

Vol.10 (2020) No. 6

ISSN: 2088-5334

Calibrating Trip Distribution Neural Network Models with Different
Scenarios of Transfer Functions Used in Hidden and Output Layers

Gusri Yaldia,1, Imelda M. Nura, Apwiddhala
aPoliteknik Negeri Padang, Limau Manis, Padang-Sumatera Barat, 25168, Indonesia

E-mail: 1gusri.yaldi@gmail.com

Abstract— The transfer function is used to process the summation outputs in the hidden and output nodes. It can generally be
categorized as either a non-linear or linear function. Examples are Sigmoid and Purelin functions representing non-linear and linear
transfer functions. It is often mentioned that there is no standard guideline in the transfer function selection, and the Sigmoid or
Logsig is widely used. However, the transfer function and training algorithm have a procedural relationship in training Multilayer
Feedforward Neural Network (MLFFNN), a famous Artificial Neural Network model structure. In the feedforward stage, this
function transforms the linear summation output to either linear (Purelin) or non-linear form (Sigmoid). In the backpropagation
stage, this function is used in calculating the magnitude of change in the connection weights involving its derivative. Nine scenarios of
MLFFNN were developed based on different transfer functions used in both hidden and output layers. In order to make fair
comparisons, each scenario has the same initial connection weight. The modelling is conducted at the calibration level only; however,
it involves different levels of complexity. It was calibrated by using the Levenberg-Marquard training algorithm. The results suggest
that some calibrations failed and negative estimations occurred once non-linear transfer functions were used in hidden and output
layers. It was found that Purelin was superior to other transfer functions. However, it has a weakness which is its negative
estimations.

Keywords— neural network model; transfer function; model calibration; estimated OD matrices.

I. INTRODUCTION

The concept of Artificial Neural Network (ANN) began
with the discovery of neuron in 1836 [1]. The human neural
network consists of approximately 1011 neurons. Each
neuron is connected to up to ten thousand other neurons and
hence forms about 1014 to 1015 interconnections in the
human brain neural network system. Figure 1 depicts a
single neuron and its components. Those components are (1)
Cell body or soma, (2) Axons, (3) Dendrites, and (4)
Synapses. These four components have different functions.
The ANN is constructed based on these four components
and its function.

The cell body or soma contains the nucleus where
information received from the dendrites is stored and
processed. The received information is summed up and
compared with a specific value of threshold to decide
whether it should transfer or transmit signals to the other
neuron through the axon. Hence, dendrites and axons
function to bring the information/electrical signals in and out,
respectively. Artificial intelligent experts try to mimic this
information processing mechanism in the construction of the
ANN, and the most famous one is called Multilayer

Feedforward Neural Network (MLFFNN). It was widely
used for forecasting and also known as Multiple-layered
perceptron [2, 3] or Backpropagation neural network model
[4]. The typical structure of MLFFNN is shown in Figure 2.

Fig. 1 Biological neuron diagram [1]

MLFFNN comprises input and output layers and a hidden

layer between them. There could be more than one hidden
layer as reported by Wang & Kim in predicting crash
number on urban road networks by using ANN [5]; however,
MLFFNN with a hidden layer is often used. Each layer has

2410

several parallel nodes and is connected to other nodes in the
adjacent layer. Every node in the same layer connects to
other nodes in the previous and subsequent layers depending
on its location. However, there is no connection between
nodes within the same layer.

Fig. 2 Multilayer Feedforward Neural Network (MLFFNN)

In the MLFFNN, the nodes in the first layer (i) take the

data into the network. The data flow, along with the
connections, are scaled by the connection weights (wji). The
output (yj) is computed by transferring the scaled input by
using an internal transfer function (f(xji)). The estimation is
obtained through the accumulation from all nodes'
summation in the hidden layer (xk). It is then sent to the
output node and is commonly transformed by using a
logistic transfer function in that node (yk) [3, 6, 7].

Due to its potential capabilities, ANN has been adopted as
a transportation modelling tool since the 1990s, mainly for
driver behavior/autonomous vehicle modeling [7]. Its latest
usage can be found not only for behavioral modelling but
also for transport mode choice [8], real-time transport mode
identification [9], traffic impact analysis [10] as well as for
trip distribution forecasting [11, 12]. Furthermore, Moretti et
al. reported that combining other modelling tools with ANN
could increase its capability [13]. The ANN and simple
statistical method were combined and were used in
modelling urban traffic flow. It resulted in a promising
performance. This combined model was called a hybrid
modelling approach.

