

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

Building Compact Entity Embeddings Using Wikidata
Mohamed Lubani# and Shahrul Azman Mohd Noah#

#Center for Artificial Intelligent Technology,

Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia,

43600 Selangor, Malaysia.

E-mail: mohamed.lubani@siswa.ukm.edu.my, shahrul@ukm.edu.my

Abstract—Representing natural language sentences has always been a challenge in statistical language modeling. Atomic discrete
representations of words make it difficult to represent semantically related sentences. Other sentence components such as phrases and
named-entities should be recognized and given representations as units instead of individual words. Different entity senses should be
assigned different representations even though they share identical words. In this paper, we focus on building the vector
representations (embedding) of named-entities from their contexts to facilitate the task of ontology population where named-entities
need to be recognized and disambiguated in natural language text. Given a list of target named-entities, Wikidata is used to
compensate for the lack of a labeled corpus to build the contexts of all target named-entities as well as all their senses. Description text
and semantic relations with other named-entities are considered when building the contexts from Wikidata. To avoid noisy and
uninformative features in the embedding generated from artificially built contexts, we propose a method to build compact entity
representations to sharpen entity embedding by removing irrelevant features and emphasizing the most detailed ones. An extended
version of the Continuous Bag-of-Words model (CBOW) is used to build the joint vector representations of words and named-entities
using Wikidata contexts. Each entity context is then represented by a subset of elements that maximizes the chances of keeping the
most descriptive features about the target entity. The final entity representations are built by compressing the embedding of the
chosen subset using a deep stacked auto encoders model. Cosine similarity and t-SNE visualization technique are used to evaluate the
final entity vectors. Results show that semantically related entities are clustered near each other in the vector space. Entities that
appear in similar contexts are assigned similar compact vector representations based on their contexts.

Keywords— entity embeddings; entity vector representations; named entity disambiguation.

I. INTRODUCTION

A large number of possible words that are encountered in
a natural language text suggest that a Natural Language
Processing (NLP) model is always expected to encounter
new word sequences that have never been seen during the
building of the model. This makes it very difficult for the
model to generalize to new cases and it requires much more
data to train the model. A model that is trained on data
where “Paris” and “Madrid” are represented as different IDs
has very little chance of using both terms’ as the concepts of
“Capital.” Statistical models built using the discrete atomic
representations of words are simple and can achieve high
accuracies when trained using large training sets that covers
huge number of input cases. However, there are cases where
scaling up the training data set will not result in any
improvements [1]. Generalization is always better achieved
when considering continuous input variables. Despite the
complexity, models that use continuous input variables tend
to show better performance. For example, vector

representations of words significantly improve many NLP
applications such as text syntactic and semantic analyses [2]
[3] Named Entity Disambiguation (NED) [4], ontology
population [5] and information retrieval [6]. These
representations can be shared across languages [7] to
overcome language-specific problems such as Arabic entity
detection issues [8].

In NLP, representing (embedding) words as vectors in a
continuous vector space means that words with similar
semantic and syntactic properties will be mapped (embedded)
to nearby points in the space. Using the context to build
word representations is the most widely used approach in
NLP. In natural language text, words are represented by their
contexts. The distributional hypothesis in linguistics is used
as a key to unlock the semantic properties of languages. It
states that words that share similar contexts tend to represent
similar meanings [9] [10]. This suggests that there is a clear
link between the contexts and meaning similarities. This
opens the door to explore the distributional similarities in
linguistics as a way of finding semantic similarities [11].

1437

In a large corpus, the embedding of a word is fine-tuned
each time a new occurrence of the word is encountered.
More information is added from frequent contexts, and less
regard is given to rare isolated occurrences of the word. For
named-entities, contexts can be generated artificially from a
knowledge base to build the entity embedding. Due to the
limited number of contexts, rare entity contexts may be a
source of noise and special processing is required to only
keep the most descriptive information in the embedding. In
this paper, we utilize the Wikidata contexts of named entities
in order to assign similar vector representations to
semantically related entities. A method to build compact
entity representations with the most descriptive information
is proposed. Different senses of named entities are
considered and are assigned different vector representations
based on their contexts.

II. MATERIAL AND METHOD

Representing variables in a continuous space to enhance
accuracy is an old idea. It was first used in a SMART
information retrieval system in the 1960s [12] where
documents and queries are represented as vectors. The
concept was adopted by [13] to represent the input variables
of neural networks as vectors of real numbers. Rumelhart et
al. [14] show that these representations can be learned while
training the neural network to perform the desired task using
back propagation and gradient descent. Bengio et al. [15]
build on this idea and the distributional hypothesis to
construct the vector representations of natural language
words by maximizing the probability of the next word given
the previous ones in a text corpus. It shows that semantically
similar words will be assigned with similar representation
vectors. This comes at the expense of model’s complexity
and slow training over large datasets.

