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Abstract— The transfer function is used to process the summation outputs in the hidden and output nodes. It can generally be 
categorized as either a non-linear or linear function. Examples are Sigmoid and Purelin functions representing non-linear and linear 
transfer functions. It is often mentioned that there is no standard guideline in the transfer function selection, and the Sigmoid or 
Logsig is widely used. However, the transfer function and training algorithm have a procedural relationship in training Multilayer 
Feedforward Neural Network (MLFFNN), a famous Artificial Neural Network model structure. In the feedforward stage, this 
function transforms the linear summation output to either linear (Purelin) or non-linear form (Sigmoid). In the backpropagation 
stage, this function is used in calculating the magnitude of change in the connection weights involving its derivative. Nine scenarios of 
MLFFNN were developed based on different transfer functions used in both hidden and output layers. In order to make fair 
comparisons, each scenario has the same initial connection weight. The modelling is conducted at the calibration level only; however, 
it involves different levels of complexity. It was calibrated by using the Levenberg-Marquard training algorithm. The results suggest 
that some calibrations failed and negative estimations occurred once non-linear transfer functions were used in hidden and output 
layers. It was found that Purelin was superior to other transfer functions. However, it has a weakness which is its negative 
estimations.  
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I. INTRODUCTION 

The concept of Artificial Neural Network (ANN) began 
with the discovery of neuron in 1836 [1]. The human neural 
network consists of approximately 1011 neurons. Each 
neuron is connected to up to ten thousand other neurons and 
hence forms about 1014 to 1015 interconnections in the 
human brain neural network system. Figure 1 depicts a 
single neuron and its components. Those components are (1) 
Cell body or soma, (2) Axons, (3) Dendrites, and (4) 
Synapses. These four components have different functions. 
The ANN is constructed based on these four components 
and its function. 

The cell body or soma contains the nucleus where 
information received from the dendrites is stored and 
processed. The received information is summed up and 
compared with a specific value of threshold to decide 
whether it should transfer or transmit signals to the other 
neuron through the axon. Hence, dendrites and axons 
function to bring the information/electrical signals in and out, 
respectively. Artificial intelligent experts try to mimic this 
information processing mechanism in the construction of the 
ANN, and the most famous one is called Multilayer 

Feedforward Neural Network (MLFFNN). It was widely 
used for forecasting and also known as Multiple-layered 
perceptron [2, 3] or Backpropagation neural network model 
[4]. The typical structure of MLFFNN is shown in Figure 2. 

 

 

Fig. 1 Biological neuron diagram [1] 
 
MLFFNN comprises input and output layers and a hidden 

layer between them. There could be more than one hidden 
layer as reported by Wang & Kim in predicting crash 
number on urban road networks by using ANN [5]; however, 
MLFFNN with a hidden layer is often used.  Each layer has 
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several parallel nodes and is connected to other nodes in the 
adjacent layer. Every node in the same layer connects to 
other nodes in the previous and subsequent layers depending 
on its location. However, there is no connection between 
nodes within the same layer.  

 

 
Fig. 2 Multilayer Feedforward Neural Network (MLFFNN) 

 
In the MLFFNN, the nodes in the first layer (i) take the 

data into the network. The data flow, along with the 
connections, are scaled by the connection weights (wji). The 
output (yj) is computed by transferring the scaled input by 
using an internal transfer function (f(xji)). The estimation is 
obtained through the accumulation from all nodes' 
summation in the hidden layer (xk). It is then sent to the 
output node and is commonly transformed by using a 
logistic transfer function in that node (yk) [3, 6, 7]. 

Due to its potential capabilities, ANN has been adopted as 
a transportation modelling tool since the 1990s, mainly for 
driver behavior/autonomous vehicle modeling [7]. Its latest 
usage can be found not only for behavioral modelling but 
also for transport mode choice [8], real-time transport mode 
identification [9], traffic impact analysis  [10] as well as for 
trip distribution forecasting [11, 12]. Furthermore, Moretti et 
al. reported that combining other modelling tools with ANN 
could increase its capability [13]. The ANN and simple 
statistical method were combined and were used in 
modelling urban traffic flow. It resulted in a promising 
performance. This combined model was called a hybrid 
modelling approach. 