Based on the definition and the concept of ANN
previously described, certain elements or factors configure
ANN. According to Dougherty [7], those elements are
namely (1) A set of processing elements (nodes), (2)
Connectivity of those elements (connection weights), (3)
Transfer functions, and (4) Learning algorithms (training
algorithms). The transfer function and training algorithm
have a procedural relationship in training MLFFNN. In the
feedforward stage, this function will transform the linear
summation output to either linear (Purelin) or non-linear
form (Sigmoid). In the backpropagation stage, this function
is used in calculating the magnitude of change in the
connection weights involving its derivative.

The nature of ANN was considered as a Black-box
modelling approach [9]. Therefore, the ANN approach's
adoption must be supported by adequate empirical works

since the inappropriate usage of transfer functions will lead
to unrealistic model outputs. There is a lack of reported
studies on the behavior of ANN concerning these properties.
Once ANN was used in the transport modelling purposes,
the selection of transfer functions was rarely discussed such
as in a study by Chen et al. in forecasting tourist arrival [2]
and Jabbar and Dia in predicting and monitoring traffic
condition on freeways [4]. The same case was found in the
modeling air pollution due to traffic impact on street and
urban level [10] and modeling crash prediction in urban road
networks [5]. Therefore, a comprehensive work on defining
those properties, especially in the trip distribution modeling,
can help this approach's users. Thus, this study investigates
the performance of ANN in trip distribution modelling,
especially in using different transfer functions for both
hidden and output layers.

II. MATERIALS AND METHOD

Teodorovic and Vukadinovic [14] claimed Sigmoid and
Linear functions as the most commonly used transfer
functions. However, the lack of study reported the impact of
different transfer functions toward neural network model
performance even though transfer function is one of the
ANN's main properties.

Black [6] reported the utilization of neural network spatial
distribution model for strategic forecasting. The study
compared the gravity and neural models. The neural models
were developed based on the gravity model's traditional
form and used Sigmoid as the transfer function. Figure 3
shows the neural network model structure developed by
Black called Gravity Artificial Neural Network/GANN).
Three case studies were reported, (1) A three-region flow
problem; (2) A commodity flow problem, and (3) A
migration flow problem. Although both gravity and neural
models produced acceptable results, the neural models were
found as a better calibration tool and were recommended for
future flow forecasting.

Fig. 3 Gravity Artificial Neural Network (GANN) used by Black [6]

Mozolin et al. [15] reported another strategic forecasting

by ANN (see Figure 4 for the neural model structure). The
difference between the studies by Black [6] and Mozolin et
al. [15] is that Black [6] used Sigmoid as transfer functions
in all layers resulted in values typically ranging within (0)
and (+1). Meanwhile, Mozolin et al. [15] used Tansig as the
transfer functions, which produced numbers ranging within
(-1) and (+1). Consequently, the output of the model
representing the estimated trip numbers may comprise both
negative and positive values, while the trip values are always
a positive value. Furthermore, Mozolin et al. [15] extended
the analysis to the testing level. Although both studies

2411

developed neural models based on the structure of the
traditional constrained gravity model, Mozolin et al. [15]
reported that the neural model had a poor generalization
performance despite their superior calibration ability claimed
by Black [6].

Fig. 4 Neural Network Architecture used by Mozolin et al. [15]

Dantas et al. [16] used neural models to forecast travel

demand where the data were mainly obtained from remote
sensing images processed in the geographical information
system. Hardlim transfer function was used in the output
node resulted in negative forecasted trip interchange
volumes contradicting to the reality where there are no
negative trip numbers. Meanwhile, Yaldi et al. [11]
simulated some neural network models where the input data
were normalized with the same transfer function used in the
output layer with the neural network model structure
depicted in Figure 5. A significant improvement was found
in the model outputs compared to those normalized by using
simple normalization method where the entire input pattern
vector, except the distance, was divided by the total number
of trips.

Fig. 5 Neural Network Architecture used by Yaldi et al. [11]

Its maximum value normalized the distance. The
advantage of this normalization method is that there is only
one unique factor used in normalizing the data, and hence it
becomes simpler than dividing them by their maximum
values. This method was used by Black [6]. Thus, it
confirmed that the transfer function plays essential roles in
optimizing neural network model performance.

