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Abstract—Representing natural language sentences has always been a challenge in statistical language modeling. Atomic discrete 
representations of words make it difficult to represent semantically related sentences. Other sentence components such as phrases and 
named-entities should be recognized and given representations as units instead of individual words. Different entity senses should be 
assigned different representations even though they share identical words. In this paper, we focus on building the vector 
representations (embedding) of named-entities from their contexts to facilitate the task of ontology population where named-entities 
need to be recognized and disambiguated in natural language text. Given a list of target named-entities, Wikidata is used to 
compensate for the lack of a labeled corpus to build the contexts of all target named-entities as well as all their senses. Description text 
and semantic relations with other named-entities are considered when building the contexts from Wikidata. To avoid noisy and 
uninformative features in the embedding generated from artificially built contexts, we propose a method to build compact entity 
representations to sharpen entity embedding by removing irrelevant features and emphasizing the most detailed ones. An extended 
version of the Continuous Bag-of-Words model (CBOW) is used to build the joint vector representations of words and named-entities 
using Wikidata contexts. Each entity context is then represented by a subset of elements that maximizes the chances of keeping the 
most descriptive features about the target entity. The final entity representations are built by compressing the embedding of the 
chosen subset using a deep stacked auto encoders model. Cosine similarity and t-SNE visualization technique are used to evaluate the 
final entity vectors. Results show that semantically related entities are clustered near each other in the vector space. Entities that 
appear in similar contexts are assigned similar compact vector representations based on their contexts. 
  
Keywords— entity embeddings; entity vector representations; named entity disambiguation. 
 
 

I. INTRODUCTION 

A large number of possible words that are encountered in 
a natural language text suggest that a Natural Language 
Processing (NLP) model is always expected to encounter 
new word sequences that have never been seen during the 
building of the model. This makes it very difficult for the 
model to generalize to new cases and it requires much more 
data to train the model. A model that is trained on data 
where “Paris” and “Madrid” are represented as different IDs 
has very little chance of using both terms’ as the concepts of 
“Capital.” Statistical models built using the discrete atomic 
representations of words are simple and can achieve high 
accuracies when trained using large training sets that covers 
huge number of input cases. However, there are cases where 
scaling up the training data set will not result in any 
improvements [1]. Generalization is always better achieved 
when considering continuous input variables. Despite the 
complexity, models that use continuous input variables tend 
to show better performance. For example, vector 

representations of words significantly improve many NLP 
applications such as text syntactic and semantic analyses [2] 
[3] Named Entity Disambiguation (NED) [4], ontology 
population [5] and information retrieval [6]. These 
representations can be shared across languages [7] to 
overcome language-specific problems such as Arabic entity 
detection issues [8].   

In NLP, representing (embedding) words as vectors in a 
continuous vector space means that words with similar 
semantic and syntactic properties will be mapped (embedded) 
to nearby points in the space. Using the context to build 
word representations is the most widely used approach in 
NLP. In natural language text, words are represented by their 
contexts. The distributional hypothesis in linguistics is used 
as a key to unlock the semantic properties of languages. It 
states that words that share similar contexts tend to represent 
similar meanings [9] [10]. This suggests that there is a clear 
link between the contexts and meaning similarities. This 
opens the door to explore the distributional similarities in 
linguistics as a way of finding semantic similarities [11].  
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In a large corpus, the embedding of a word is fine-tuned 
each time a new occurrence of the word is encountered. 
More information is added from frequent contexts, and less 
regard is given to rare isolated occurrences of the word. For 
named-entities, contexts can be generated artificially from a 
knowledge base to build the entity embedding. Due to the 
limited number of contexts, rare entity contexts may be a 
source of noise and special processing is required to only 
keep the most descriptive information in the embedding. In 
this paper, we utilize the Wikidata contexts of named entities 
in order to assign similar vector representations to 
semantically related entities. A method to build compact 
entity representations with the most descriptive information 
is proposed. Different senses of named entities are 
considered and are assigned different vector representations 
based on their contexts.   