Based on the definition and the concept of ANN 
previously described, certain elements or factors configure 
ANN. According to Dougherty [7], those elements are 
namely (1) A set of processing elements (nodes), (2) 
Connectivity of those elements (connection weights), (3) 
Transfer functions, and (4) Learning algorithms (training 
algorithms). The transfer function and training algorithm 
have a procedural relationship in training MLFFNN. In the 
feedforward stage, this function will transform the linear 
summation output to either linear (Purelin) or non-linear 
form (Sigmoid). In the backpropagation stage, this function 
is used in calculating the magnitude of change in the 
connection weights involving its derivative. 

The nature of ANN was considered as a Black-box 
modelling approach [9]. Therefore, the ANN approach's 
adoption must be supported by adequate empirical works 

since the inappropriate usage of transfer functions will lead 
to unrealistic model outputs. There is a lack of reported 
studies on the behavior of ANN concerning these properties. 
Once ANN was used in the transport modelling purposes, 
the selection of transfer functions was rarely discussed such 
as in a study by Chen et al. in forecasting tourist arrival [2] 
and  Jabbar and Dia in predicting and monitoring traffic 
condition on freeways [4]. The same case was found in the 
modeling air pollution due to traffic impact on street and 
urban level [10] and modeling crash prediction in urban road 
networks [5]. Therefore, a comprehensive work on defining 
those properties, especially in the trip distribution modeling, 
can help this approach's users. Thus, this study investigates 
the performance of ANN in trip distribution modelling, 
especially in using different transfer functions for both 
hidden and output layers.  

II. MATERIALS AND METHOD 

Teodorovic and Vukadinovic [14] claimed Sigmoid and 
Linear functions as the most commonly used transfer 
functions. However, the lack of study reported the impact of 
different transfer functions toward neural network model 
performance even though transfer function is one of the 
ANN's main properties. 

Black [6] reported the utilization of neural network spatial 
distribution model for strategic forecasting. The study 
compared the gravity and neural models. The neural models 
were developed based on the gravity model's traditional 
form and used Sigmoid as the transfer function. Figure 3 
shows the neural network model structure developed by 
Black called Gravity Artificial Neural Network/GANN). 
Three case studies were reported, (1) A three-region flow 
problem; (2) A commodity flow problem, and (3) A 
migration flow problem. Although both gravity and neural 
models produced acceptable results, the neural models were 
found as a better calibration tool and were recommended for 
future flow forecasting. 

 

 
Fig. 3 Gravity Artificial Neural Network (GANN) used by Black [6] 
 
Mozolin et al. [15] reported another strategic forecasting 

by ANN (see Figure 4 for the neural model structure). The 
difference between the studies by Black [6] and Mozolin et 
al. [15] is that Black [6] used Sigmoid as transfer functions 
in all layers resulted in values typically ranging within (0) 
and (+1). Meanwhile, Mozolin et al. [15] used Tansig as the 
transfer functions, which produced numbers ranging within 
(-1) and (+1). Consequently, the output of the model 
representing the estimated trip numbers may comprise both 
negative and positive values, while the trip values are always 
a positive value. Furthermore, Mozolin et al. [15] extended 
the analysis to the testing level. Although both studies 
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developed neural models based on the structure of the 
traditional constrained gravity model, Mozolin et al.  [15] 
reported that the neural model had a poor generalization 
performance despite their superior calibration ability claimed 
by Black [6].  

 
Fig. 4 Neural Network Architecture used by Mozolin et al. [15] 

 
Dantas et al. [16] used neural models to forecast travel 

demand where the data were mainly obtained from remote 
sensing images processed in the geographical information 
system. Hardlim transfer function was used in the output 
node resulted in negative forecasted trip interchange 
volumes contradicting to the reality where there are no 
negative trip numbers. Meanwhile, Yaldi et al. [11] 
simulated some neural network models where the input data 
were normalized with the same transfer function used in the 
output layer with the neural network model structure 
depicted in Figure 5. A significant improvement was found 
in the model outputs compared to those normalized by using 
simple normalization method where the entire input pattern 
vector, except the distance, was divided by the total number 
of trips.  

