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Abstract— Currently, we saw the increment trend of mobile application(app) exploitation that leads to loss of confidential information 
and money. Many malware camouflages itself as a genuine mobile app or exploits vulnerabilities inside mobile apps. Hence, this 
paper presents a mobile app called CallDetect that detects Android Application Interface (API) exploitation for call logs inspired by 
apoptosis. Apoptosis is known as cell-programmed death, and it is part of the human immunology system. Once it suspects any 
danger that might cause any harm to the human body, it will kill the suspected danger and itself. In the case of CallDetect, it will scan 
and uninstall the potentially malicious mobile application on a mobile phone. CallDetect consists of 13 new classifications of API call 
log, which are used as the database for CallDetect. These classifications were built by using static analysis and open source tools in a 
controlled lab environment. There were 5560 training datasets from Drebin and 550 anonymous testing dataset from Google 
Playstore. Our finding showed that 39 mobile apps, or 7%, were identified with possible call log exploitation. This paper can be used 
as a reference for call log API exploitation and can be further enhanced by integrating it with permission and system call exploitation. 
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I. INTRODUCTION 

There are different categories of malware, such as worm, 
virus, Trojan horse, and mobile botnet. This malware can 
infect and exploit PC, notebook, tablet, or mobile phone 
without the owner's consent. In a mobile phone, surveillance 
features such as call log, Short Message System (SMS), 
camera, geolocation (GPS), and audio could be exploited by 
malware. The Android platform is the one most commonly 
targeted by malware due to its open-source distribution and 
being used by many users across the world [1]. Mouawad 
and CallJam virus are examples of worms that exploited 
Android smartphone by charging the victim with some 
amount of money through different applications [2], [3]. 
Examples of the exploitations are extra charges on phone 
bills, invasive advertising, and extra charges messages and 
phone calls. According to Gonzales, since 2013, this 
exploitation has skyrocketed and caused the loss of money to 
the telcos [4]. Therefore, we need mitigation for such 
exploitation. In the Android architecture, the Android 
Programming Interface (API), permission, and system calls 
are the aspects mostly used for exploitation [5].  

In this paper, we present a CallDetect app that can detect 
call log exploitation. It is inspired by apoptosis. Apoptosis or 
also known as cell-programmed death and is part of the 

human immunology system. It has been integrated with the 
CallDetect app. Once the CallDetect app detects any 
potential harm related to the call log, it will uninstall the 
application to avoid any harm to the user’s mobile phone. 
Compared to other human immunology system mechanisms, 
apoptosis is selected due to its role in terms of detection and 
response. Once the system detects any harm, if it cannot 
destroy the harmful element by itself, it will kill the element 
together with itself. This process is called as cell-
programmed death. Few existing works have applied the 
apoptosis concept [6]-[8]. These show the practicality of the 
apoptosis concept. Inside the CallDetect, there are thirteen 
(13) new call log exploitation classifications have been 
developed. The details of the results are explained in Section 
III of this paper. This paper is organized as follows: Section 
II discusses the material and method used; section III 
presents results and discussion, and selection IV concludes 
this paper and discusses future work. 

II. MATERIALS AND METHOD 

Lately, many scams have been conducted via phone calls, 
and various software packages have been developed to 
detect and block the scam phone numbers. Yet, currently, we 
are still lack of a solution to detect malicious mobile apps, 
especially those related to call log Application Programming 
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Interface (API) exploitations [9]. For example, MalDozer 
has been developed to detect malware in different IoT 
devices with API as the input, but not focusing on call logs 
[10]. Furthermore, other existing works by [11]-[21] showed 
that API could be exploited by malware. Nevertheless, 
performance improvement is needed for the experiment [19], 
[20]. Existing works [16], [22], [23], combined API and 
permission as part of their techniques to detect malware, yet 
improvement is needed in terms of the feature selection and 
classifier concerning optimizing results. The summarization 
of these works can be seen in Table 1. Based on the existing 
works presented in this paper, each of these works has its 
technique to overcome malware attacks. However, none of 
the studies focus on mobile phone surveillance features that 
can easily be further exploited by malware. As for the 
current scenario, this paper focuses on the call log as it is 
one of the leading surveillance features in a mobile phone, 
and due to its significant impact concerning losing money 
and invading privacy. 

TABLE I 
SUMMARISATION OF EXISTING RELATED WORKS 

Author Feature Suggestion for Performance 
Improvement 

[16] API and 
permission 

In term of feature selection and 
permission list 

[22]  API and 
permission 

In term of feature selection and 
classifier. 

[24] API and 
permission 

In term of malware classification 
based on binary format. 

  

Fig. 1 displays the apoptosis cycle in the human body [24]. 
Table II shows how the apoptosis is being mapped to a 
mobile phone. For malware detection, there are other bio-
inspired computing algorithms such as Particle Swarm 
Optimisation (PSO), Negative Selection Algorithm (NSA), 
Artificial Bee Colony, and Bat algorithm that have been 
applied in existing works. Nonetheless, based on the 
comparison between these algorithms and apoptosis (refer 
Table III), apoptosis is selected due to its performance 
capability in terms of faster detection and response, to its 
being easier for real-time implementation, and its higher 
detection rate. 