II. MATERIAL AND METHOD 

Representing variables in a continuous space to enhance 
accuracy is an old idea. It was first used in a SMART 
information retrieval system in the 1960s [12] where 
documents and queries are represented as vectors. The 
concept was adopted by [13] to represent the input variables 
of neural networks as vectors of real numbers. Rumelhart et 
al. [14] show that these representations can be learned while 
training the neural network to perform the desired task using 
back propagation and gradient descent. Bengio et al. [15] 
build on this idea and the distributional hypothesis to 
construct the vector representations of natural language 
words by maximizing the probability of the next word given 
the previous ones in a text corpus. It shows that semantically 
similar words will be assigned with similar representation 
vectors. This comes at the expense of model’s complexity 
and slow training over large datasets.   

To compute word vector representations efficiently using 
very large data sets, new models are required. As described 
in [1], the complexity of models that find vector 
representations of words comes from the non-linear hidden 
layers where heavy matrix multiplications are performed. As 
proposed in [1], the Continuous Bag-of-Words model 
(CBOW) removes the non-linear hidden layer and projects 
the N input words to the same position by taking the average 
of their vectors. It learns to predict the current word from a 
neighboring context such as a window of words before and 
after the target word using a log-linear classifier. This means 
that CBOW considers the whole context as one observation 
while training which helps the model to train well using 
small training sets. The second proposed model is called the 
Continuous Skip-gram model, which is similar to the CBOW 
model except that the model here predicts context words 
from the current word. This division of the context into 
multiple observations suggests that the model has much 
more to learn than CBOW and thus needs a larger training 
data set to converge. 

The learned distributed representations using models in [1] 
are not only similar for semantically and syntactically related 
words but also represent multiple degrees of similarities 
between words such as similar nouns with similar endings 
e.g., ing are located near each other in the vector space [16]. 
In addition to learning good vector representations, [16] 
describes that relationships between vectors can be explored 

using specific vector offsets. It suggests that linguistic 
regularities are present between vector representations of 
words and can be obtained by applying algebraic operations 
such as  V����� − V������  ≈  V
�� − V
��� .  

Several enhancements on the Skip-gram model [1] are 
described in [17] to speed up the training and provide better 
representations. The first enhancement is the subsampling of 
the frequent words in the training data using a fixed 
subsampling rate to enhance the representations of rare 
words. The second enhancement comes from the fact that the 
cost of finding the probabilities in the Skip-gram model is 
proportional to the vocabulary size which makes the model 
training significantly expensive. The proposed method is 
called Negative Sampling (NEG) and it simplifies the Noise 
Contrastive Estimation (NCE) [18] used to optimize the 
models in [1]. To avoid the heavy probability calculations, 
logistic regression is used to distinguish the real target words 
from randomly selected noise words by giving the real target 
words higher scores. This simplifies the NCE by considering 
only the samples and disregarding the probability 
calculations. [17] also shows that simple mathematical 
operations such as vector addition represent meaningful and 
non-obvious linguistic relationships such as     V���
��� +
 V
������ ≈  V������. It also introduces a way to build vector 
representations of phrases and entities of multiple words. 
The representation of phrases as vectors is significantly more 
expressive than taking the individual words representations. 
The proposed solution identifies the phrases in the data set 
by locating the words that frequently appear together and 
representing them as one token while training the model. 