 
Fig. 5 Neural Network Architecture used by Yaldi et al. [11] 

 

Its maximum value normalized the distance. The 
advantage of this normalization method is that there is only 
one unique factor used in normalizing the data, and hence it 
becomes simpler than dividing them by their maximum 
values. This method was used by Black [6]. Thus, it 
confirmed that the transfer function plays essential roles in 
optimizing neural network model performance. 

A. Common transfer functions 

Figure 6 shows the common transfer functions used in 
ANN [14] and also in this research, namely: 

1) Tansig: 

 ���� � �
��� ���
��� �
���

���� ������� �
���
 (1) 

2) Sigmoid/Logsig: 

 ���� � �1  ����������
�  (2) 

3) Linear: 

 ���� � �  (3) 

Among the three transfer functions, the Sigmoid or 
logistic function (Logsig) is the most widely used [5-7]. 
Each node in the network may use different transfer 
functions; yet, the same transfer function is commonly used 
within a layer. Both hidden and output layer nodes usually 
use the Sigmoid function. There is no standard rule in 
selecting the transfer function. The authors rarely explain the 
selection process of transfer function; however, it can be 
assumed that the Sigmoid function is used to capture the 
non-linear relationship among the model variables. It has a 
range of value typically within (0) and (+1) for Logsig, and 
(-1) and (+1) for double logistic/Tansig. 

 
Fig. 6 Commonly used transfer functions 

B. Model Data 

This study uses the US 1965-1970 migration data in 
addition to Black's three region flow problem [6]. The data 
represents nine major census regions in the USA namely (1) 
New England, (2) Middle Atlantic, (3) East North Central, (4) 
West North Central, (5) South Atlantic, (6) East South 
Central, (7) West South Central, (8) Mountain, and (9) 
Pacific. Different spatial interaction modelling has also been 
used these data, as reported by Black [6]. This data is a nine-
square matrix, which is nine times bigger than the Black 
three region flow problem.   
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C. Model Scenario 

The ANN performance towards different transfer 
functions for the output layer in calibrating trip distribution 
model was reported by Yaldi et al. [17] and a linear transfer 
function for the output layer was proposed. Thus, this study 
expands it by varying the transfer function in the output 
layer and the hidden layer. Consequently, it results in nine 
different scenarios, where each scenario has the same initial 
connection weight in order to make fair comparisons. 

Table 1 presents the scenarios used in the training 
process. These are categorized based on the types of transfer 
functions used in both hidden and output layers. The 
performance of the neural model for those scenarios can then 
be compared.  

TABLE I  
NEURAL MODEL SCENARIO BASED ON TRANSFER FUNCTIONS 

Scenario 
# 

Transfer function 
Experiment 
# Remark Hidden 

node 
Output 
node 

1 Tansig Tansig 30 Called 
Tan 
scenario 

2 Tansig Logsig 30  
3 Tansig Purelin 30  
4 Logsig Tansig 30 Called 

Log 
scenario 

5 Logsig Logsig 30  
6 Logsig Purelin 30  
7 Purelin Tansig 30 Called 

Pur 
scenario 

8 Purelin Logsig 30  
9 Purelin Purelin 30  
Total 9 scenarios  270 trials  

D. Model Level 

The modelling is conducted at the calibration level only; 
however, it involves different levels of complexity. Firstly, 
the neural models are developed for Black's three region 
flow [6], where the problem's size is a 3x3 matrix. The 
results are then ranked based on the model performance for 
each scenario.  

The best scenarios are then further assessed by using a 
higher degree of data complexity, in this case, a 9x9 matrix 
of US 1965-1970 migration flow data. The evaluation 
considers the accuracy and precision of the estimated trip 
interchange volumes by using the Root Mean Square Error 
(RMSE), R2, and absolute error distribution for different 
error range categories. MLFFNN with a hidden layer and ten 
hidden nodes is used in training. The training is conducted 
using the Levenberg-Marquardt algorithm as this was the 
most effective and efficient training algorithm [18]. 