A. Common transfer functions

Figure 6 shows the common transfer functions used in
ANN [14] and also in this research, namely:

1) Tansig:

 ���� � �
��� ���
��� �
���

���� ������� �
���
 (1)

2) Sigmoid/Logsig:

 ���� � �1 ����������
� (2)

3) Linear:

 ���� � � (3)

Among the three transfer functions, the Sigmoid or
logistic function (Logsig) is the most widely used [5-7].
Each node in the network may use different transfer
functions; yet, the same transfer function is commonly used
within a layer. Both hidden and output layer nodes usually
use the Sigmoid function. There is no standard rule in
selecting the transfer function. The authors rarely explain the
selection process of transfer function; however, it can be
assumed that the Sigmoid function is used to capture the
non-linear relationship among the model variables. It has a
range of value typically within (0) and (+1) for Logsig, and
(-1) and (+1) for double logistic/Tansig.

Fig. 6 Commonly used transfer functions

B. Model Data

This study uses the US 1965-1970 migration data in
addition to Black's three region flow problem [6]. The data
represents nine major census regions in the USA namely (1)
New England, (2) Middle Atlantic, (3) East North Central, (4)
West North Central, (5) South Atlantic, (6) East South
Central, (7) West South Central, (8) Mountain, and (9)
Pacific. Different spatial interaction modelling has also been
used these data, as reported by Black [6]. This data is a nine-
square matrix, which is nine times bigger than the Black
three region flow problem.

2412

C. Model Scenario

The ANN performance towards different transfer
functions for the output layer in calibrating trip distribution
model was reported by Yaldi et al. [17] and a linear transfer
function for the output layer was proposed. Thus, this study
expands it by varying the transfer function in the output
layer and the hidden layer. Consequently, it results in nine
different scenarios, where each scenario has the same initial
connection weight in order to make fair comparisons.

Table 1 presents the scenarios used in the training
process. These are categorized based on the types of transfer
functions used in both hidden and output layers. The
performance of the neural model for those scenarios can then
be compared.

TABLE I
NEURAL MODEL SCENARIO BASED ON TRANSFER FUNCTIONS

Scenario

Transfer function
Experiment
Remark Hidden

node
Output
node

1 Tansig Tansig 30 Called
Tan
scenario

2 Tansig Logsig 30
3 Tansig Purelin 30
4 Logsig Tansig 30 Called

Log
scenario

5 Logsig Logsig 30
6 Logsig Purelin 30
7 Purelin Tansig 30 Called

Pur
scenario

8 Purelin Logsig 30
9 Purelin Purelin 30
Total 9 scenarios 270 trials

D. Model Level

The modelling is conducted at the calibration level only;
however, it involves different levels of complexity. Firstly,
the neural models are developed for Black's three region
flow [6], where the problem's size is a 3x3 matrix. The
results are then ranked based on the model performance for
each scenario.

The best scenarios are then further assessed by using a
higher degree of data complexity, in this case, a 9x9 matrix
of US 1965-1970 migration flow data. The evaluation
considers the accuracy and precision of the estimated trip
interchange volumes by using the Root Mean Square Error
(RMSE), R2, and absolute error distribution for different
error range categories. MLFFNN with a hidden layer and ten
hidden nodes is used in training. The training is conducted
using the Levenberg-Marquardt algorithm as this was the
most effective and efficient training algorithm [18].

III. RESULTS AND DISCUSSIONS

A. Black's three region flow model

Table 2 shows the performance of neural models for nine
combinations of sub-scenarios. The first column shows the
transfer function in the hidden nodes, while the second row
shows it for the output node. The best scenario in terms of
the values of RMSE and R2 belongs to the Log scenario

(transfer function in all the hidden nodes is a Logsig
function). Although not all the RMSE for each Log sub-
scenario (logsig_tansig, logsig_logsig, and logsig_purelin)
are lower than other sub-scenarios, two of them have lower
RMSE than others. The same trend is also indicated for the
R2 coefficients. Its value for Log scenario is higher than
other scenarios, except for log_tan sub-scenario. Then, the
sub-scenarios involving Purelin transfer function performs
better than other sub-scenarios; however, this only happens
when Purelin is used in output nodes (see also Figures 7-9).