Another attempt to map the embedding of words and 
entities to the same vector space is introduced in [19]. The 
model extends the Skip-gram model proposed in [1] by 
adding two more objectives: Obj2: predict neighboring 
entities from a target entity and Obj3: predict neighboring 
words from a target entity using a knowledge base. The 
Wikipedia Link Based Measure (WLM) [20] is used to find 
related entities to a given entity in the KB. Obj3 is used to 
allow interactions between entity vectors generated using 
Obj2 and word vectors of the Skip-gram model. Wikipedia is 
also used to link context words to entities where entities in 
Wikipedia pages represented as hyperlinks called “anchors” 
are unambiguously linked to specific KB entities. The model 
is then trained by maximizing the objective function that is 
simply the linear combination of all the three objective 
functions using the NEG [17] and Stochastic Gradient 
Descent (SGD). Linking the representations of entities and 
words using Wikipedia anchors is also used in [21]. Both [19] 
and [21] use the KB to unambiguously identify entities. 
Different senses of the same entity refer to different KB 
nodes and thus will be assigned different representations. 
However, the problem arises when attempting to link entity 
and word representations using the anchor text. Simply 
replacing the anchor with the entity in the text doesn’t 
represent the specific sense of the entity in that context. 
Therefore, different entity senses will not be given different 
representations. To solve this, [22] proposes a method to 
learn multiple sense representations for each mention. 
Wikipedia anchors are used to map the hyperlink text i.e. the 
mention to an entity. Using the context words around the 
anchor and the entity it refers to, different representations are 
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learnt for different mention senses. Mentions in Wikipedia 
pages that refer to the same entity are represented using the 
same token. New mention tokens are used to represent a new 
sense if the mention is referring to a different entity. 
Similarly, same tokens are used for mentions referring to the 
same entity. The objective function used to learn the 
different mention senses representations is to predict the 
entity linked to a mention given the mention token itself and 
the context words. Another objective function is used to 
predict the entities themselves from their neighbors (direct 
connections) in a KB. A third objective function is used to 
learn word representations by predicting the context words 
of a target in the text. It trains a model similar to the training 
in [19] to optimize the objective function that is the result of 
linearly combining all the three objective functions. 

In [19], [21] and [22], a KB is used to build entity 
representations. Then anchors are used to aligning them into 
the same space as word representations. Another method 
proposed in [23] learns entity representations using their 
example occurrences in a large text corpus (Wikipedia) 
instead of a KB. This allows for the utilization of 
distributional knowledge about entities in text.  It introduces 
the concept of Extended Anchor Text (EAT) which extends 
the given corpus with more sentences that relate entities to 
their context words. This is done by substituting the anchor 
text in Wikipedia pages with the corresponding entities and 
adding the result to the corpus as new sentences. Then it uses 
the training approach similar to [17]. The original models 
proposed in [1] i.e. the CBOW and the Skip-gram models 
can also be used as well. This method has the advantage of 
using the original context of entities instead of KB-built 
contexts. This allows for building the entity representations 
using a large number of different contexts where an entity 
co-occurs. When using a large corpus to learn vector 
representations of entities, the components of these vectors 
are sharpened with more information each time new contexts 
are encountered. Vectors will be adapted to keep the most 
distinctive features about the entities they represent. 

As a conclusion, building the vector representations of 
named entities can be done using contexts built from a KB 
or the contexts in a large corpus. The first is useful to build 
the representations of a specific set of entities. The KB can 
be queried for each entity in the set to generate its contexts. 
This comes at the expense of limiting the number of contexts 
that can be used to learn high-quality features about the 
entities. On the other hand, using a large corpus allows for 
utilizing the many occurrences of named entities in order to 
enhance the representations and keep the most useful 
features. However, when using a corpus, only named entities 
mentioned in the corpus will be considered. This doesn’t 
allow for learning the representations of a specific set of 
entities such as entities of an ontology. In addition, many 
reviewed methods do not provide solutions to differentiate 
between the representations of different named entity senses. 

In this paper, we present a method to learn named entity 
vector representations to be used for tasks related to 
ontology population namely NED and relation instance 
extraction. In ontology population related tasks, the goal is 
to identify the correct sense of an entity in the natural 
language text using its context. This requires the use of a 
training set of named entities and a method to build 

expressive entity embedding for the different entity senses. 
We define the problem as the following: given a seed 
ontology with instances of concepts as disambiguated named 
entities, we aim to learn the vector representations of these 
entities in order to identify their occurrences in the text. 
High-quality entity embedding facilitate the task of spotting 
the correct sense of entities in the text and thus extracting 
correct facts about them. Wikidata is used to extract the set 
of neighboring entities connected with semantic relations to 
a given entity. To jointly link entity and word 
representations, the description text of Wikidata entities is 
used. The collected knowledge from Wikidata will be used 
to train a CBOW model to learn the joint embedding. 
Entities will be assigned contexts that maximize the chances 
of keeping the most descriptive features using the learned 
embedding. To sharpen entity representations and remove 
any irrelevant information, entities are represented as 
compact, dense continuous vectors using a deep stacked auto 
encoders model. 