III.  RESULTS AND DISCUSSIONS 

A. Black's three region flow model 

Table 2 shows the performance of neural models for nine 
combinations of sub-scenarios. The first column shows the 
transfer function in the hidden nodes, while the second row 
shows it for the output node. The best scenario in terms of 
the values of RMSE and R2 belongs to the Log scenario 

(transfer function in all the hidden nodes is a Logsig 
function). Although not all the RMSE for each Log sub-
scenario (logsig_tansig, logsig_logsig, and logsig_purelin) 
are lower than other sub-scenarios, two of them have lower 
RMSE than others. The same trend is also indicated for the 
R2 coefficients. Its value for Log scenario is higher than 
other scenarios, except for log_tan sub-scenario. Then, the 
sub-scenarios involving Purelin transfer function performs 
better than other sub-scenarios; however, this only happens 
when Purelin is used in output nodes (see also Figures 7-9). 

TABLE II 
AVERAGE RMSE AND R2 FOR DIFFERENT SCENARIOS, BLACK 'S SAMPLE 

HL 
transfer 
function 

OL transfer function 
RMSE R2 
Tan Log Pur Tan Log Pur 

Tan 8.968 0.546 0.004 0.999 0.998 1.000 
Log 5.967 0.001 0.000 0.999 1.000 1.000 
Pur 1.564 1.988 1.558 0.958 0.936 0.959 

 
When Purelin is used in hidden layer nodes, log_log sub-

scenarios tend to have a higher performance grade. This 
finding is related to the non-linearity and linearity issues. A 
neural model with a hidden layer tends to perform better 
than the one without it [12]. The hidden layer can capture the 
non-linear relationship in the data. Thus, the logistic function 
is more suitable for this purpose than the linear transfer 
function as indicated by the results in Table 2.  

Meanwhile, the sub-scenarios where Purelin is used in the 
output node tend to perform better than other kinds of 
transfer functions. This result can be explained by looking at 
the relationship between the method used to normalize the 
target vector and the type of transfer function (linear or non-
linear) used in the output node. Simple normalization 
method was used to normalize the target vector. Thus, 
Purelin is more suitable as a transfer function in the output 
layer. Zhang et al. [19] suggested that the linear transfer 
function is suitable for continuous data forecasting. 
 

 
Fig. 7 Estimated flow numbers for Black's sample, Tan scenarios 

 
Tan scenario, which uses Tansig in the output node, 

generates overestimated outputs, as seen in Figure 7. 
However, the output is closer to the real one when the 
transfer function is switched to either Logsig or Purelin. 
Although the usage of Tansig function also generates 
negative outputs, fortunately training with this simple and 
small size matrix does not result in any negative outputs for 
this scenario (see Figure 7). However, the Tansig usage in 
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the output node leads to the occurrence of failed training up 
to ten per cent of the total 30 trials. Thus, there is the 
possibility of training being unsuccessful when Tansig is 
used in the output node. 

The next one is Log scenario. Figure 8 depicts the 
estimated flows for each of Log sub-scenario and illustrates 
the average flows estimated for 30 trials. Among the Log 
sub-scenarios, log_pur tends to superior to the other sub-
scenarios. Log_tan sub-scenario has overestimated flows 
number for all samples from A to I, the same as the one in 
Tan scenario. The overestimations occur due to the failed 
training experienced by log_tan scenario. 

Both log_log and log_pur sub-scenarios have almost the 
same performance level, except that the RMSE for log_pur 
is lower. This performance is related to the output of Purelin 
(linear) function and target vector, which is also linearly 
normalized. The target vector in this model is linearly 
normalized, matching with the output of neural models for 
log_pur sub-scenario which generates linear outputs due to 
the usage of the linear transfer function in the output node 
(Purelin). It transfers the output linearly according to 
Equation 3. It is related to the summation of the inputs 
multiplied with the relevant connection weights from the 
hidden nodes and received by the output nodes. 