TABLE II
AVERAGE RMSE AND R2 FOR DIFFERENT SCENARIOS, BLACK 'S SAMPLE

HL
transfer
function

OL transfer function
RMSE R2
Tan Log Pur Tan Log Pur

Tan 8.968 0.546 0.004 0.999 0.998 1.000
Log 5.967 0.001 0.000 0.999 1.000 1.000
Pur 1.564 1.988 1.558 0.958 0.936 0.959

When Purelin is used in hidden layer nodes, log_log sub-

scenarios tend to have a higher performance grade. This
finding is related to the non-linearity and linearity issues. A
neural model with a hidden layer tends to perform better
than the one without it [12]. The hidden layer can capture the
non-linear relationship in the data. Thus, the logistic function
is more suitable for this purpose than the linear transfer
function as indicated by the results in Table 2.

Meanwhile, the sub-scenarios where Purelin is used in the
output node tend to perform better than other kinds of
transfer functions. This result can be explained by looking at
the relationship between the method used to normalize the
target vector and the type of transfer function (linear or non-
linear) used in the output node. Simple normalization
method was used to normalize the target vector. Thus,
Purelin is more suitable as a transfer function in the output
layer. Zhang et al. [19] suggested that the linear transfer
function is suitable for continuous data forecasting.

Fig. 7 Estimated flow numbers for Black's sample, Tan scenarios

Tan scenario, which uses Tansig in the output node,

generates overestimated outputs, as seen in Figure 7.
However, the output is closer to the real one when the
transfer function is switched to either Logsig or Purelin.
Although the usage of Tansig function also generates
negative outputs, fortunately training with this simple and
small size matrix does not result in any negative outputs for
this scenario (see Figure 7). However, the Tansig usage in

2413

the output node leads to the occurrence of failed training up
to ten per cent of the total 30 trials. Thus, there is the
possibility of training being unsuccessful when Tansig is
used in the output node.

The next one is Log scenario. Figure 8 depicts the
estimated flows for each of Log sub-scenario and illustrates
the average flows estimated for 30 trials. Among the Log
sub-scenarios, log_pur tends to superior to the other sub-
scenarios. Log_tan sub-scenario has overestimated flows
number for all samples from A to I, the same as the one in
Tan scenario. The overestimations occur due to the failed
training experienced by log_tan scenario.

Both log_log and log_pur sub-scenarios have almost the
same performance level, except that the RMSE for log_pur
is lower. This performance is related to the output of Purelin
(linear) function and target vector, which is also linearly
normalized. The target vector in this model is linearly
normalized, matching with the output of neural models for
log_pur sub-scenario which generates linear outputs due to
the usage of the linear transfer function in the output node
(Purelin). It transfers the output linearly according to
Equation 3. It is related to the summation of the inputs
multiplied with the relevant connection weights from the
hidden nodes and received by the output nodes.

Fig. 8 Estimated flow numbers for Black's sample, Log scenarios

Unlike Logsig and Tansig, Purelin just receives the

summation output according to Equation 3, and the results
are used in the computation of the difference between the
neural model output (O�

� �T���) and the target vector (t���
counted by the following equation:

 ���� � ��� � ��
� � ��� (4)

 This equation tries to calculate the difference based on
the neural model outputs and the target vectors, which are
both linearly transformed or normalized.

A different situation occurs when either Logsig or Tansig
function is used in the output node. The neural model output
is non-linearly transformed, and the error or the difference is
obtained by subtracting the non-linearly transformed neural
model outputs from the linearly transformed target vector. A
systematic error occurs due to the mismatch between the
nature of the neural model output and the target vector. This
error affects the training results, as indicated by the neural
model performance reported in Table 2.

The utilization of a linear normalization method is a
disadvantage for log_log sub-scenario. It is due to the neural

model that calculates the difference by using Equation 2 and
uses it in adjusting the connection weight. In this equation,
the estimated trip (Thd) is transformed non-linearly by
Logsig function while the observed trip (thd) is transformed
linearly. It is expected that the performance of log_log sub-
scenario will improve when the target vector is also non-
linearly transformed according to Logsig function. It should
also not be forgotten that the sample size is relatively small
and simple. A more complex sample will have different
trends. Like Tan scenario, no negative estimation belongs to
any Log sub-scenario, although Tansig and Purelin functions
are used in the output node.

It can be seen from Table 2 that using linear transfer
function for both hidden and output layers is also not
recommended. It is better to use a combination of
logsig_purelin than purelin_purelin sub-scenario. Figure 9
shows that some estimations are negative in contradiction to
the real ones which are positive (see sample C). The
negative estimation occurs when Purelin is used in both
hidden and output nodes, for 30 trials. Using Purelin in both
hidden and output nodes means that the linear function is
used to capture the relationship. Moreover, the neural model
output is also linearly estimated.

