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Abstract - Indoor positioning systems (IPS) have witnessed continuous improvements over the years. However, large-scale commercial 
deployments remain elusive due to various factors such as high deployment cost and lack market drivers. Among the state of the art 
indoor positioning approaches, the Wi-Fi fingerprinting technique, in particular, is gaining much attention due to its ease of 
deployment. This is largely due to widespread deployment of WiFi infrastructure and its availability in all existing mobile devices. 
Although WiFi fingerprinting approach is relatively low cost and fast to deploy, the accuracy of the system tends to deteriorate over 
time due to WiFi access points (APs) being removed and shifted. In this paper, we carried out a study on such deterioration, which we 
refer to as fingerprint health analysis on a 2 million square feet shopping mall in South of Kuala Lumpur, Malaysia. We focus our 
study on APs removal using the actual data collected from the premise. The study reveals the following findings: 1) based on per 
location pin analysis, ~50% of APs belong to the mall operator which is a preferred group of APs for fingerprinting. For some 
location, however, the number of operator-managed APs are too few for fingerprinting positioning approach. 2) To maintain mean 
error distance of ~5 meters, up to 80% of the APs can be removed using the selected positioning algorithms at some locations. At some 
other locations, however, the accuracy will exceed 5m upon >20% of APs being removed. 3) On average, around 40% - 60% of the 
APs can be removed randomly in order to maintain the accuracy of ~5m. 
 
Keywords – indoor location positioning; fingerprint; Wi-Fi 
 

 

I. INTRODUCTION 

The transportation industry has witnessed an 
unprecedented disruption brought by location-based services 
such as Grab and Uber. Despite the success, the usage is 
only limited to outdoor as GPS signal is not able to penetrate 
through building structures. Realizing the gap, efforts have 
intensified in the development of an indoor positioning 
system in recent years. Its social and commercial values are 
estimated to worth around USD10 billion by 2020 [1]. 
Among the crucial areas that can benefit from indoor 
positioning systems include public safety (e.g., E911 
emergency call, in building rescue), retail (e.g., store search 
in a shopping complex, mobile advertising, asset tracking), 
special care group (e.g., children and special disabled needs), 
etc. [2].  

Various techniques have been proposed to build an indoor 
positioning system such as those based on Wi-Fi signals [3]–
[5], Bluetooth signals [6], [7], FM radio signals [8], [9], 
RFID signals [10]–[13], sound waves [14], [15], light signals 

[16], [17] and magnetic field [18], [19]. Among these 
techniques, the Wi-Fi fingerprinting approach is gaining 
much attention due to two main reasons. Firstly Wi-Fi 
access points (APs) are widely available across most 
commercial and residential premises. This enables indoor 
location positioning system to be deployed rapidly with 
minimal cost. Secondly, Wi-Fi module is available in almost 
every consumer device such as a smartphone, tablet, laptop, 
and wearable. This serves as a great commercial advantage 
as there is no need to provide extra hardware to the mass 
users [20]. 

The deployment of a Wi-Fi fingerprinting indoor 
positioning system involves two phases: an offline phase 
(fingerprint calibration) and online phase (real-time 
positioning) [21]. During the offline phase, a site survey is 
conducted to record all APs within the scanning range and 
their associated received signal strength indicator (RSSI) at 
every reference point (location pin) of interest. With these 
records, the fingerprint database can then be constructed. 
During the online phase, a mobile device continuously scans 
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its nearby Wi-Fi signals (online fingerprint) and initiates a 
query to the Wi-Fi fingerprint database through a positioning 
algorithm. The current location of the mobile device is 
determined by the algorithm which found the closest match 
between the online fingerprint and the fingerprint in the 
offline database. Inevitably, the positioning accuracy will be 
adversely affected if the online fingerprint on the site 
changes, e.g., due to the removal or relocation of Wi-Fi APs.  