 

 
Fig. 8 Estimated flow numbers for Black's sample, Log scenarios 

 
Unlike Logsig and Tansig, Purelin just receives the 

summation output according to Equation 3, and the results 
are used in the computation of the difference between the 
neural model output (O�

� �T���) and the target vector (t��� 
counted by the following equation: 

 ���� � ��� � ��
� � ���   (4) 

 This equation tries to calculate the difference based on 
the neural model outputs and the target vectors, which are 
both linearly transformed or normalized. 

A different situation occurs when either Logsig or Tansig 
function is used in the output node. The neural model output 
is non-linearly transformed, and the error or the difference is 
obtained by subtracting the non-linearly transformed neural 
model outputs from the linearly transformed target vector. A 
systematic error occurs due to the mismatch between the 
nature of the neural model output and the target vector. This 
error affects the training results, as indicated by the neural 
model performance reported in Table 2. 

The utilization of a linear normalization method is a 
disadvantage for log_log sub-scenario. It is due to the neural 

model that calculates the difference by using Equation 2 and 
uses it in adjusting the connection weight. In this equation, 
the estimated trip (Thd) is transformed non-linearly by 
Logsig function while the observed trip (thd) is transformed 
linearly. It is expected that the performance of log_log sub-
scenario will improve when the target vector is also non-
linearly transformed according to Logsig function. It should 
also not be forgotten that the sample size is relatively small 
and simple. A more complex sample will have different 
trends. Like Tan scenario, no negative estimation belongs to 
any Log sub-scenario, although Tansig and Purelin functions 
are used in the output node. 

It can be seen from Table 2 that using linear transfer 
function for both hidden and output layers is also not 
recommended. It is better to use a combination of 
logsig_purelin than purelin_purelin sub-scenario. Figure 9 
shows that some estimations are negative in contradiction to 
the real ones which are positive (see sample C). The 
negative estimation occurs when Purelin is used in both 
hidden and output nodes, for 30 trials. Using Purelin in both 
hidden and output nodes means that the linear function is 
used to capture the relationship. Moreover, the neural model 
output is also linearly estimated. 

Meanwhile, the performance of Tan scenario is also seen 
to be worse than the other scenarios, and hence it is also not 
recommended. There are two reasons for this trend, namely: 

1) Up to ten percent of Tan scenarios: Up to ten percent 
of Tan scenarios experienced failed training, especially 
tan_tan sub-scenario: The results of failed training 
negatively contribute to Tan scenario's average performance. 
The estimations become greatly overestimated (see Figure 7). 
The failed training may result from the utilization of double 
logistic function in the output node. It generates non-linear 
transformed estimation, while the target vector is linearly 
transformed. Thus, the usage of linear data normalization is 
also a disadvantage for tan_tan sub-scenario. The training 
fails when the minimum gradient (1E-10) is reached, which 
means that there is no change in the weight adjustment 
process.  

 
Fig. 9 Estimated flow numbers for Black's sample, Pur scenarios 

2) The performance of the Tan scenario worsens: The 
performance of the Tan scenario worsen since the negative 
results are generated by the neural model resulted from the 
usage of double logistic function (see Equation 1 and Figure 
6(a)). This function transforms the results non-linearly 
between negative and positive values. Negative estimations 
contradict with the reality as negative trip interchange 
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volumes do not exist. It was found that the number of 
negative outputs was ten per cent of the total samples. 

Thus, the scenarios can be ranked from the best one, 
namely Log scenario, followed by Tan and Pur scenarios, 
respectively. Based on this result, the Log scenario will be 
used again in the training of the same neural models. 
However, the training is conducted for a different and more 
complex dataset, namely the US 1965-1970 migration flow 
data. 

B. US 1965-1970 migration flow model 

Given Log scenario, as the best scenario resulted from 30 
trials by Black three region flow [6], the same neural models 
have trained again. At this time, the nine-square matrix 
based on the US 1965-1970 migration flow data was used as 
the dataset. The training again comprises three different sub-
scenarios, namely (1) Log_tan, (2) Log_log, and (3) 
Log_pur.  

It is expected that the impacts of double logistic and linear 
transfer functions could be seen more clearly in a larger 
dataset. According to Figures 6 (a) and (c), the usage of both 
Tansig and Purelin generates positive and negative results. 
However, this was unseen in the previous experiment with 
the Black sample. Moreover, the usage of Logsig was 
successful without experiencing failed training like the 
Tansig. These situations are expected to occur when a more 
complex dataset is used. 