The proposed method to build the compact entity 
representations consists of three main components. These 
components are explained in detail in the following sections. 

A. The Crawler 

We utilize Wikidata, a collaboratively built public 
knowledge base containing a large number of entities 
referring to real-world objects such as a person, location, 
organization or abstract concepts such as “gravity” and 
“seasons” with all their semantic interpretations (i.e., senses). 
It contains the structured knowledge of other Wikimedia 
Foundation projects mainly the knowledge of Wikipedia, 
which is the world’s largest encyclopedia. As of December 
2014, Wikidata also contains the resources of Freebase [24]. 
We build a crawler to find the neighboring entities of a given 
named entity called the co-entities, as well as extracting the 
keywords associated with the entity found in its description 
referred to as the co-words. Given a set of named entities E, 
the crawler extends the input set by adding all the senses of 
each entity to create E′. It also associates each entity e′ ∈ E′ 
with its unique Wikidata id in order to differentiate between 
different senses of an entity. The crawler objective is to 
build the context of each entity e′ ∈ E′ using its co-entities 
SE��  moreover, co-words SW�� . Co-entities set (SE�� ) 
contains only named entities that have a semantic relation 
with e′ in its Wiki page. The crawler heuristically identifies 
entities by checking the capitalization of each token in the 
entity label. This is to exclude non-named entity concepts in 
the Wiki page (e.g., the universe and space concepts). 
Entities of SE��  are represented as underscore-separated 
lowercase tokens with their unique Wikidata id as the last 
token such as united_states_of_america_q30. Co-words set 
SW��  is built by taking the non-stop words from e′ 
description. Entities will be ignored if their description is 
empty. We define the context C�e�� of an entity e� as the set 
of co-words and co-entitiesSA�� = SE�� ∪ SW�� . While 
crawling, the same context size α is kept for all entities by 
using a subset of SA�� if its size is more than α and padding 
using the first keyword from the description if the size is less 
than α. Entity contexts are then written as separated lines to 
a text file. Each line in the file contains α + 1  space 
separated elements with the target entity e′ in the middle and 
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#
$  elements from C�e��  to the left and right. To keep the 

target entity in the middle, α is chosen as an even number. 
For example, considering the named entity 
“united_states_of_america_q30” and a context size of 4, the 
corresponding line for this entity in the text file can be as the 
following: new_york_city_q60 federal 
united_states_of_america_q30 republic 
thirteen_colonies_q179997. The words “federal” and 
“republic” are elements of SW��  whereas the entities 
“new_york_city_q60” and “thirteen_colonies_q179997” are 
elements of SE��.Algorithms 1 and 2 shown in Fig. 1 and Fig. 
2 respectively explain the functionalities of the crawler in 
detail. 

 

 
Fig. 1 Steps of Algorithm 1 to build the extended entity set. 

 
Fig. 2 Steps of Algorithm 2 to build the contexts of target entities. 

B. Building Joint Vector Representations 

To build the joint vector representations of words and 
entities in the same vector space, we extend the CBOW 
model proposed in [1] to cover not only words but also 
entities as well. We will use the result of the crawler as the 
training input. Each line in the output text file contains the 
context of a specifically named entity sense. Pairs of training 
examples �w�, w'� are generated only within the same line to 
predict the target entity w'  from a context elementw� . 
Therefore, the training is achieved by maximizing the 
following objective function using stochastic gradient 
descent (SGD): 

1
( ) ) Log -�.′/|123�

4

567

8

/67
 (1) 

where L is the total number of entities in the extended entity 
set 9′, .′/ is an entity in 9′, α is the entity context size and 
123 ∈ :�.′/� is a co-word or a co-entity from the .′/ context. 