Besides, the desired online fingerprint can also be affected 
by the changes in interior partitions, walls, beams, and so on. 
When this happens, the offline fingerprint database needs to 
be updated accordingly. However, site survey and 
fingerprinting re-calibration work are time-consuming and 
labor-intensive. It is therefore important to carry out a 
fingerprint health analysis to investigate the degree of the 
mismatch between online and offline fingerprint that will 
yield unacceptable positioning performance. 

In this work, we have deployed a large scale indoor 
positioning system based on the Wi-Fi fingerprinting 
technique in a shopping complex located at the south of 
Kuala Lumpur, Malaysia. Three well-known positioning 
algorithms used in fingerprinting approach namely 
Correlation, Bayesian and Weighted-K Nearest Neighbor 
(WKNN) were adopted to compute the users’ locations. In 
order to evaluate the robustness of the algorithms, the online 
Wi-Fi fingerprint health is deliberately deteriorated, and its 
impact on error distance is analyzed. The primary challenge 
in deploying indoor positioning system in public places is 
that the real-time or online Wi-Fi fingerprint is highly 
dynamic as it changes over time, typically in weeks or 
months [22].  

Several studies had been carried out to investigate the 
impact of Wi-Fi fingerprint changes on the performance of 
indoor positioning. In [23], Wi-Fi fingerprint was gathered 
from two multi-storey buildings and a shopping mall, with 
over a thousand of APs on the sites. In order to identify the 
most significant APs that impacted on positioning accuracy, 
a group of APs was deliberately removed (based on criteria 
such as APs group under highest RSSI value, entropy value, 
and dissimilarities measures) from the offline fingerprint 
database before performing positioning using Bayesian and 
Weighted-Centroid algorithms. Such removal of APs 
simulates the condition when APs are “turned off” or 
“missing.”  

Results show that about 50% APs can be safely removed 
from the training database while still maintaining a decent 
positioning accuracy. In a separate study by Esia et al. [24], 
there are redundant or “useless” Wi-Fi fingerprint data 
which do not contributing positively to the positioning 
processes, in which they can be determined by the total 
number of distinct RSSI values, percentage of missing RSSI 
values and overall standard deviation of the fingerprint 
dataset.  This useless Wi-Fi fingerprint can be removed from 
the offline database for the benefit of reduced computational 
time as well as computational power without significant 
compromise on the positioning accuracy.  

Another factor that can alter the existing radio map, 
besides “missing APs,” is through APs movement. To deal 
with this situation, [22] proposed a Localization with Altered 
APs and Fingerprint Updating (LAAFU) system to identify 
any altered APs and filter them out before initiating 

positioning estimation. Once the positioning is done, the 
fingerprint of the client will be collected to update the 
database. This automatic fingerprint updating process is 
known as implicit crowdsourcing, which significantly 
reduces the need of extra site survey. Field studies show 
20% improvement in positioning error when compared with 
traditional schemes. An inner-city localization system using 
Wi-Fi fingerprint method has been demonstrated [25], [26]. 
The test field covers 25 km2 in size which consist of private 
residences, office buildings, and shopping sites with 
approximately 60,000 APs discovered. This 15-month study 
concludes that the localization accuracy remains acceptable 
until 50% of the APs have disappeared, and a yearly site 
survey is recommended to resist Wi-Fi infrastructure 
changes.  

This paper aims to compare and contrast our findings with 
the existing studies. The studies above differ regarding 
algorithm implementations, experiment methodologies, and 
actual environments. By selecting a typical shopping mall, 
we hope to gain valuable practical insights into whether 
these well-known indoor positioning algorithms are ready 
for mass users. 

II. MATERIAL AND METHOD  

Our test site is a 4-storey shopping mall with a size of 
around 1.5 million square feet. It houses more than 380 
retailers, with a visiting crowd number of approximately 2 
million per month. In this paper, we only present the results 
obtained from the ground floor which spans from the central 
court to the west-wing of the shopping mall (refer to Figure 
1(a)).  