The training was conducted for two different maximum 
epoch numbers, namely 10 and 100 iterations. It sought to 
explore the advantage of training the neural model for real 
data with more epochs. However, it is limited to 100 
iterations. Training the model with a higher number would 
potentially cause over-fitting.  

In order to communicate the results better, the distribution 
of the error is illustrated based on specific error range 
categories, as seen in Tables 3 and 4, and Figures 10-12. 
There are 11 categories of error ranges. These tables and 
figures show the error distribution for the first trial of 
log_tan, log_log, and log_pur sub-scenarios for both 10 and 
100 epochs. Showing the results for all trials will be good; 
however, it will also be crowded and hence considered 
possibly ineffective. The average errors based on 30 trials 
are also reported. 

TABLE III   
DISTRIBUTION OF ERROR FOR THE FIRST TRIAL (10 EPOCHS) 

Error range 
10 epochs 
Log_Tan Log_Log Log_Pur 

<=10% 20 15 19 
10<X<=20 10 12 9 
20<X<=30 15 12 21 
30<X<=40 19 12 14 
40<X<=50 4 9 9 
50<X<=60 6 6 5 
60<X<=70 1 1 4 
70<X<=80 2 4 1 
80<X<=90 1 5 4 
90<X<=100 5 0 1 
>100 17 23 15 
 
The typical trend shown by these tables and figures is that 

the error decreases when the neural model is trained with 

more epochs. The numbers inside the brackets show the gap 
of error between the training of 10 and 100 epochs. The most 
significant gap belongs to log_log sub-scenario, for the first 
error range category. As expected, more samples have errors, 
not more than 10 per cent after the epoch is increased to 100 
iterations. Other error ranges decrease. 

TABLE IV 
DISTRIBUTION OF ERROR FOR THE FIRST TRIAL (100 EPOCHS) 

Error range 
100 epochs 
Log_Tan Log_Log Log_Pur 

<=10% 30(10) 47(32) 30(11) 

10<X<=20 22(12) 11(-1) 15(6) 

20<X<=30 10(-5) 5(-7) 14(-7) 

30<X<=40 7(-12) 5(-7) 12(-2) 

40<X<=50 4(0) 7(-2) 2(-7) 

50<X<=60 1(-5) 5(-1) 2(-3) 

60<X<=70 1(0) 1(0) 0(-4) 

70<X<=80 1(-1) 4(0) 2(1) 

80<X<=90 5(4) 1(-4) 1(-3) 

90<X<=100 2(-3) 0(0) 0(-1) 

>100 16(-1) 14(-9) 21(6) 

 
TABLE V  

DISTRIBUTION OF AVERAGE ERROR FOR 30 TRIALS (10 EPOCHS) 

Error range 
10 epochs 
Log_Tan Log_Log Log_Pur 

<=10% 14 12 16 

10<X<=20 14 11 13 

20<X<=30 11 9 15 

30<X<=40 11 9 13 

40<X<=50 7 7 9 

50<X<=60 6 5 6 

60<X<=70 3 3 4 

70<X<=80 2 2 3 

80<X<=90 2 3 3 

90<X<=100 2 17 2 

>100 28 20 18 
 

TABLE VI   
DISTRIBUTION OF AVERAGE ERROR FOR 30 TRIALS (100 EPOCHS) 

Error range 
100 epochs 
Log_Tan Log_Log Log_Pur 

<=10% 25(11) 32(20) 26(10) 

10<X<=20 16(2) 13(2) 16(3) 

20<X<=30 12(1) 8(-1) 13(-2) 

30<X<=40 10(-1) 5(-4) 12(-1) 

40<X<=50 5(-2) 5(-2) 5(-4) 

50<X<=60 3(-3) 4(-1) 3(-3) 

60<X<=70 2(-1) 2(-1) 2(-2) 

70<X<=80 2(0) 1(-1) 2(-1) 

80<X<=90 2(0) 1(-2) 2(-1) 

90<X<=100 2(0) 15(-2) 2(0) 

>100 22(-6) 14(-6) 16(-2) 

 
In the second place is log_pur sub-scenario. The gap is 

lower for the first error range, compared to log_log sub-
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scenario. More errors are concentrated within 10-40 percent 
error range categories, counted for 41 percent compared to 
the first category's error, which is only 30 percent. Then, 
some error ranges experience increasing percentages, 
although the epoch is increased. The examples are error 
range 70<X≤80, and >100.  