To avoid complexity, we use NEG proposed in [17], 
defined by the following objective function: 

 
Log -�.�/|123� =  Log σ�<�

=�>
? <@A5�

+ ) BCD~FG�C� HLog σ�−<�
CD
? <@A5�I

J

K67
 

(2) 

Where σ�x� = 7
7M�N��ON� is the sigmoid function, P is the 

number of negative samples (noise words) indicated as QK 
and taken from the noise distribution -R�Q� defined as: 

-R�Q� = S�Q�T
U

∑ SWQ5X
T
UR56Y

 
(3) 

Where f is the frequency of the word Q in a vocabulary of 
size n. 

We maximize the objective function in equation (1) using 
a two-layer neural network similar to the structure of the 
word2vect model [17]. The vector representations 
(embedding) of the words and entities will be stored as the 
rows of the weight matrix of the model’s hidden layer. To 
maintain vectors properties in the Euclidean space for the 
following steps, embedding are normalized using ℓ$ norm as 
per equation (4): 

]R^_` = ]
a∑ |]K|$bK67

 
(4) 

where ] is an embedding vector of length c. 

C. Building the Final Entity Vector Representations 

After building the joint vector representations by training 
to predict the target entity .′ from its context’s words and 
entities, the final entity representations are built using the 
embedding of prominent elements from the corresponding 
contexts. To remove redundant features and emphasize the 
distinctive ones, entity representations are compressed into 
high level compact vector representations using auto 
encoders. The concept of auto encoders were first discussed 
in [14] and then used in [25] as unsupervised neural 
networks trained to produce their inputs as outputs. Auto 
encoders composed of two parts: the encoder .de�]� and the 
decoder f.e�]�. Both can be seen as neural networks with 
multiple hidden layers. The encoder maps its input vector 
X ∈ ℝi to an output vector Y ∈ ℝ�  where d l p  if the 
autoencoder is undercomplete. Then the decoder part 
attempts to reconstruct the input vector X  from a smaller 
vector Y. Training the autoencoder is done by minimizing 
the construction error of all vectors v� in the training set S of 
size L i.e. minimizi isng th,,e function: 
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op3 =  ) ||<K −  f.e�.de�<K��||$
8

K67
   (5) 

After training the auto encoder, the vectors produced by 
the encoder part can be seen as compact representations of 
the input vectors. These representations contain knowledge 
good enough to rebuild the original vectors with high 
confidence. The encoder part can be used to map the training 
vectors of  S to a new vector space with smaller dimension 
and use the new set of vectors to train another autoencoder. 
This structure is called a stacked auto encoders, which 
represents a deep neural network with many hidden layers. 

We use a two-layer stacked under complete auto encoders 
to build the final entity representations. This allows for 
capturing high-level abstract features about the entities. Each 
auto encoder consists of two hidden layers in the encoding 
part and two hidden layers in the decoding part. The first 
auto encoder is trained using input vectors that represent the 
target entity contexts. These vectors are built by 
concatenating the embedding of β chosen context elements, 
which can be either a co-word, a co-entity or the target entity 
itself. The context elements are chosen in a way to keep the 
most distinctive features about the context. These elements 
are then ordered alphabetically, and their embedding is 
concatenated to construct the first auto encoder training 
vectors. We chose β − 1  elements that have the highest 
average distances from the embeddings of the remaining 
context elements. These elements are the top β − 1 elements 
from the context that maximize the objective function in 
equation 6. To include features from the rest of the context, 
the element with the smallest average distance from all the 
other context elements, i.e. the element that minimizes the 
objective function in equation 6 is also chosen. We call this 
element the context agent. This way, the chosen context 
elements maximize the chances of keeping the most 
descriptive features about the target entities. 

r�s� = 1
t  ) f�

4M7 

K67.FD vw 
-K , s�   (6) 

Where s , -K  are embeddings of context elements in the 
vector space ℝx  where z is the embedding vector size, α is 
the context size and f�-K , s�  is the Euclidean distance 
between Pi and Q.  