Results from other floors are found to exhibit a similar 
trend. A total of 69 pins in the form of Cartesian coordinate 
were defined on the ground floor. The decision on where to 
position the pins is based on the location of the facilities 
provided by the mall operator in the interest of the general 
public e.g. retail shop’s main entrance, lift entrance, 
restroom, ATM, etc. Due to that, the pins do not follow a 
uniform grid structure. In our opinion, the pin grid not only 
needs to be flexible enough to cater for various kind of 
layout designs of a particular building but also to reduce 
unnecessary calculation on less important locations.  

Subsequently, the fingerprint data on each defined pin 
was collected on the actual location using an in-house 
Android application running on a smartphone (Brand: 
Xiaomi Mi 3). Each fingerprint sample data consisted of 
BSSID, SSID, timestamp and Received Signal Strength 
Indicator (RSSI) of the heard (or scanned) Wi-Fi access 
points (APs). For each pin, a total of 20 fingerprint data 
samples were collected – 5 samples from each orthogonal 
orientation e.g. North-East-South-West, similar to the 
procedure described in [3]. The data samples from 4 
orthogonal orientations enables a more accurate view on 
how fingerprint data reacts against the human body’s actual 
orientation. The fingerprint data collection process was done 
during the peak business hours in order to gain insights on 
how the system copes with big crowd. 

The pins location and the number of APs heard are 
summarized in Figure 1(b).  
 

1412



 
1(a) 

 

 
1(b) 

Fig. 1  (a) Ground floor layout of the shopping mall (b) Ground floor test 
site defined with 69 location pins 

 

Fig. 2  Number of APs detected at each pin location. Blue bars represent the 
number of APs owned by the mall operator; yellow bars represent the 
number of tenants/other Apps 

 
Figure 2 summarizes the number of APs heard at each 

pin’s location, sorted in ascending order. It is not surprising 
to observe a big difference regarding AP density on the same 
floor, i.e. the lowest count of APs is at VG57 (9 APs 
detected) while the highest count of APs is at VG85 and 
VG86 (200 APs detected). As we can see, VG57 is at the far 
end of the West Wing while VG85 and VG86 are located at 
the central court of the shopping mall. Note that the central 
court of the shopping mall is a podium where it has a clear, 
direct line of sight from all levels.  

Hence this location is expected to have the most number 
of APs heard. We have categorized the apps into two 
categories, namely 1) Mall Operator’s APs which are 
deployed by the mall operator and 2) Other APs which are 
either set up by tenants or visitors. The categorization of the 
APs is possible because all the APs deployed by Mall 
Operator carry the same SSIDs. These APs are typically 
fixed to the building. The other APs which could be fixed or 
mobile are generally “noisy” as their properties are 
incredibly dynamic. For example, tenants who cease their 
business operation are likely to remove their APs while 

mobile hotspot users are subjected to random appearance. 
According to the data collected, the composition ratio of the 
Mall Operator’s APs to Other APs is about 50:50. 

 
Fig. 3  Wi-Fi Radio map. 

Figure 3 shows the Wi-Fi radio map of the test site. The 
Y-axis consists of all the defined pins while the x-axis 
consists all the APs heard at the entire test site. The color 
code is used to represent the intensity of the mean RSSI 
values in dBm. This radio map provides a quick grasp of 
information. For instance, if we draw a horizontal line across 
any particular pin, and from there we could know which APs 
are heard by this pin and their associated mean RSSI. 
Likewise, if we draw a vertical line across an AP Index, we 
could know which locations (pins) that this particular AP has 
appeared. This information is particularly useful when 
comes to the study of fingerprint data fluctuation or 
fingerprint health evaluation, as generally, the fingerprint 
data of a public venue is highly dynamic [22].  

