cd described a class diagram for an activity
diagramad and is defined as a finite set of class diagrams,
cdqq; = cdaay,s €dag;ys) €daa,,|ad € AD}

where cd,q,€ CD

Definition 8. Let for each class diagram for an activity
diagram,cd,q, is defined as

cdqq; = {<Class><Rel>},

WhereClass = {lass;| 1 < i < n} is a finite set of classes
in cdgq,

Definition 9. A Class is a classifier, which describes a set of
objects that share the same attributes and methoct,j)
ClaSSCdadiz {<Name>, <Att>,<Operation> }

Where

Name ={name;|1 < i < n}is a name of the class in class
Att = {att;|1 < i < nlis a finite set of attributes inlass;
Operation = pp;|1 < i < n}lis a finite set of methods in
class;

Properties of classes that consist of attributes and

I1l. RESULT AND DISCUSSION

In this research, we use UML Models for Tour
Management System (TMS) as a case study to discuss the
application of our proposed method. TMS enables visitor
requests for the scheme to check the availability of the
desired tour package. This information is stored in the Tour
Information System. The system will check whether the
customer is existing or new. The new user will enter his
personal and tour details for the reservation. In turn, he/she
is provided with a system-generated unique ID and password
for Login. When a customer is satisfied with the tour
package, he/she will request for reservation of tour. Personal
details of a new customer are stored in cust_info while the
details regarding the tour selected by the particular customer
are stored in tour info and the details regarding it would be
restructured in Tour Information System. Existing customer
can update his/her details in cust_info and cancel the
reservation for a tour from tour_info and changes regarding
it are reflected in Tour Information System. The
requirements of TMS are captured and visualized using a use
case diagram. The functionalities of each use case are then
modeled using activity diagrams. To show how UML
diagrams fulfilled our proposed consistency rules, we
showed one activity diagram (Appendix 1) and a class

Each class is characterized by a name, which is unique fodiagram of the whole system (Appendix 2).

each one, and a set of properties called attributes an

operations.

3) Formalization on Consistency between AD and CD

Rule 1: An activity partition in an activity diagram must
have a corresponding class in a class diagram.

Proposition 1 If there is an activity partition in the activity
diagram, then there exists a corresponding class for th
activity partition.

Justification. Let given

C = {<ACT>, <AP>}is a containment elements

Where

AP = {ap;|1 < i < n}is a finite set of activity partitions
Let cdqq; = {<Class>,<Rel>},

Where

Class = {class;| 1 < i < n}is a finite set of classes 4,
Cdclassi = {Cdclassil' Cdclassizr] Cdclassinl class € CD}
ThereforeV ap; € AD : 3cd g5, where cd s, € CD

Rule 3. An action in an activity diagram must have a
corresponding method in a class diagram.

Proposition 3. If there is an action in an activity diagram,
then there exists a method in a class in the class diagram.
Justification. Let given

Ngq, = {<CN>, <ON>, <AC>}is a finite set of nodes

Where AC={acg|1<i<n}is a finite set of action nodes in,
Let Classtadi: {<Name>,<Att>,<Operation> },

Where Operation = ¢p;|1 < i < n}is a finite set of
operations irclass;

And Opclassi = {Opclassilr Opclassizr T Opclassinl class €
CD}
ThereforeV ac; € AD : 30p a5, Where 0pciass; € CD

556

dA. Consistency Rules between AD and CD

Rule 1. An activity partition in an activity diagram must
have a corresponding class in a class diagram.

For “Tour Information System” activity partition in
Appendix 1, there is a corresponding class in a class diagram
eAppendix 2,i.e.

aProur Information System
€ ADrys, then cdpig, where cdyps
€ CDrys

Appendix 1 and Appendix 2 fulfilled Rule 1, i.e.,

v aProur Information System € ADTMS
: dcdpg, Wwhere cdps € CDrys

Rule 2 Each activity in an activity diagram must have a
corresponding operation in a class diagram.

For “Select tour details” activity in Appendix 1, there is the
corresponding operation in a class diagram Figure 3, i.e,

aCtSelect Tour Details ADTMS' then EI‘)pSelect Tour Details()’
where 0Pseiect Tour petaits) € CDrus

Appendix 1 and Appendix 2 fulfilled Rule 2, i.e,

AClseiect Tour Details € ADTMS : ElopS(elect Tour Details()’
where ODselect Tour Details() € CDTMS

Rule 3. An action in an activity diagram must have a
corresponding operation in a class diagram.