Each auto encoder has two hidden layers, and each hidden 
layer is half the size of the previous layer. This gives the 
used stacked auto encoders structure a vector-compressing 
factor of 16. The size of the input vectors of the first auto 
encoder is z × β. We train the first auto encoder to represent 

the size 
x×{

U  which is the size of the input vectors to be used 

to train the second auto encoder. The final entity embedding 

has a size of  
x×{
7|   moreover; it is obtained from the encoder 

part of the second auto encoder. 
In our experiments, we use Wikidata as the source of the 

training set of named entities. We collected top 500 named 
entities from Wikidata using a simple collection algorithm 
that automatically checks Wikidata entities starting from 
id = 1  and an empty set E . The algorithm heuristically 
checks the label in the corresponding Wikidata page looking 
for named entities. Detected entities will be added to the 
entity set E. Crawler Algorithm 1 in Fig. 1 is then used to 

build the extended entity set E′ with all entity senses. The 
size of the built set E′ is 1559 with an average of about three 
senses per entity.  The extended set is then used as input to 
crawler’s Algorithm 2 in Fig. 2 to build the contexts C�e�� 
For all e′ ∈ E′ with a fixed context size α = 14. The output 
is a text file contains 1559 lines representing entity contexts. 
For example, the named entity “Syria” in the set E has 6 
senses in E′ where it can be either a country, female name, 
journal name, a Roman province, Italian singer or a family 
name. Related co-words and co-entities surround each of 
these six senses. For example, the country sense is written as 
Syria_q858 with neighbors such as Asia, republic, 
damascus_q3766, turkey_q43, etc. The singer sense is 
written as Syria_q3979196 with neighbors including Italian, 
singer, italy_q38, and rome_q220.  

The second step is to train the model described in section 
III.B using the crawler’s output text file. We use Google’s 
Tensor flow Python library [26] to implement the two-layer 
neural network where the input and output layers have the 
same size as the vocabulary size. The vocabulary size is the 
number of unique words/entities in the input text file. The 
hidden layer’s size equals the required embedding vectors 
size. We set the embedding size, i.e. the size of the hidden 
layer to 128. We set the rest of the model’s parameters like 
the following: the number of negative samplesNEG = 64, 
gradient descent learning rate is set to 1.0. Training 
examples are generated from each line as pairs �w�, w'� 
where w'the target entity of the line is and w�is a context 
element. Since we use a context size of 14, each line can 
produce 14 training pairs. The model is trained for 100,000 
iterations using a batch of training pairs. We use a batch size 
of 280 to cover all pairs of 20 randomly selected contexts in 
the same training batch. Once the model training is 
completed, the hidden layer’s weight matrix is saved as the 
embedding of the training vocabulary. It contains the 
embedding of both words and entities mapped to the same 
vector space. 

To build the final entity representations, we train the 
stacked auto encoders model to minimize the construction 
error of L = 1559 vectors in the input set S as per equation 5. 
We choose β = 4, and thus the size of each training vector is 
128 × 4 = 512 which is the size of the input layer of the 
first autoencoder. The first autoencoder is trained for 30,000 
iterations with a learning rate of 0.05 using batches of size 
256. It is trained to encode the input to a vector of size 128 
which is the size of the input layer of the second auto 
encoder. The second auto encoder is then trained using 
similar parameters except with a learning rate of 0.01. After 
training the second auto encoder, the two stacked auto 
encoders model is now ready to be used to encode input 
vectors. The result is a set of L  vectors of size 32 that 
includes the final vector representations of the target named 
entities. 

III.  RESULTS AND DISCUSSION 

As described in section III.C, the β context elements that 
will be used to build the final entity representations can be 
either words or entities. Denoting the chosen set for an entity 
e′  as ∅ ��  moreover, ∝ =  ⋃ ∅ ���� ∈�� , TABLE I shows a 
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statistical analysis of the distribution of β  elements 
considering all the 1559 test entities and their contexts. 