III.   RESULTS AND DISCUSSION 

As mentioned earlier, three positioning algorithms which 
are commonly used by the fingerprint approach namely 
Correlation Coefficient, Bayesian and weighted k-nearest 
neighbor (WKNN) are put under test to estimate user’s 
location. These algorithms are described in the following 
sections: 
 
A. Correlation Coefficient 

The Pearson correlation coefficient of vector A and vector 
B are defined as [27]: 

���, �� � 1	 
 1 � ��
 
 �������������� � ��� 
 ���� ��
���  (1) 

Where ������ and ������ are the mean and standard 
deviation of vector A (B) respectively. In this case, the 
vectors A is the online RSSI values and vector B is the RSSI 
values from the offline database. The correlation coefficient 
are calculated throughout all the RSSI values in the offline 
database, and the user location are estimated to be at the 
location pin with highest correlation to the value. 

B. Bayesian 

Using Bayes rule, the probability of getting Cartesian 
location L given measured signal y is defined as [28]: 
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���|�� � ���|����������  (2) 

Here the ���|�� is the likelihood of getting signal y given 
at location L, ���� is the prior probability of location L 
being correct, and ���� is the normalizing constant. The 
prediction of user location is by selecting the highest 
probability ���|�� across all possible locations, ��, thus 
 �� � argmaxLi&����|��' � argmaxLi )���|������������ * 

 
(3) 

 
We omit ���� from the equation because ���� is a 

constant. If we assume no prior location knowledge and all 
location are equally possible, ����� is also a constant and 
can be omitted from equation. Hence, the equation become �� � argmaxLi&����|��' � argmaxLi&���|���' (4) 
 

Where ���|��� � �+,�� 
 -��.� and /0 � 1 
 -��., with -��. 
being the mean RSSI value measured from APj at location i. 
Equation (4) also known as Maximum Likelihood 
Estimation (MLE) [29]. Further on, if we assume random 
vector /0 is the the independent, then 
 

���|��� � 2 �+,��. 
 -��.�34
.��  (5) 

 �+,��. 
 -��.� is the Gaussian distribution of each 
measured RSSI at a particular location. 
 
C. WKNN 
In WKNN, the formula to estimate the Cartesian location 56 � �5, ��  is given by [30]: 
 

56 � � � 7�∑ 7.9.�� �9
��� . ;�  (6) 

 
where < are the number of nearest neighbour (reference 
points/pins). 7� is non-negative given by: 
 7� � 1‖�� 
 -��‖> (7) 

 
and ;�=centre of cell the  of ith the calibration point ��= mean measured RSSI vector from several APs -��=vector of means RSSI values of each AP at iththe the 
reference point. || ∙ ||>  = Euclidean norm of �.  
 
Here in order to calculate 7�, the Euclidean norm of ‖�� 
 -��‖@ �� � 2� would be: 
 

‖�� 
 -��‖@ � B�C�DE 
 -DE C@�
.��  

 

(8) 

where N is the size of the RSSI vector. 
Figure 4 shows the scattered plot of error distances 

recorded at all pins while the APs are systematically (in the 
order of descending RSSI values) removed from the online 
phase for all three algorithms: (a) Correlation Coefficient, 
(b) Bayesian and (c) WKNN. From this scattered plot we 
can easily see that the error distance values are becoming 
more dispersed as the % of APs removed increases, with 
Correlation Coefficient having the most sparse error distance 
values followed by Bayesian and WKNN. These scattered 
plots give us an overall insight of the robustness of the 
algorithm towards AP removal. It is worth pointing out that 
even though Bayesian and WKNN algorithm could maintain 
shallow error distance values (<5-meter error) up to 70% 
missing APs while Correlation Coefficient algorithm could 
only withstand only up to 20% missing APs, the computing 
time for Correlation Coefficient calculation are significantly 
faster than the other two. Since real-time positioning result is 
generally expected, the computation time is becoming a key 
criterion for the selection of the positioning algorithm. 