 
Fig. 1 Apoptosis Cycle 

 

TABLE II 
MAPPING APOPTOSIS TO MOBILE PHONE 

Apoptosis Mapping Apoptosis to Mobile 
Phone Surveillance Features 

The system must be able to 
readjust itself automatically, 
either to support a change in 
circumstances or to assist in 
meeting other system 
objectives. 

The mobile phone will terminate 
any detected malicious process 
before it can cause any harm. It 
is based on a mobile phone 
surveillance feature: the call log. 
Mobile phones will uninstall the 
potentially harmful process or 
application. 

 

TABLE III 
COMPARISON WITH OTHER BIO-INSPIRED ALGORITHMS 

Name of 
Algorithm 

Weakness 

PSO Performance issue in term of optimisation. 

NSO Continuous learning ability issue and 
performance issue in terms of practicality 
concerning implementation in the real world. 

Artificial bee 
colony 

Performance issues in terms of accuracy. 
 

Bat 
algorithm 

Performance issues in terms of accuracy and 
optimisation.  

Genetic 
algorithm 

Performance issues in terms of optimisation 

Apoptosis Unique technique with better accuracy, faster 
and easier detection and response mechanisms. 

 
Before the development of the CallDetect application, 

5,560 of the Drebin dataset were reverse-engineered by 
using static analysis [25]. The Drebin dataset is one of the 
biggest datasets for mobile malware and has been used by a 
small number of other studies [11], [26]-[28]. Five hundred 
fifty mobile apps have been selected randomly from the 
Google Play Store to evaluate the proposed classification 
and the app proposed in this paper. The experiment was 
conducted in a controlled lab environment and as per 
displays in Fig. 2 and Table 2.  
 

 
Fig. 2 Lab experiment architecture 
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TABLE IV   
SOFTWARE USED FOR THE EXPERIMENT 

 
In contrast with dynamic analysis, static analysis is an 

analysis where the codes will not be executed. Existing work  
[29] summarises the value of static analysis, dynamic 
analysis, and hybrid analysis for malware analysis and 
detection techniques. Each of the techniques has it owns 
strength. In this paper, static analysis is used to extract the 
manifest file and APIs, due to its suitability for depth 
analysis. Based on the APIs’ extraction from the training 
dataset, those that are related to possible call log exploitation 
were retrieved.  These were then compared with the testing 
dataset from the Google Play Store.  

Fig. 3 represents the static analysis conducted, and Fig. 4 
depicts the overall research processes involved in this 
experiment. 

 
 

Fig. 3 Static analysis 

.  

Fig. 4 Overall research process 

 

Fig. 5 Covering algorithm for the call log classification formation 

Fig. 5 depicts the method by which the covering 
algorithm is used for the formation of API call log 
classification. The covering algorithm has the rule to be 
followed during each phase of the existing attributes. It 
consists of a positive instance and a total of the dataset. 
Positive instances are represented as PA, while the dataset 
total is D. The accuracy of the approach is based on the 
formulation of PA/D. Then it develops rules with a 100% 
accuracy rate. It is simplified as pseudocodes in Fig. 5, and 
Fig. 6. The concept of covering algorithm excludes many 
instances of other classes and include as many instances of 
the desired class as possible. 

 

Fig. 6 Covering algorithm for instance space 

III.  RESULT AND DISCUSSION 

The following are the interfaces for the CallDetect app 
mobile application. Fig. 7 displays the main interface of the 
developed apps, while Fig. 8 shows the extracted manifest 
file from the selected app. Once the user selects a mobile app, 
the CallDetect app will run the scanning process. If it is 
matched with the database of the potential call log 
exploitation, it will ask the user if the user would like to 
uninstall the mobile app (refer Fig. 9). CallDetect is better 
compared to emulator-based work because it is real-time and 
based on the real scenario of a smartphone user. 

Before the development of CallDetect, analysis and 
reverse engineered were carried out. The database inside the 
CallDetect app is based on the classification formed during 
the experimental work. The database is based on the highest 
number of potential features that could be exploited related 
to the call log, as displayed in Table V. 

Software Function 
JAVA/Android 
Studio  

To develop mobile application 

Genymotion It acts as Android emulator. 

Show Java 
Application /APKtool 

For APK resource file decompiling 
and permission extraction. 

Java Decompiler For API extraction. 
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Fig. 7 CallDetect Main Interfaces 

 

 
Fig. 8 CallDetect for manisfest file extraction 

 

 
Fig. 9 CallDetect displays uninstall message for potential harm apps 

 
Before these 13 classifications are developed, all the APIs 

related to the call log are extracted, and the most closely 
related could be exploited by malware. From the testing 
dataset, all APIs related to call logs have been extracted, and 
the ten (10) most related are listed in Table VI. Each is 
assigned with different values either as normal or dangerous. 
The normal is a default value, and it could be executed 
without asking the owner’s consent. While dangerous has a 
higher risk related to privacy, and it could be executed with 
or without asking the owner’s consent. Based on these 
normal and dangerous values, the classification is created, as 
displayed in Table V. 