 

 
Fig. 10  Absolute percentage different distributions, log_tan, 1st trial 

 

 
Fig. 11  Absolute percentage different distributions, log_log, 1st trial 

 

 
Fig. 12  Absolute percentage different distributions, log_pur, 1st trial 

 
However, this is for the first trial only. The average 

results for 30 trials show that all of error range categories 
decrease except for the first category, as expected (see Table 
6). The third-place belongs to log_tan sub-scenario. The 
percentage of error distributed for the first category is 
slightly lower than log_pur sub-scenario, for both the first 
trial and the average results. Log_tan sub-scenario has 
initially 20 per cent of error distributed in the first error 
category. When the epoch is increased to 100 iterations, it 

was found that about 30 per cent of the sample has error not 
more than ten per cent. 

The training for 30 trials results in about seven per cent 
unsuccessful training. It also can be seen from Tables 3-6 
that the percentage of error distributed for >100 per cent 
error range category is high, especially for log_log sub-
scenario. This occurrence is due to: 

1) Negative estimations:The error is calculated by using 
the following formula: 

 !"#$%&���
'()�*+,-./0
�)-.1,-./0

'()�*+,-./0
2 100%� (5) 

Thus, the usage of this formula results in a more significant 
percentage as a result of negative estimation. The negative 
estimation is due to Tansig and Purelin's utilization, which 
allow and generate both positive and negative outputs. The 
negative estimation is counted for an average of six per cent 
of the total sample numbers. It remains after the epoch is 
increased to 100 iterations. This problem can be solved by 
using Logsig function, which only generates positive 
continuous numbers.As the consequence of Tansig function 
usage, up to 12 per cent (from 81 samples) of the neural 
outputs are negative. This value drops to eight per cent when 
the training is conducted for 100 epochs. However, the 
average estimation is positive for all samples because of the 
failed training, which generates +1 output for the Tansig 
function. 

2) Overestimations: In general, overestimations dominate 
more than negative estimations. It is in the average of (5-10) 
per cent of the total sample number for ten epoch-training, 
dropping to (2-4) per cent when the epoch is increased to 
100 iterations. Therefore, increasing the epoch number can 
minimize overestimations. 

3) Zero trips were estimated as a non-zero trip: Neural 
models are unable to map zero value observations correctly. 
The models estimate the zero trips as numbers very close to 
zero. When the zero-value observation is estimated as either 
positive or negative non-zero estimation (although it is so 
small that it is close to zero), the difference is considered 
above 100 per cent. This result occurs for all sub-scenarios. 
This problem remains even when the epoch is increased to 
100 iterations.  

Table 3-6 and Figures 13-15 shows the average absolute 
error distribution for eleven error range categories. They also 
display the results for neural models trained with 10 and 100 
epochs. Figures 13 and 14 show almost identical pictures as 
those in Figures 10 and 11, except that the error distribution 
for the last two error range categories is much larger. It is 
due to the first two figures displaying the average results, 
including the failed training. Log_tan and log_log sub-
scenarios have 7 and 17 per cent of unsuccessful training 
respectively, in contrast to log_pur sub-scenario which has 
all its training successful. Therefore, the first trial of log_pur 
sub-scenario and its average results show relatively typical 
trends. Increasing epoch number cannot solve the 
unsuccessful training as the training stops at the first 
iteration. 

It was previously reported in the training of Black's three 
region flow that all trials were successful. The usage of 
Tansig for Log scenario was reported to have up to ten per 
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cent unsuccessful training. It is related to the method used in 
normalizing the target vector and the output generated by the 
logistic function. The experiments with real data and with 
higher complexity resulted in 7 and 17 per cent of failed 
training for log_tan and log_log sub-scenarios, respectively. 
The impact of the mismatch between the linear 
normalization method applied for the target vector, and the 
result of the non-linear logistic function in the output node 
now becomes more evident. 