Meanwhile, the performance of Tan scenario is also seen
to be worse than the other scenarios, and hence it is also not
recommended. There are two reasons for this trend, namely:

1) Up to ten percent of Tan scenarios: Up to ten percent
of Tan scenarios experienced failed training, especially
tan_tan sub-scenario: The results of failed training
negatively contribute to Tan scenario's average performance.
The estimations become greatly overestimated (see Figure 7).
The failed training may result from the utilization of double
logistic function in the output node. It generates non-linear
transformed estimation, while the target vector is linearly
transformed. Thus, the usage of linear data normalization is
also a disadvantage for tan_tan sub-scenario. The training
fails when the minimum gradient (1E-10) is reached, which
means that there is no change in the weight adjustment
process.

Fig. 9 Estimated flow numbers for Black's sample, Pur scenarios

2) The performance of the Tan scenario worsens: The
performance of the Tan scenario worsen since the negative
results are generated by the neural model resulted from the
usage of double logistic function (see Equation 1 and Figure
6(a)). This function transforms the results non-linearly
between negative and positive values. Negative estimations
contradict with the reality as negative trip interchange

2414

volumes do not exist. It was found that the number of
negative outputs was ten per cent of the total samples.

Thus, the scenarios can be ranked from the best one,
namely Log scenario, followed by Tan and Pur scenarios,
respectively. Based on this result, the Log scenario will be
used again in the training of the same neural models.
However, the training is conducted for a different and more
complex dataset, namely the US 1965-1970 migration flow
data.

B. US 1965-1970 migration flow model

Given Log scenario, as the best scenario resulted from 30
trials by Black three region flow [6], the same neural models
have trained again. At this time, the nine-square matrix
based on the US 1965-1970 migration flow data was used as
the dataset. The training again comprises three different sub-
scenarios, namely (1) Log_tan, (2) Log_log, and (3)
Log_pur.

It is expected that the impacts of double logistic and linear
transfer functions could be seen more clearly in a larger
dataset. According to Figures 6 (a) and (c), the usage of both
Tansig and Purelin generates positive and negative results.
However, this was unseen in the previous experiment with
the Black sample. Moreover, the usage of Logsig was
successful without experiencing failed training like the
Tansig. These situations are expected to occur when a more
complex dataset is used.

The training was conducted for two different maximum
epoch numbers, namely 10 and 100 iterations. It sought to
explore the advantage of training the neural model for real
data with more epochs. However, it is limited to 100
iterations. Training the model with a higher number would
potentially cause over-fitting.

In order to communicate the results better, the distribution
of the error is illustrated based on specific error range
categories, as seen in Tables 3 and 4, and Figures 10-12.
There are 11 categories of error ranges. These tables and
figures show the error distribution for the first trial of
log_tan, log_log, and log_pur sub-scenarios for both 10 and
100 epochs. Showing the results for all trials will be good;
however, it will also be crowded and hence considered
possibly ineffective. The average errors based on 30 trials
are also reported.

TABLE III
DISTRIBUTION OF ERROR FOR THE FIRST TRIAL (10 EPOCHS)

Error range
10 epochs
Log_Tan Log_Log Log_Pur

<=10% 20 15 19
10<X<=20 10 12 9
20<X<=30 15 12 21
30<X<=40 19 12 14
40<X<=50 4 9 9
50<X<=60 6 6 5
60<X<=70 1 1 4
70<X<=80 2 4 1
80<X<=90 1 5 4
90<X<=100 5 0 1
>100 17 23 15

The typical trend shown by these tables and figures is that

the error decreases when the neural model is trained with

more epochs. The numbers inside the brackets show the gap
of error between the training of 10 and 100 epochs. The most
significant gap belongs to log_log sub-scenario, for the first
error range category. As expected, more samples have errors,
not more than 10 per cent after the epoch is increased to 100
iterations. Other error ranges decrease.