TABLE V 
NEW CALL LOG EXPLOITATION CLASSIFICATION 

Classification Content 
1 A1+A2+A3+A4+A5+A6+A7+A8+A9+A10 
2 A4+A6+A9 
3 A6+A9 
4 A5+A6+A9 
5 A4+A5+A6+A7+A8 
6 A8+A8+A9 
7 A4+A6 
8 A4+A9 
9 A4+A5 
10 A4+A8 
11 A5+A9 
12 A2+ A4 
13 A2+A5 

 

TABLE VI 
TEN API MOST RELATED WITH CALL LOG EXPLOITATION 

D
at

a 
R

ep
re

se
nt

at
io

n 

API  Function Value 

A1 addToMyCont
actsGroup 

To add contact.  Normal 

A2 startListening It starts to listen to audio 
speech. 

Danger
ous 

A3 isVoiceMailN
umber  

It checks the given 
number with the 
voicemail number inside 
the SIM card. 

Normal 

A4 getLine1Num
ber 

It returns the phone 
number string. 

Danger
ous 

A5 getNeighborin
gCellInfo  

It gets and informs the 
neighbouring device 
information. 

Normal 

A6 getSimSerialN
um-ber  

It gets the Simcard serial 
number. 

Danger
ous 

A7 getVoiceMail
AlphaTag 

It retrieves the voice mail 
number based on the 
alphabetic identifier.  

Danger
ous 

A8 getVoiceMail
Number  

It retrieves the voice mail 
number  

Normal 

A9 listen It is a listener for changes 
notification in the mobile 
phone. 

Danger
ous 

A10 getCallerInfo To retrieve caller 
information. 

Danger
ous 

 
Then 550 dataset randomly picked from the Google Play 

Store are tested with the proposed classification and database 
inside the CallDetect app. Based on the testing, it was found 
that 39 out of 550 mobile apps matched with the call log 
exploitation in Table V. Fig. 10 and Table VII are the 
summarization of the test results. Based on the testing 
process, communication has the highest frequency with 
23.1%, followed by entertainment with 20.5% and games 
with 15.4%. Mobile phone users most commonly use these 
three categories. Entertainment with its call log feature 
makes user life more comfortable but also exposes them to 
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possible call log exploitation. As for games, this is 
something to be pondered, since most games do not need 
call features inside the game. It could lead to possible 
premium call rates if an attacker is abusing it. Other 
categories, in the form of social media, browser, emulator, 
fitness, and lifestyle, have the lowest possible call log 
exploitation. 
 

 
 

Fig. 10 CallDetect evaluation result 
 

TABLE VII 
EVALUATION RESULTS WITH GOOGLE PLAY STORE 

Category 

 
Number 
 Percentage 

Communication 9 23.1 
Entertainment 8 20.5 
Game 6 15.4 
Tool 5 12.8 
Photo 3 7.7 
Wallpaper 3 7.7 
Social Media 1 2.6 
Browser 1 2.6 
Emulator 1 2.6 
Fitness 1 2.6 
Lifestyle 1 2.6 
 
The significant formation of 13 API call log classifications 

is that these APIs are used as the database for CallDetect app. 
It is capable of detecting potential call log exploitation inside 
a mobile phone. Once it detects any potential harm, it will 
trigger a message to the user and asks the user to uninstall it 
to avoid further harm. Furthermore, with the existence of 
these 13 APIs call log classifications, developers will use it as 
a form of guidance and will implement secure coding in 
developing mobile apps. Furthermore, it could be used as 
guidance for mobile apps developer concerning how attackers 
could exploit a smartphone via the API of the call log. 
Nonetheless, users must be aware of the apps they installed, 
since these APIs might pose financial risks for smartphone 
users in terms of premium rate phone calls and scam phone 
calls. Users and developers must be aware that API 
concerning call logs could be exploited by malware. 

 
 
 

IV.  CONCLUSION 

In this paper, based on the CallDetect app that has been 
developed, it is proven that possible call log exploitation via 
API could be detected and responded. It is inspired by 
apoptosis and uses 13 new API call log classifications as its 
database. It is the right solution in detecting any new mobile 
apps with potential call log exploitation. Based on the 
evaluation conducted, 7% of the tested mobile apps matched 
with the possible call log exploitation where mobile apps 
from communication, entertainment, and game categories 
have the highest score, respectively. Mobile phone users 
commonly use these categories. Hence user awareness and 
solutions such as CallDetect app offer proper detection and 
preventive mechanisms. In the future, other surveillance 
features in the form of SMS, camera, audio and GPS, should 
be integrated with the CallDetect app for better performance, 
and more comprehensive detection and preventive 
mechanisms. 
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