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Abstract— The classification accuracy of pattern recognition is determined by the extracted features and the utilized classifiers. Many 
efforts have been conducted to obtain the best features either by introducing a new feature or proposing a new projection method to 
increase class separability. Recently, spectral regression extreme learning machine (SRELM) has been introduced to improve the 
class separability of the features. However, the evaluation of SRELM was only focused on the myoelectric or electromyography 
pattern recognition from many EMG channels. In practical application, the user is more convenient with less number of channels. 
Then, the problem is whether the SRELM would be able to work efficiently for less EMG channels. The objective of this paper is to 
examine the performance of SRELM for bio-signal pattern recognition using two EMG channels. The EMG electrodes were located 
on flexor policies lounges and flexor digitorium superficial muscles of ten healthy subjects. Various time domain features were 
involved with various sizes. SRELM will project these features to more recognize features before being feed to multiple classifiers.  
Those classifiers are randomized Variable Translation Wavelet Neural Networks (RVT-WNN), extreme learning machine(ELM), 
support vector machine (SVM), and linear discriminant analysis (LDA). The performance of SREM was compared to other feature 
methods, such as LDA, uncorrelated LDA (ULDA), orthogonal fuzzy neighborhood dimensionality reduction (OFNDA), and spectral 
regression discriminant analysis (SRDA). The experimental results show that SRELM performed well when dealing with different 
class numbers by classification accuracy of around 95.67% for ten class movements and performed better than SRDA.  
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I. INTRODUCTION 

The artificial neural network using backpropagation has 
been used widely for decades in many applications. The 
weights on the hidden layers, as well as on the output layers, 
are trained using a famous backpropagation algorithm. For 
speeding up the learning time, a new idea was emerged by 
randomizing the weights on the hidden layer. For the first 
time, this idea was introduced by Schmidt et al. [1]. The idea 
was proved experimentally. A couple of years later, Huang 
et al. [2] demonstrated the efficacy of the random weights 
theoretically and experimentally by introducing an extreme 
learning machine (ELM) [3]. 

ELM is a single hidden layer feed-forward neural network. 
The randomization is applied to the weights of the hidden 
layer only. Meanwhile, the weights of the output layer are 
determined analytically using least square methods. 
Therefore, the training process runs very fast compared to 
the gradient descent method. ELM has entered various areas, 
including classification, regression, and dimensionality 
reduction. For classification, ELM has been applied for bio-

signal pattern recognition [4], [5], character recognition [6], 
[7], face recognition [8], protein structure detection, and 
cancer detection [9]. As for regression, ELM has shown its 
efficacy for the estimation of the physical parameters [10] 
and the electrical power system [11]. 

Besides classification and regression, ELM can be 
employed to overcome a curse dimensionality of the features. 
This idea was proposed by Huang et all. [12] who introduced 
an unsupervised ELM. This ELM reduces the feature’s 
dimension without labels, as in principal component analysis 
(PCA). In the case of the existence of the label, the linear 
discriminant analysis is preferable. Martinez et all. [13] 
showed that, in many cases, LDA is better than PCA. To 
accommodate the known labels in this unsupervised ELM, 
spectral regression extreme learning machine (SRELM) was 
proposed [14]. 

SRELM is a combination of spectral regression (SR) and 
ELM. As in a normal ELM, the hidden weights of SRELM 
are set randomly. Meanwhile, the role of SR is to calculate 
the output weights using spectral analysis. Phukpattaranont 
et all. [15] has evaluated SRELM for finger movement 
recognition using 6 electromyography (EMG) channels. The 
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experimental results indicated that SRELM outperformed 
over other tested methods. 

The good performance of SRELM [15] was achieved 
when using 6 EMG channels. Sometimes, using many 
channels is not convenient for amputees. Therefore, the 
myoelectric pattern recognition employing fewer channels is 
preferable. Few publications considering less EMG channels 
have been reported [16, 17]. Therefore, it is interesting and 
challenging to examine the performance of SRELM 
myoelectric pattern recognition using fewer channels. In this 
paper, two EMG channels were selected. The main 
contribution of this paper is the evaluation of SRELM for 
myoelectric pattern recognition using two-channel. It is 
interesting to examine its performance when the availability 
of the bio-signal is not adequate. The organization of this 
paper is as follows. The first section presents the 
introduction. The coming section provides the basic theory 
of SRELM and the experimental methodology. Section III 
presents the experimental results and discussions. Finally, 
Section IV is the conclusion. 