For “Get Tour Details” action in Appendix 1, there is the
corresponding operation in a class diagram Appendix 2, i.e.,

QACGet Tour Details ADTMS! then Jd0oPget rour Info() (3]

where 0pget Tour infoc) € CDrums [4]
Appendix 1 and Appendix 2 fulfilled Rule 3, i.e.,

ACget Tour Details € ADTMS
: ElopGet Tour Info()'Where ODGet Tour Info() € CDTMS

IV. CONCLUSIONS [6]

A large number of UML consistency rules have been [7]
proposed by researchers to identify inconsistencies between
UML models. However, no previous research has proposeo[s]
the justification for consistency rules between two models;
activity and class diagrams. This work presents results[g]
obtained by following a systematic protocol, whose aim was
to identify and analyze UML Consistency rules from the
literature. The set of UML Consistency rules compiled by
Torre (2014) was analyzed and consistency rules between
the two diagrams, class diagram, and activity diagram werel[11]
extracted and transformed into predicate logics to justify the
validation of the rules. The acquired predicated logics then[lz]
have been validated against related UML models.

The results from the questionnaire survey confirmed the
lack of requirements consistency checking practice within [13]
the software development industry. Even standard topics in
requirements consistency research are new and unfamiliar tg14]
many companies. Most of the respondents said that they
don't apply consistency checking because of the time [15]
constraint which consistency checking is normally will take
time to be done, and their schedule will be left behind.
Nevertheless, most of the companies need to improve theit16]
requirements consistency practices.

(10]

ACKNOWLEDGMENT

The authors would like to thank the Universiti Teknikal
Malaysia Melaka for funding the study through
PJP/2018/FTK (16A)/S01642. Besides, thank you to the[19]
Faculty of Information Technology and Communication for
providing excellent research facilities.

(17]

(18]

(20]

REFERENCES [21]

[1] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in [22]
natural language requirement&CM Trans. Softw. Eng. Methodol.
vol. 14, no. 3, pp. 277-330, 2005.

[2] D. Torre, “A systematic identification of consistency rules for UML
diagrams,” 2015.

(23]

557

H. Eriksson and M. PenkeBusiness Modeling With UML: Business
Patterns at WorkJohn Wiley & Sons, Inc., 2000.

X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model constructiergt.
13th Int. Conf. Softw. Eng. - ICSE ;8 511, 2008.

D. Zowghi and V. Gervasi, “The Three Cs of Requirements:
Consistency, Completeness, and Correctnd3st. 8th Int. Work.
Require. Eng. Found. Softw. Qualo. March, pp. 155-164, 2002.

Z. Liang and G. Wu, “Consistency Checking of Multiviews Based on
Agent.” IEEE, Hubei, China, 2004.

L. I. U. Hua-xiao, W. Shou-yan, and J. I. N. Ying, “A Tool to Verify
the Consistency of Requirements Concern Model,” 2013.

M. Kamalrudin, “Automated Software Tool Support for Checking
the Inconsistency of Requirement009 IEEE/ACM Int. Conf.
Autom. Softw. Engpp. 693-697, Nov. 2009.

W. Li, “Toward consistency checking of natural language temporal
requirements,’”2011 26th IEEE/ACM Int. Conf. Autom. Softw. Eng.
(ASE 2011)pp. 651-655, Nov. 2011.

G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used
UML diagrams? A preliminary survey,” infCEUR Workshop
Proceedings2013, vol. 1078, pp. 3-12.

Y. Shinkawa, “Inter-model consistency in UML based on CPN
formalism,” Proc. - Asia-Pacific Softw. Eng. Conf. APSED. 411—
418, 2006.

P. G. Sapna and H. Mohanty, “Ensuring consistency in the relational
repository of UML models,"Proc. - 10th Int. Conf. Inf. Technol.
ICIT 2007, pp. 217-222, 2007.

D. Kalibatiene, O. Vasilecas, and R. Dubauskaite, “Ensuring
Consistency in Different IS Models — UML Case Studgdlt. J.
Mod. Comput.vol. 1, no. 1-2, pp. 63-76, 2013.

D. Torre, “On Collecting and Validating UML Consistency Rulas
Research Proposal,” pp. 1-4, 2014.

J. Chanda, a. Kanjilal, S. Sengupta, and S. Bhattacharya,
“Traceability of requirements and consistency verification of UML
use case, activity, and Class diagram: A Formal Approa2f09
Proceeding Int. Conf. Methods Model. Comput., 2€09.