TABLE I 
STATISTICAL ANALYSIS OF THE DISTRIBUTION OF � ELEMENTS OF ALL 

CHOSEN SETS 

Total 
words in 

∝ 

Total 
entities 

in ∝ 

Total 
words as 
context 
agents 

Total 
entities as 

context 
agents 

Numbers 2258 3978 349 1210 
Percentage 36.2% 63.79% 5.59% 19.4% 
 

As TABLE I shows, entities are chosen at almost twice 
the rate of choosing words to be in the β chosen elements of 
target entities. This is largely because the number of co-
words in any context is less than the number of co-entities. 
The only source of the co-words is the Wikidata description 
text which is usually not more than a couple of sentences. 
However, Wikidata page of an entity has plenty of co-
entities found in the binary relations of the target entity.  

To evaluate the final vector representations of entities, we 
use cosine similarity as a measure of the semantic similarity 
between two vectors in the space. We find the closest entity 
to all the 1559 test entities by finding the entity from the 
same set with the maximum cosine similarity. Since an 
entity with a maximum cosine similarity can always be 
found, a threshold has to be set to consider that the entities 
are semantically related. This threshold depends on the size 
and coverage of the training entity set. For small domain-
specific training sets, this threshold has to be large and very 
close to 1. TABLE II shows some examples of the most 
similar entities found in the used training set with cosine 
similarities more than 0.95. 

 
TABLE II 

SOME EXAMPLES OF SIMILAR ENTITIES IN THE USED TRAINING SET WITH 

COSINE SIMILARITIES MORE THAN 0.95. 
Related entities Wikidata descriptions 
Bolivia_Q750 

& 
Paraguay_Q733 

A country in South America 
& 

A country in South America 
Moscow_Q2380475 

& 
Lisbon_Q2310637 

City in Tennessee, USA 
& 

A town in New Hampshire, USA 

Maine_Q3708887 
& 

Flanders_Q3459889 

A town in New York, United States 
& 

Census-designated place in Suffolk 
County, New York 

Versailles_Q2729504 
& 

Rhine_Q1886951 

A town in Indiana, United States 
& 

A civil town in Sheboygan County, 
Wisconsin 

Egypt_Q2083973 
& 

Versailles_Q2729504 

Town in Arkansas 
& 

A town in Indiana, United States 

Lebanon_Q1520670 
& 

London_Q3061911 

City in Wilson County 
& 

Tennessee, a city in Kentucky, 
United States 

Panama_Q2204538 
& 

Lisbon_Q2384470 

Town in Oklahoma 
& 

A town in Maine, USA 

August_Q1192731 
& 

We_Live_In_Public_Q372 

2008 American drama film 
& 

2009 documentary film by Ondi 
Timoner which profiles internet 

pioneer Josh Harris 
Sunday_Q1286562 

& 
Dubai_Q5310496 

Song by British recording duo Hurts 
& 

2005 Filipino drama film 

 
As TABLE II shows, the cosine similarity is close to 1 for 

entities that represent the same real-world concepts such as 
cities, countries, and films. Entities that are semantically 
related such as city, town, and community also have high 
cosine similarities i.e. more than 0.95. The last row in 
TABLE II is another example of how semantically related 
entities are assigned similar representations where both 
entities represent the artwork concept.   

To show how entities of our training set are distributed in 
the vector space, we use the non-linear dimensionality 
reduction tool t-SNE [27] to visualize entity embeddings in 
the 2D space. Fig. 3 shows the distribution of 150 randomly 
chosen entity embeddings.  

As expected, Fig. Three shows that semantically related 
entities are clustered relatively near each other in the vector 
space. TABLE III shows a few examples of related entities 
found in Fig. 3 where examples are numbered from 1 to 6. 

TABLE III 
EXAMPLES OF RELATED ENTITIES FOUND IN FIG. 3 

Group 
# 

Related entities Wikidata descriptions 

1 

Grenada_Q985543 
& 

Saginaw_Q7399254 
& 

Saginaw_Q970802 

City in Mississippi 
& 

An unincorporated 
community in Hot Spring 

County, Arkansas 
& 

City in Texas 

2 
Guatemala_Q11221957 

& 
Ecuador_Q2347797 

Triceratops song 
& 

1997 song by Sash! 