TABLE IV
DISTRIBUTION OF ERROR FOR THE FIRST TRIAL (100 EPOCHS)

Error range
100 epochs
Log_Tan Log_Log Log_Pur

<=10% 30(10) 47(32) 30(11)

10<X<=20 22(12) 11(-1) 15(6)

20<X<=30 10(-5) 5(-7) 14(-7)

30<X<=40 7(-12) 5(-7) 12(-2)

40<X<=50 4(0) 7(-2) 2(-7)

50<X<=60 1(-5) 5(-1) 2(-3)

60<X<=70 1(0) 1(0) 0(-4)

70<X<=80 1(-1) 4(0) 2(1)

80<X<=90 5(4) 1(-4) 1(-3)

90<X<=100 2(-3) 0(0) 0(-1)

>100 16(-1) 14(-9) 21(6)

TABLE V

DISTRIBUTION OF AVERAGE ERROR FOR 30 TRIALS (10 EPOCHS)

Error range
10 epochs
Log_Tan Log_Log Log_Pur

<=10% 14 12 16

10<X<=20 14 11 13

20<X<=30 11 9 15

30<X<=40 11 9 13

40<X<=50 7 7 9

50<X<=60 6 5 6

60<X<=70 3 3 4

70<X<=80 2 2 3

80<X<=90 2 3 3

90<X<=100 2 17 2

>100 28 20 18

TABLE VI
DISTRIBUTION OF AVERAGE ERROR FOR 30 TRIALS (100 EPOCHS)

Error range
100 epochs
Log_Tan Log_Log Log_Pur

<=10% 25(11) 32(20) 26(10)

10<X<=20 16(2) 13(2) 16(3)

20<X<=30 12(1) 8(-1) 13(-2)

30<X<=40 10(-1) 5(-4) 12(-1)

40<X<=50 5(-2) 5(-2) 5(-4)

50<X<=60 3(-3) 4(-1) 3(-3)

60<X<=70 2(-1) 2(-1) 2(-2)

70<X<=80 2(0) 1(-1) 2(-1)

80<X<=90 2(0) 1(-2) 2(-1)

90<X<=100 2(0) 15(-2) 2(0)

>100 22(-6) 14(-6) 16(-2)

In the second place is log_pur sub-scenario. The gap is

lower for the first error range, compared to log_log sub-

2415

scenario. More errors are concentrated within 10-40 percent
error range categories, counted for 41 percent compared to
the first category's error, which is only 30 percent. Then,
some error ranges experience increasing percentages,
although the epoch is increased. The examples are error
range 70<X≤80, and >100.

Fig. 10 Absolute percentage different distributions, log_tan, 1st trial

Fig. 11 Absolute percentage different distributions, log_log, 1st trial

Fig. 12 Absolute percentage different distributions, log_pur, 1st trial

However, this is for the first trial only. The average

results for 30 trials show that all of error range categories
decrease except for the first category, as expected (see Table
6). The third-place belongs to log_tan sub-scenario. The
percentage of error distributed for the first category is
slightly lower than log_pur sub-scenario, for both the first
trial and the average results. Log_tan sub-scenario has
initially 20 per cent of error distributed in the first error
category. When the epoch is increased to 100 iterations, it

was found that about 30 per cent of the sample has error not
more than ten per cent.

The training for 30 trials results in about seven per cent
unsuccessful training. It also can be seen from Tables 3-6
that the percentage of error distributed for >100 per cent
error range category is high, especially for log_log sub-
scenario. This occurrence is due to:

1) Negative estimations:The error is calculated by using
the following formula:

 !"#$%&���
'()�*+,-./0
�)-.1,-./0

'()�*+,-./0
2 100%� (5)

Thus, the usage of this formula results in a more significant
percentage as a result of negative estimation. The negative
estimation is due to Tansig and Purelin's utilization, which
allow and generate both positive and negative outputs. The
negative estimation is counted for an average of six per cent
of the total sample numbers. It remains after the epoch is
increased to 100 iterations. This problem can be solved by
using Logsig function, which only generates positive
continuous numbers.As the consequence of Tansig function
usage, up to 12 per cent (from 81 samples) of the neural
outputs are negative. This value drops to eight per cent when
the training is conducted for 100 epochs. However, the
average estimation is positive for all samples because of the
failed training, which generates +1 output for the Tansig
function.

2) Overestimations: In general, overestimations dominate
more than negative estimations. It is in the average of (5-10)
per cent of the total sample number for ten epoch-training,
dropping to (2-4) per cent when the epoch is increased to
100 iterations. Therefore, increasing the epoch number can
minimize overestimations.

3) Zero trips were estimated as a non-zero trip: Neural
models are unable to map zero value observations correctly.
The models estimate the zero trips as numbers very close to
zero. When the zero-value observation is estimated as either
positive or negative non-zero estimation (although it is so
small that it is close to zero), the difference is considered
above 100 per cent. This result occurs for all sub-scenarios.
This problem remains even when the epoch is increased to
100 iterations.