N. Ibrahim, R. Ibrahim, M. Z. Saringat, D. Mansor, and T. Herawan,
“Consistency rules between UML use case and activity diagrams
using logical approach)ht. J. Softw. Eng. its Applvol. 5, no. 3, pp.
119-134, 2011.

A. H. Khan, Consistency of UML Based Designs Using Ontology
Reasonersno. 168. 2013.

K. Ryndina and M. K. Jochen, “Consistency of Business Process
Models and Object Life Cycles.”

G. Spanoudakis and A. Zisman, “Inconsistency Management in
Software EngineeringSurvey and Open Research Issuétahdb.
Softw. Eng.pp. 329-380, 2001.

A. Egyed and M. Del Rey, “Scalable Consistency Checking between
Diagrams - The VIEWINTEGRA Approach,” pp. 387-390, 2001.

A. Kozlenkov and A. Zisman, “Are their Design Specifications
Consistent with our Requiremer®s2002.

A. Ohnishi, “Management and verification of the consistency among
UML Models,” no. September 2015.

D. Torre and M. Genero, “UML Consistency Rules Systematic
Mapping Study,” no. January, pp. 1-28, 2014

APPENDIXI

Cusomer Tour B servadon By cem Tour Infermaden Oy clem

Eequestfor Eold
registration MO
YES l

GetTour Provide Tour
Details Details
Select Tour Display Tour
LCetails Dietails

Subrrit Reserve Custorner Update Tour
ForTour Information

GetPersonal

Inpuat Personal

Details

Details
Get Tqur | PrmrldE.Tour
Details Details
Select Tour Display Tour
Details Details

: [— : Save Custotner

Gererate & Dizplay
ID & PWD

558

APPENDIXII

Cust Info
ME_Form
ME_Controller Save Updated Irfof)
Fequest_Modficstion [|
: Gk Crast Trded) Get payment status)
Modify Cust_Trfo() Save Cust Tudol) | Savel)
Submmit() Update Tour_Tndol]) | Sawe Cust Infol)
Diisplay Cust_Jntfe() Get Tour Inta Get Cust_infa()
MTS5_ Controller
MTS_Fomm — Tonr_Info
Get Tour_Add _Form ()
Fequest Tour ddd _Form () Sawre Tour Details() Save Tour Infal)
Display Tour_Add_Form() et . Get Tour Infal)
Inpaut Tour Details() Tour_Update_Fommi) Undate Tour_Infol)
Subamitl)
Eequest Tour_TTpdate_Faonm () Male Fa
t_controlle
Ditcpakiey Tonp: 1 Fadabe: Pazany T e e Ti5 Intedecs
Iadify Tour Detail])
: Gt payment statuz () #| Get Ticket Statu
Display Close_Tour Form() Bequest formode of payment() Get tour info() %)
Send payment indo() Fequest formode of payment()
Payment_Form
Eh_Controller l
Faquest for ant status ()
Su%rmit() S Check Tirket statu) T
Select mode crediteazd() Check Hotel status(] | Get Ticket Statas)
Display status(] Urdate Irl.lf.of] Update Tour Detaik()
Display modes of payment() Send Eeal
Dizplay msg. Fayment done) Res_Fomu
Seleat mode()
Display Ticket status() Staff Info
Dvisplay Haotel status()
V1I_Form EF5_Fomm Display Ervor Messt) Get_login_Jnfol)
Inpat_T0) Eequest_Scheme() FFS_Contraller
Tnprut_FWLX) Display_List() Admin Ito
Subanit() Get_Schemel]
Request_Signln() Get_login Info()
Diisplay_Msef)
CustTonrlnfo_Form VL_Fomm
Eequest for tony infal) Be t4 £
quest for wiew]
Select Tour Details () Dretails() i st
Input Persoml and Tour
ko) Crat Hotel status()
Submit(]
Modify TourInfa ()
ET_comntroller
RT form Fequest info () TIES_interface
Checl: Payment Statas]
Fequest info () Check Tickst Status(] I Get Ticket status()
Sitbmit () Update Info ()
Faquest Cust_Infa()
Ll et RFT_Controllex
Dizplay Status() =
Display Ticket Status() et touy info]
Update Personal and Tour Infol)
Update tourinfo ()

559