II. MATERIALS AND METHOD 

A. Theory of SRELM 

Spectral Regression Extreme learning machine or SRELM 
is a combination of spectral regression and extreme learning 
machine for feature projection or also known by 
dimensionality reduction. SRELM is constructed from 
unsupervised extreme learning developed by Huang et all. 
[12] for unsupervised dimensionality reduction. Basically, 
this unsupervised ELM is similar to a famous unsupervised 
dimensionality projection, i.e. principal component analysis 
(PCA).  PCA reduces the dimension of the features without a 
label. Different from PCA, linear discriminant analysis 
(LDA) reduces the feature dimension with known labels. 
Martinez et all. [13] show that, in many cases, LDA 
outperforms PCA. Starting from that point, spectral 
regression was introduced to the unsupervised ELM to 
incorporate the known labels to the unsupervised ELM.  

As for ELM, it is single layer feed-forward neural 
networks (SLFNs) that the hidden weights are set randomly. 
On the other hand, the output weights are calculated based 
on the least square methods. Assume, there are N samples 
data 

1{ ( , ) } N
i i ix t =

∈ Rn x Rm, and L hidden nodes, the 

ELM output is 

( )
1

( ) , , ,   1,...,
L

i j j j i i i

j

f G b t i Nβ
=

= = = =x a x h(x )ββββ  (1) 

where h(xi) ∈ RNxL and β ∈ RLxm. Here, h(xi) is determined 
randomly. Meanwhile, the output weights are calculated by 
minimization of the sum of squared prediction error. It is 
described by: 
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The substitution of the constraint into the objective function 
yields: 
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in which H = [h(x1),…, h(xN)T]T ∈ RNxL and T ∈ RNxm. From 
Eq. (3), we can obtain the gradient system with respect to β: 
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From Eq. (4), two solutions of  β can be obtained, subject 
to the H. The first solution is when H has fewer columns 
than rows: 

1

T TLI

C

−

+ 
 
 

H H H Tβ =β =β =β =  (5) 

where IL is an identity matrix. The second solutions is when 
H has fewer rows than columns, i.e.: 
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ELM can be extended for a dimensionality reduction by 
considering unknown labels [12]. For that aim, the objective 
function in Eq. (2) can be modified as: 
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where L is a graph laplacian and N is the number of samples.. 
Substitution of the constraint to the objective function gives: 
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Huang et all. [12] has proved that the optimal solution of 
Eq. (8) is eigenvalue of.: 
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In spectral regression [18, 19], a graph is mapped to real 
line y by a linear function: 

y = Ηu  (10) 

Thus, Eq. (9) becomes: 
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To find the optimal y, we have to minimize: 
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The value of L is obtained by subtracting W from D. D is a 
diagonal matrix, while W is an N x N matrix. Finally, the 
solution is by solving the maximum eigenvalue problem [18]: 

Wy=λλλλDy (13) 

To summarize, the solution to Eq. (13) is done in two steps. 
The first one is solving the eigenvalue problem and then 
finding u that satisfies Hu = y by employing: 
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Here, uj is the u component and α is a regression parameter. 
Therefore, the output weigh is given by: 

[ ]1 2 1
, ,...,

c−u u uβ =β =β =β = ∈RL (15) 

B. Method 

The primary goal of this research is to evaluate SRELM 
for myoelectric pattern recognition. Myoelectric signal 
(MES) or electromyography (EMG) utilized in this paper 
were collected in [14]. The MES was acquired from two 
channels from 10 subjects. In this research, one channel is 
added from the summation of these two original channels to 
get a new MES. From these three channels, time-domain 
features (TD) were extracted. It involved zero waveform 
lengths (WL) (3 features), slope sign changes (SSC) (3 
features), number of zero crossings (ZCC) (3 features), 
sample skewness (SS) (3 features), mean absolute value 
(MAV) (3 features), Hjorth-time domain parameters (HTD) 
(9 features) and 6-order autoregressive parameters (AR) (18 
features).  

The total number of features extracted was 42. However, 
later, more features are added to observe the performance of 
SRELM dealing with a wide range of features. For 
segmentation, we apply disjoint windowing with a window 
length of 100 ms every 100 ms. In this test, we examined the 
performance of SRELM to reduce the features from MES 
from various features.  

TABLE I describes the various features used in the 
experiment. 