Table 3-6 and Figures 13-15 shows the average absolute
error distribution for eleven error range categories. They also
display the results for neural models trained with 10 and 100
epochs. Figures 13 and 14 show almost identical pictures as
those in Figures 10 and 11, except that the error distribution
for the last two error range categories is much larger. It is
due to the first two figures displaying the average results,
including the failed training. Log_tan and log_log sub-
scenarios have 7 and 17 per cent of unsuccessful training
respectively, in contrast to log_pur sub-scenario which has
all its training successful. Therefore, the first trial of log_pur
sub-scenario and its average results show relatively typical
trends. Increasing epoch number cannot solve the
unsuccessful training as the training stops at the first
iteration.

It was previously reported in the training of Black's three
region flow that all trials were successful. The usage of
Tansig for Log scenario was reported to have up to ten per

2416

cent unsuccessful training. It is related to the method used in
normalizing the target vector and the output generated by the
logistic function. The experiments with real data and with
higher complexity resulted in 7 and 17 per cent of failed
training for log_tan and log_log sub-scenarios, respectively.
The impact of the mismatch between the linear
normalization method applied for the target vector, and the
result of the non-linear logistic function in the output node
now becomes more evident.

Fig. 13 Average absolute percentage different distributions, log_tan

Because of failed training, Tansig generates outputs as +1

for all samples, while Logsig generates very small positive
numbers for all samples. Therefore, the log_tan sub-
scenario's average error for 30 trials shows no negative
output (see Figure 13). Meanwhile, failed training for
log_log sub-scenario has distributed the error for the error
range category 90<X≤100. Tables 5 and 6 show the error
distribution for this range. The error reaches 17 and 15 per
cent for 10 and 100 epochs, respectively. The percentage
drops two per cent when the epoch is increased to 100
iterations.

Fig. 14 Average absolute percentage different distributions, log_log

Fig. 15 Average absolute percentage different distributions, log_pur

C. Estimated O-D matrix

The estimated O-D matrix for each sub-scenario of Log
scenario can be seen in Tables 7-10. The results presented in
this section are for 100 epochs only. The US migration flow
problem is more complicated than Black's problem and
hence requires more epochs to generate good results. The
general results of Black three-region flow are (1) The
training for log_pur sub-scenario is relatively quicker than
log_log sub-scenario. It only requires in average five epochs
to converge. At the same time, it is triple for log_log sub-
scenario, and (2) Log_tan sub-scenario experiences seven
per cent failed training. Hence, it is unable to generate good
estimations to construct O-D matrix even though the epoch
is increased many times. Its performance only can be solved
when failed training can be avoided.

It should be remembered that these results are based on a
relatively simple three-square matrix. Some expected results
did not occur. Training with more complex and real data like
the US 1965-1970 migration flow has resulted in the
occurrence of anticipated events. Examples are (1) Failed
training happened not only for log_tan sub-scenario, but also
for log_log sub-scenario, and (2) Negative outputs were
generated by log_tan and log_pur sub-scenarios as the result
of the usage of Tansig and Purelin functions. Thus, these
findings affect the O-D matrices estimated by each sub-
scenario, as reported in Tables 7.8-7.10.

TABLE VII
AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_TAN

(100 EPOCHS)

TABLE VIII

AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_ LOG

(100 EPOCHS)

TABLE IX

AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_ PUR

(100 EPOCHS)

2417

IV. CONCLUSION

It can be summarized that log_pur sub-scenario appears
superior to the other sub-scenarios. Although it has a
weakness which is its negative estimations, its performance
is slightly better than log_log and much better than log_tan
sub-scenarios. The performances of log_log and log_tan sub-
scenarios diminish due to some factors, namely (1)
Unsuccessful training, and (2) Negative estimations (for
log_tan sub-scenario only). Increasing the epoch number
cannot solve the failed training; however, it helps in
decreasing the incidence of negative estimations.

Another problem faced by all the sub-scenarios and
affected their performance is that the results are based on
invalidated models, and hence different results may be
attained when tested by using new datasets. The gaps
between real and estimated row and column totals are still
high, from -1081 to +31 trips. Fixing this difference should
improve the calibration performance of neural models and its
testing performance, which has yet to be considered.