 

 
Fig. 13 Average absolute percentage different distributions, log_tan 

 
Because of failed training, Tansig generates outputs as +1 

for all samples, while Logsig generates very small positive 
numbers for all samples. Therefore, the log_tan sub-
scenario's average error for 30 trials shows no negative 
output (see Figure 13). Meanwhile, failed training for 
log_log sub-scenario has distributed the error for the error 
range category 90<X≤100. Tables 5 and 6 show the error 
distribution for this range. The error reaches 17 and 15 per 
cent for 10 and 100 epochs, respectively. The percentage 
drops two per cent when the epoch is increased to 100 
iterations. 

 

 
Fig. 14  Average absolute percentage different distributions, log_log 

 

 
Fig. 15  Average absolute percentage different distributions, log_pur 

C. Estimated O-D matrix 

The estimated O-D matrix for each sub-scenario of Log 
scenario can be seen in Tables 7-10. The results presented in 
this section are for 100 epochs only. The US migration flow 
problem is more complicated than Black's problem and 
hence requires more epochs to generate good results. The 
general results of Black three-region flow are (1) The 
training for log_pur sub-scenario is relatively quicker than 
log_log sub-scenario. It only requires in average five epochs 
to converge. At the same time, it is triple for log_log sub-
scenario, and (2) Log_tan sub-scenario experiences seven 
per cent failed training. Hence, it is unable to generate good 
estimations to construct O-D matrix even though the epoch 
is increased many times. Its performance only can be solved 
when failed training can be avoided.  

It should be remembered that these results are based on a 
relatively simple three-square matrix. Some expected results 
did not occur. Training with more complex and real data like 
the US 1965-1970 migration flow has resulted in the 
occurrence of anticipated events. Examples are (1) Failed 
training happened not only for log_tan sub-scenario, but also 
for log_log sub-scenario, and (2) Negative outputs were 
generated by log_tan and log_pur sub-scenarios as the result 
of the usage of Tansig and Purelin functions. Thus, these 
findings affect the O-D matrices estimated by each sub-
scenario, as reported in Tables 7.8-7.10. 

TABLE VII   
AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_TAN 

(100 EPOCHS) 

 
TABLE VIII   

AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_ LOG 

(100 EPOCHS) 

 
TABLE IX 

AVERAGE O-D MATRIX FOR US 1965-1970 MIGRATION FLOW: LOG_ PUR 

(100 EPOCHS) 
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IV.  CONCLUSION 

It can be summarized that log_pur sub-scenario appears 
superior to the other sub-scenarios. Although it has a 
weakness which is its negative estimations, its performance 
is slightly better than log_log and much better than log_tan 
sub-scenarios. The performances of log_log and log_tan sub-
scenarios diminish due to some factors, namely (1) 
Unsuccessful training, and (2) Negative estimations (for 
log_tan sub-scenario only). Increasing the epoch number 
cannot solve the failed training; however, it helps in 
decreasing the incidence of negative estimations. 

Another problem faced by all the sub-scenarios and 
affected their performance is that the results are based on 
invalidated models, and hence different results may be 
attained when tested by using new datasets. The gaps 
between real and estimated row and column totals are still 
high, from -1081 to +31 trips. Fixing this difference should 
improve the calibration performance of neural models and its 
testing performance, which has yet to be considered. 

NOMENCLATURE 

A Trip Attraction     Trip 
D Deterrence factor    Km 
LM Levenberg-Marquard 
MLFFNN Multilayer Feedforward Neural Network 
ANN Artificial Neural Network  
P Trip Production    Trip 
r Correlation coefficient 
RMSE Root Mean Square Error  Trip 
Thd Estimated trip number    Trip 
thd Observed trip number   Trip 
w Connection weight    
Obs Observed trip number   Trip 
 
Subscripts 
i input layer 
j hidden layer  
k output layer 
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