TABLE I 
VARIOUS FEATURES USED IN THE EXPERIMENT 

Na
me 

#fea-
tures Features Group 

F1 12 SSC,ZC, WL, MAV Small 
dimen-

sion F2 15 SSC,ZC,WL,MAV, MAVS 

F3 24 SSC,ZC,WL,MAV, SKW, HJORTH Medi-
um 

dimen-
sion 

F4 36 
SSC,ZC,WL, MAV, MAVS, 

RMS,6AR 

F5 42 
SSC,ZC,WL, 

MAV,SKW,HJORTH,6AR 

F6 48 
SSC,ZC,WL,SKW,MAV,MAVS, 

HJORTH,RMS,6AR 

F7 195 Power autoregressive 
Large 

dimens
ion 

 
Furthermore, several classifiers were employed, along 

with the majority vote with n=4. They are RVT-WNN 
(randomized Variable Translation Wavelet Neural 
Networks)[5], RBF-ELM (radial basis extreme learning 
machine), SVM (support vector machine), and LDA (linear 
discriminant analysis). This experiment conducted 3-fold 
cross-validation. 

As for movements, there are ten fingers movements, i.e., 
Thumb (T), Index finger (I), Middle finger (M), Ring finger 
(R), Little finger (L), Thumb finger – Index finger (T-I), 
Thumb finger – Middle finger (TM), Thumb finger – Ring 
finger (T-R), Thumb finger - Little finger (T-L), and Hand-
Closed (HC) 

III.  RESULTS AND DISCUSSION 

A. The optimization Parameters  

SRELM has two parameters that should be chosen 
properly. These are the number of hidden nodes and alpha α. 
They are optimized using a grid search method. The 
classification accuracy is employed to measure the 
performance of the myoelectric pattern recognition using 
two EMG channels. Two classifiers were used, RVT-WNN 
and RBF-ELM. The number of hidden nodes of VRT-WNN, 
was 100. Meanwhile, the parameters of RBF-ELM were 20 
and 2-5 for C and gamma, respectively. The results are 
presented in Fig. 1. 

Fig. 1 shows that the big number of nodes produces better 
accuracy than the small one. However, the accuracy does not 
increase significantly for the number node more than 500. 
Controversy, the small number of alpha yields better 
accuracy than the big one. Considering these two trends, 
finally, the 1000 nodes and 0.05 of alpha were chosen for the 
next experiment.  

 

(a) 

 

(b) 

Fig. 1. The correlation of alpha (α) and the number of nodes using classifier 
RVT-WNN (a) and RBF-ELM (b) 

B. Class separability 

We compare the performance of the dimensionality 
reduction from a scatter plot of the data. The performance of 
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SRELM is compared to linear discriminant analysis (LDA), 
uncorrelated LDA (ULDA), orthogonal fuzzy neighborhood 
dimensionality reduction (OFNDA), and spectral regression 
discriminant analysis (SRDA), and. Fig. 2 describes the 
scatter plot of the three first features of the original feature 
set before being projected. The picture indicates that the data 
are scattered completely. The projection methods could 
improve the class separability of the data, as shown in Fig. 3 
to Fig. 6.  

 

 

Fig. 2 Scatter plot of the original features before projected 

Fig. 3 and Fig. 4 presents the scatter plot of ULDA and 
OFNDA, respectively. Both methods could enhance the 
class separability of features by grouping the data according 
to the class. Similarly, Fig. 5 and Fig. 6 describing the 
scatter plot of the features using SRDA and SRELM 
indicates that SRDA and SRELM could improve the class 
separability of the features, compared with Fig. 2. We can 
compare the scatter plot of SRDA and SRELM in Fig. 6. 
The figure shows that features projected using S-ELM are 
slightly better than SRDA. 

 

 
Fig. 3 Scatter plot of the projected features using ULDA 

 

 
Fig. 4 Scatter plot of the projected features using OFNDA 

 
Fig. 5 Scatter plot of the projected features using SRDA 

 

 
Fig. 6 Scatter plot of the projected features using SRELM 

C. Different feature 

In this experiment, few methods were added, such as PCA 
(principal component analysis), USELM (unsupervised 
extreme learning machine), and BASELINE (without 
dimensionality reduction method). TABLE II provides the 
experimental results when using RVT-WNN as a classifier 
to classify ten finger motions from the features reduced 
using various dimensionality reduction methods.  
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TABLE II 
THE ACCURACY ACHIEVED EMPLOYING RVT-WNN ON THE FEATURE TEST 

USING 3-FOLD CROSS-VALIDATION  

Set 
# 

feature
s 

Accuracy (100%) 

UL-
DA 

SR-
DA 

SREL
M 

OFN-
DA 

PC
A 

US-
ELM 

BASE-
LINE 

F1 12 88.8 88.4 90.5 86.2 87.6 80.5 89.5 
F2 15 89.7 88.8 91.4 90.8 81.8 78.7 89.5 
F3 24 93.6 93.3 94.0 93.5 90.4 87.9 93.0 
F4 36 93.8 93.7 93.7 93.9 85.4 79.5 91.5 
F5 42 94.3 94.2 94.2 94.2 88.6 84.5 92.2 
F6 48 94.8 94.8 94.7 94.9 88.9 85.1 92.5 
F7 195 63.9 94.0 92.5 94.9 88.8 85.1 92.5 