NOMENCLATURE

A Trip Attraction Trip
D Deterrence factor Km
LM Levenberg-Marquard
MLFFNN Multilayer Feedforward Neural Network
ANN Artificial Neural Network
P Trip Production Trip
r Correlation coefficient
RMSE Root Mean Square Error Trip
Thd Estimated trip number Trip
thd Observed trip number Trip
w Connection weight
Obs Observed trip number Trip

Subscripts
i input layer
j hidden layer
k output layer

REFERENCES
[1] S. T. Skias, Methods and procedures for the verification and

validation of artificial neural networks. New York, NY: Springer
Science+Business Media, 2006.

[2] W. Chen, et al., "Using a Single Dendritic Neuron to Forecast Tourist
Arrivals to Japan," IEICE Transactions on Information and Systems,
vol. E100.D, pp. 190-202, 2017.

[3] K. Kumar, et al., "Short term traffic flow prediction in heterogeneous
condition using artificial neural network," Transport, vol. 30, pp.
397-405, 2015/10/02 2015.

[4] R. Abdul Jabbar and H. Dia, "Predictive Intelligence: A Neural
Network Learning System for Traffic Condition Prediction and
Monitoring on Freeways," Journal of the Eastern Asia Society for
Transportation Studies, vol. 13, pp. 1785-1800, 2019.

[5] W. Guangxing and K. Jiwon, "A Large Scale Neural Network Model
for Crash Prediction in Urban Road Networks " in Australasian
Transport Research Forum, Auckland, New Zealand, 2017.

[6] W. R. Black, "Spatial interaction modeling using artificial neural
networks," Journal of Transport Geography, vol. 3, pp. 159-166,
1995.

[7] M. Dougherty, "A review of neural networks applied to transport,"
Transportation Research Part C: Emerging Technologies, vol. 3, pp.
247-260, 1995.

[8] H. Wang, et al., "Detecting Transportation Modes Using Deep
Neural Network," IEICE Transactions on Information and Systems,
vol. E100.D, pp. 1132-1135, 2017.

[9] Y.-J. Byon, et al., "Real-Time Transportation Mode Identification
Using Artificial Neural Networks Enhanced with Mode Availability
Layers: A Case Study in Dubai," Appled Sciences, vol. 7, 2017.

[10] O. Lozhkina, et al., "Motor transport related harmful PM2.5 and
PM10: from onroad measurements to the modelling of air pollution
by neural network approach on street and urban level," Journal of
Physics: Conference Series, vol. 772, p. 012031, 2016/11 2016.

[11] G. Yaldi, "Improving the Neural Network Testing Performance for
Trip Distribution Modelling by Transforming Normalized Data Non-
linearly," International Journal on Advanced Science, Engineering
and Information Technology, vol. 7, 2017.

[12] G. Yaldi, "Analysing the Behaviour and Performance of Neural
Network Trip Distribution Models toward Different Hidden Layer
and Node Numbers," presented at the The 11th International
Conference of Eastern Asia Society for Transportation Studies, Cebu,
Philippines, 2015.

[13] F. Moretti, et al., "Urban traffic flow forecasting through statistical
and neural network bagging ensemble hybrid modeling,"
Neurocomputing, vol. 167, pp. 3-7, 2015/11/01/ 2015.

[14] D. Teodorovic and K. Vukadinovic, Traffic Control and Transport
Planning: A Fuzzy Sets and Neural Networks Approach.
Massachusetts, USA: Kluwer Academic Publisher, 1998.

[15] M. Mozolin, et al., "Trip distribution forecasting with multilayer
perceptron neural networks: A critical evaluation," Transportation
Research Part B: Methodological, vol. 34, pp. 53-73, 2000.

[16] A. Dantas, et al., "Neural network for travel demand forecast using
GIS and remote sensing," in Neural Networks, 2000. IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint Conference
on, 2000, pp. 435-440 vol.4.

[17] G. Yaldi, et al., "Improving Artificial Neural Network Performance
in Calibrating Doubly-Constrained Work Trip Distribution by Using
a Simple Data Normalization and Linear Activation Function," in
Paper of The 32 Australasian Transportation Research Forum,
Auckland, New Zealand. Available at www.patrec.org/atrf.aspx,
2009.

[18] B. M. Wilamowski, et al., "An Algorithm for Fast Convergence in
Training Neural Networks," IEEE, vol. 3, pp. 1778-1782, 2001.

[19] G. Zhang, et al., "Forecasting with artificial neural networks:: The
state of the art," International Journal of Forecasting, vol. 14, pp.
35-62, 1998.

2418