3 
Groningen_Q1816384 

& 
Jamaica_Q3450853 

An unincorporated 
community in Pine County, 

Minnesota 
& 

A town in Vermont, United 
States 

4 
Dominica_Q784 

& 
Honduras_Q783 

A country in the Caribbean 
& 

Republic in Central America 

5 
Ecuador_Q736 

& 
Mongolia_Q711 

A country in South America 
& 

A country in East Asia, 
between China and Russia 

6 
Venezuela_Q593830 

& 
Saginaw_Q7399257 

City in Cuba 
& 

An unincorporated 
community in St. Louis 

County, Minnesota 
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Fig. 3 t-SNE visualization of 150 randomly selected entity embeddings. 
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Fig. 3 also shows that not all close entities are 
semantically related. As discussed earlier, a high similarity 
threshold is required for small training sets. This translates to 
a short distance between related vectors especially after 
reducing the dimension of embedding for visualization using 
t-SNE. 

The goal of constructing entity embedding for ontology 
population tasks requires that if two entities share similar 
contexts, then their embedding are expected to be similar 
and vice versa. To test this using our training set, we find all 
unique entity pairs where the cosine similarity is more than 
0.95. Then we check the corresponding contexts looking for 
shared elements, i.e. shared co-words or co-entities. We 
consider the pair as correct if there is at least one shared 
element found in their contexts, which justifies the high 
similarity. For example, the entities Bolivia_Q750 and 
Paraguay_Q733 have a cosine similarity of more than 0.95. 
For this pair to be considered as correct which means that 
they were rightfully assigned similar representations, they 
should have common elements in their contexts. By 
checking their contexts, we find that four elements are 
shared: Spanish_Q1321, South_america_Q18, south, and 
country. The first two are named entities, and last two are 
words. Based on this, the pair is considered as correct. 

Out of 963 unique pairs found, 951 pairs share context 
elements with an accuracy of 98.75%. This means that 
entities with similar contexts have a high change of being 
assigned close embedding. It is also worth noting that the 
remaining pairs are not necessarily false positives since we 
look for the exact elements in both contexts. Contexts may 
share synonyms or other semantically related elements that 
caused the embedding to be similar which is the expected 
behavior of good embedding. We repeated the experiment 
using different thresholds to test the effect on the accuracy. 
Table I shows the accuracies for different similarity 
thresholds. 

TABLE IV 
ACCURACIES FOR DIFFERENT SIMILARITY THRESHOLDS 

Similarity 
threshold 

Unique 
entity pairs 

with 
similarity > 
threshold 

Pairs with at 
least one shared 
context element 

Accuracy 

0.95 963 951 98.75% 
0.93 1636 1578 96.34% 
0.90 3199 2783 86.99% 
0.85 11050 6535 59.14% 

 
As Table II shows, the number of unique entity pairs 

increases when using lower thresholds with a large number 
of wrong entity pairs. This is mainly due to the small size of 
the training set. Covering a large amount of entities increases 
the chances of the relatedness between close entities. Using a 
larger set helps to discover new correct pairs of similar 
entities and keeps the number of false positives very low 
when using low thresholds. 

IV.  CONCLUSIONS 

In this paper, we presented a method to build entity vector 
representations using knowledge from Wikidata. These 
representations hold distinctive features about the entities, 

which help to identify the correct entity sense in natural 
language text to facilitate ontology population tasks. 
Ontology population, which is the process of adding new 
instances of concepts and relations into an ontology from a 
corpus, will benefit from this process in order to minimize 
the manual effort as exhibited in [28]. 

The conducted experiments show that entities are 
assigned close vector representations if they have similar 
contexts. In the future, we plan to demonstrate the use of the 
constructed entity vectors in the tasks NED and relation 
extraction. It would also be interesting to investigate the 
effect of using Wikidata hierarchies while building entity 
contexts.   
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