 
According to results in TABLE II, SRELM achieved the 

highest accuracy for the feature set F1 up to F3. For the 
feature set F4 - F6, the accuracy of the system is not the 
highest, but it is very close to the highest one. Another 
interesting fact is revealed when we compare SRDA and 
SRELM. In all features, SRELM attained better accuracy 
than SRDA except on the feature set F6 and F7. Especially 
on the feature set F7, whose dimension is very large, the 
difference of SRDA and SRELM is noticeable. Moreover, 
SRELM is better than unsupervised dimensionality reduction, 
PCA, and US-ELM. The comparison of SRELM and 
Baseline shows that the SRELM could reduce the dimension 
of data and, at the same time, could increase the class 
separability of the features. The evidence is on the accuracy 
of the Baseline. Its accuracy is lower than SRELM except on 
the feature set F7. It seems that SRELM does not perform 
well on a large dimension of data. 

In addition to RVT-WNN, LDA also classified the ten-
finger movements along with various dimensionality 
reduction methods. TABLE III presents the experimental 
results. The table shows that SRELM is the most accurate 
method across six features sets: F1 to F6. However, SRELM 
is worse than SRDA when projecting the feature set F7, but 
it is still better than ULDA and OFNDA. This new fact 
confirms the previous assumption about SRELM that the 
accuracy is slightly low when it works on the large 
dimension of features.  In general, compared to PCA, US-
ELM, and the Baseline, SRELM attained better accuracy. 

TABLE III 
THE ACCURACY ACHIEVED EMPLOYING LDA  ON THE FEATURE TEST USING 

3-FOLD CROSS-VALIDATION  

Set #fea-
tures 

Accuracy (100%) 

ULDA 
SRD

A 
SR-

ELM 
OFN-
DA 

PC
A 

US-
ELM 

BASELI
NE 

F1 12 85.7 84.2 88.0 82.1 82.8 73.1 85.7 

F2 15 86.9 85.1 88.8 86.9 78.2 70.5 86.9 

F3 24 92.5 92.3 93.3 92.5 88.5 82.4 92.5 

F4 36 93.0 92.7 93.6 93.0 84.6 75.2 93.0 

F5 42 93.3 93.3 94.1 93.3 87.7 80.9 93.3 

F6 48 94.2 93.9 94.6 94.2 88.1 81.2 94.2 

F7 195 92.1 93.4 92.8 92.1 91.3 87.2 92.1 
 
By looking at TABLE IV, TABLE V, and facts 

mentioned in the previous discussion in this section, we can 

conclude that SRELM is very good for reducing the feature 
with low up to medium dimension. Compared to SRDA, the 
performance of SRELM is lower than SRDA. However, its 
accuracy is still higher than the unsupervised dimensionality 
reduction (PCA and USELM) and the baseline.  

TABLE IV 
THE ACCURACY ACHIEVED EMPLOYING RBF-ELM ON THE FEATURE TEST 

USING 3-FOLD CROSS-VALIDATION  

Set 
# fea-
tures 

Accuracy (100%) 

ULDA SR-
DA 

SREL
M 

OFN-
DA PCA US-

ELM 
BASE-
LINE 

F1 12 90.6 87.3 91.1 85.5 80.2 81.2 80.8 

F2 15 91.8 89.2 92.2 89.1 78.1 79.8 80.2 

F3 24 94.4 93.1 94.4 92.3 87.2 88.5 87.8 

F4 36 94.7 93.8 94.3 93.4 78.6 80.5 83.2 

F5 42 94.8 93.8 94.5 93.3 82.4 85.1 86.6 

F6 48 95.5 94.6 94.8 94.4 83.5 85.9 87.3 

F7 195 92.5 93.1 93.0 17.6 87.6 87.3 88.0 

TABLE V 
THE ACCURACY ACHIEVED EMPLOYING SVM ON THE FEATURE TEST USING 

3-FOLD CROSS-VALIDATION  

Set 
# 

feature
s 

Accuracy (100%) 