 

 

 

 

Fig. 4  Overlay of error distance calculated using (a) Correlation Coefficient 
(b) Bayesian (c) WKNN algorithm for all pins. 
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In contrast to Figure 4, Figure 5 shows the individual pin 
tolerance level towards missing APs from the online phase, 
for (a) Correlation Coefficient (b) Bayesian and (c) WKNN 
algorithms. The solid lines in the graphs correspond to the 
percentage of APs that can be removed from the online 
phase while the localization accuracy on a particular pin can 
be maintained below 5 meters. The yellow bar indicates the 
total number of APs can be removed from the online phase 
while keeping the error distance below the threshold. In 
other words, a pin is more robust if 1) the dot on the solid 
line is high up in the graph, or 2) in another perspective the 
yellow bar length is much longer than the blue bar. A careful 
comparison on Figure 5(a), (b) and (c) reveals that the solid 
lines (yellow bar) are collectively higher up (longer) for the 
case of Bayesian and WKNN.  

To further quantify the performance, the mean value of 
the solid line for Bayesian, WKNN, and Correlation 
Coefficient is 64%, 62%, and 44% respectively. On the other 
hand, the highest percentage of APs could be removed from 
the online phase is 89% in the case of WKNN, 88% in the 
case of Bayesian and 77% in the case of Correlation 
Coefficient. The careful reader will also notice that there are 
missing bars in Figure 5(b). This is because the error 
distance calculated using the Bayesian algorithm does not 
reach the 5-meter threshold before the algorithm fails. 

 

 

 

 

Fig. 5  Each pin can withstand a maximum number of missing APs before 
reaching a 5-meter error distance threshold: (a) Correlation Coefficient (b) 
Bayesian (c) WKNN algorithm. 

Next, if we generalize that the mean percentage of 
missing APs from online phase at a given error distance 
threshold reflects the tolerance level of the positioning 
algorithms, then Figure 6 clearly shows that the Bayesian 
and WKNN algorithms outperform Correlation Coefficient 
algorithm.  In Figure 6, the mean percentage of missing APs 
are evaluated at the error distance threshold between 1 to 20 
meters. In general, when the error threshold range is below 4 
meters, the robustness performance of all three algorithms 
are comparable to each other. It is only when the error 
distance threshold range beyond 4 meters, we can 
undoubtedly claim that Bayesian and WKNN algorithms can 
withstand higher missing APs number at any given error 
distance threshold as compare to Correlation Coefficient 
algorithm. For example, the Bayesian and WKNN algorithm 
could withstand 80% of (mean) missing APs at 10 meters 
error distance threshold requirement, while Correlation 
Coefficient Algorithm would easily surpass the 10 meters 
threshold at 60% of (mean) missing APs. Hence, it is 
important for the system designer to aware of the trade-off 
before making decision on the adoption of a particular 
positioning algorithms, i.e., light and fast positioning 
computation but with slight inaccuracy (Correlation 
Coefficient), or high robustness positioning algorithm but at 
the expense of massive computational resources (Bayesian 
and WKNN algorithm. 
 

 
Fig. 6  Mean of missing APs (in percentage) before reaching various 
distance threshold: Comparison among Correlation Coefficient, Bayesian 
and WKNN algorithm. 

IV.   CONCLUSION  

In summary, we have demonstrated a large scale indoor 
positioning system deployment based on the Wi-Fi 
fingerprint technique. The Wi-Fi radio map, or also known 
as fingerprint database, were collected from a prominent 
shopping mall located at the south Kuala Lumpur, Malaysia. 
In order to evaluate the robustness of the indoor positioning 
system, the online fingerprint data has been systematically 
deteriorated, and subsequently compared with the offline 
fingerprint database using the Correlation Coefficient, 
Bayesian and WKNN positioning algorithms. The results 
show that Bayesian and WKNN appear to the most robust 
algorithms in mitigating missing APs scenario but at the 
expense of computing speed. On the other hand, the 
Correlation Coefficient provides a lightweight solution with 
satisfactory accuracy with the condition that the overall 
changes of Wi-Fi APs should be deliberately kept minimum.  

In this paper, results are merely generated by a single type 
of smartphone. A further investigation on how the selected 
algorithms fare across different smartphone models needs to 
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be carried out in order to give a fairer insight on whether 
these algorithms are practical for the mass market.  
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