UL-
DA 

SR-
DA 

SREL
M 

OFN-
DA PCA US-

ELM 
BASELI

NE 
F1 12 89.3 87.3 89.6 89.2 85.8 75.6 84.9 

F2 15 90.6 88.1 90.4 90.5 81.6 73.7 85.6 

F3 24 93.5 93.4 93.6 93.6 90.4 84.5 91.9 

F4 36 94.2 93.9 93.9 94.2 84.9 77.8 91.8 

F5 42 94.3 94.3 94.3 94.3 88.7 82.4 92.9 

F6 48 95.2 94.8 94.6 95.2 89.5 83.1 93.3 

F7 195 92.4 93.8 92.7 92.4 91.4 87.7 92.4 

D. The Experiment on the Class Number 

The performance of SRELM was examined for different 
class numbers. Five until ten classes were involved, as 
mentioned in II.B. The SRELM’s performance is compared 
to ULDA, SRDA, OFNDA, PCA, USELM, and BASELINE 
(without dimensionality reduction method). Furthermore, all 
experiments utilized RVT-WNN as a classifier. For post-
processing, a majority vote method was utilized [20]. Fig. 7 
presents the experimental result. 

 

 
Fig. 7 The comparison of SRELM and other methods in bio-signal pattern 
recognition using two EMG channels without a majority vote 
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Fig. 7 shows that the system accuracy is decreasing as the 
number of classes is increasing because the patterns are 
getting complex. Here, SRELM worked as well as other 
linear discriminant analysis such as ULDA, SRDA, SRELM, 
and OFNDA. However, SRELM performed better than all 
methods when it was tested in the system that does not use 
the post-processing method (the majority vote). Its accuracy 
ranges from 95.67 % to 86.73 % for 5 to 10 classes of 
movement, as seen in Fig. 7. However, when the system 
utilized the majority vote, the performance of SRELM and 
other methods is comparable (see Fig. 8) with accuracy 
ranging from 98.64% to 94.16% for five to ten motion 
classes. 

SRELM and SRDA employ the same spectral regression. 
They are different in treating spectral regression (SR). 
SRDA uses SR to find the eigenvectors for the projection 
while SR-LEM utilizes SR to obtain the weight output of the 
extreme learning machine. Another difference is that 
SRELM involves a random projection as additional to the 
SR projection. Experimentally, the random projection could 
improve the performance of the SRDA, as seen in Fig. 7 and 
Fig. 8. These figures show that SRELM is more accurate 
than SRDA and even better than other methods across five 
different classes. It indicates that SRELM enhances the 
performance of SRDA. However, when the classifiers 
employed the majority vote, the improvement of the SRELM 
is not seen significantly. Despite having better performance, 
the processing time of SRELM is longer than SRDA, as 
described in Fig. 9. Fortunately, it is still worthy. Even, it is 
less than the processing time of LDA. 

 

 
Fig. 8 The comparison of SRELM and other methods in bio-signal pattern 
recognition using two EMG channels a with a majority vote 

 
Fig. 9 The processing time 

E. Classifier experiments 

Different classifiers were involved in examining the 
performance of SRELM. Fig. 10, and Fig. 11 displays the 
result. There are two main experiments: with the majority 

vote and without a majority vote. Fig. 10 showed the 
performance of SRELM when the classifier dropped the 
majority vote. The accuracy of the pattern recognition 
system using SRELM is the highest when using classifier 
kNN, RBF-ELM, and RVT-WNN. However, when the 
classifiers utilized the majority vote (see Fig. 11), the 
influence of SRELM is not noticeable. Involving the 
majority vote could improve the performance, but it can 
increase the processing time [21]. 

 

 
Fig. 10 SRELM performance on different classifiers without majority vote 
across eight subjects 

 
Fig. 11 SRELM performance on different classifiers plus majority vote 
across eight subjects 

 
Finally, an analysis of variance (ANOVA) test was 

conducted. The confidence level p was set at 0.05, to 
understand the significance of SRELM. The results indicate 
that the improvement of SRELM over SRDA is significant 
(p = 0.043 < 0.05). However, the difference between 
SRELM and other LDA models like ULDA and OFNDA is 
not significant (p=0.142 > 0.05). This statistic analysis 
highlights the advantage of SRELM over SRDA. 

IV.  CONCLUSION 

This paper evaluates the performance of SRELM for bio-
signal pattern recognition using two EMG channels. 
Although using only two channels, the performance of 
SRELM can still deal with it. Compared to other 
dimensionality reduction methods, the performance of 
SRELM is better than SRDA, but it is not significantly 
different from ULDA and OFNDA. As for the processing 
time of, SRELM took more time than SRDA, but better than 
ULDA and OFNDA. Furthermore, SRELM was able to 
perform well when dealing with various class numbers. The 
accuracy was around 95.67% for 10 class movements across 
eight subjects, using only two EMG channels. This result is 
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promising, especially for real-time myoelectric pattern 
recognition.  
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