To compute word vector representations efficiently using
very large data sets, new models are required. As described
in [1], the complexity of models that find vector
representations of words comes from the non-linear hidden
layers where heavy matrix multiplications are performed. As
proposed in [1], the Continuous Bag-of-Words model
(CBOW) removes the non-linear hidden layer and projects
the N input words to the same position by taking the average
of their vectors. It learns to predict the current word from a
neighboring context such as a window of words before and
after the target word using a log-linear classifier. This means
that CBOW considers the whole context as one observation
while training which helps the model to train well using
small training sets. The second proposed model is called the
Continuous Skip-gram model, which is similar to the CBOW
model except that the model here predicts context words
from the current word. This division of the context into
multiple observations suggests that the model has much
more to learn than CBOW and thus needs a larger training
data set to converge.

The learned distributed representations using models in [1]
are not only similar for semantically and syntactically related
words but also represent multiple degrees of similarities
between words such as similar nouns with similar endings
e.g., ing are located near each other in the vector space [16].
In addition to learning good vector representations, [16]
describes that relationships between vectors can be explored

using specific vector offsets. It suggests that linguistic
regularities are present between vector representations of
words and can be obtained by applying algebraic operations
such as V����� − V������ ≈ V
�� − V
��� .

Several enhancements on the Skip-gram model [1] are
described in [17] to speed up the training and provide better
representations. The first enhancement is the subsampling of
the frequent words in the training data using a fixed
subsampling rate to enhance the representations of rare
words. The second enhancement comes from the fact that the
cost of finding the probabilities in the Skip-gram model is
proportional to the vocabulary size which makes the model
training significantly expensive. The proposed method is
called Negative Sampling (NEG) and it simplifies the Noise
Contrastive Estimation (NCE) [18] used to optimize the
models in [1]. To avoid the heavy probability calculations,
logistic regression is used to distinguish the real target words
from randomly selected noise words by giving the real target
words higher scores. This simplifies the NCE by considering
only the samples and disregarding the probability
calculations. [17] also shows that simple mathematical
operations such as vector addition represent meaningful and
non-obvious linguistic relationships such as V���
��� +
 V
������ ≈ V������. It also introduces a way to build vector
representations of phrases and entities of multiple words.
The representation of phrases as vectors is significantly more
expressive than taking the individual words representations.
The proposed solution identifies the phrases in the data set
by locating the words that frequently appear together and
representing them as one token while training the model.

Another attempt to map the embedding of words and
entities to the same vector space is introduced in [19]. The
model extends the Skip-gram model proposed in [1] by
adding two more objectives: Obj2: predict neighboring
entities from a target entity and Obj3: predict neighboring
words from a target entity using a knowledge base. The
Wikipedia Link Based Measure (WLM) [20] is used to find
related entities to a given entity in the KB. Obj3 is used to
allow interactions between entity vectors generated using
Obj2 and word vectors of the Skip-gram model. Wikipedia is
also used to link context words to entities where entities in
Wikipedia pages represented as hyperlinks called “anchors”
are unambiguously linked to specific KB entities. The model
is then trained by maximizing the objective function that is
simply the linear combination of all the three objective
functions using the NEG [17] and Stochastic Gradient
Descent (SGD). Linking the representations of entities and
words using Wikipedia anchors is also used in [21]. Both [19]
and [21] use the KB to unambiguously identify entities.
Different senses of the same entity refer to different KB
nodes and thus will be assigned different representations.
However, the problem arises when attempting to link entity
and word representations using the anchor text. Simply
replacing the anchor with the entity in the text doesn’t
represent the specific sense of the entity in that context.
Therefore, different entity senses will not be given different
representations. To solve this, [22] proposes a method to
learn multiple sense representations for each mention.
Wikipedia anchors are used to map the hyperlink text i.e. the
mention to an entity. Using the context words around the
anchor and the entity it refers to, different representations are

1438

learnt for different mention senses. Mentions in Wikipedia
pages that refer to the same entity are represented using the
same token. New mention tokens are used to represent a new
sense if the mention is referring to a different entity.
Similarly, same tokens are used for mentions referring to the
same entity. The objective function used to learn the
different mention senses representations is to predict the
entity linked to a mention given the mention token itself and
the context words. Another objective function is used to
predict the entities themselves from their neighbors (direct
connections) in a KB. A third objective function is used to
learn word representations by predicting the context words
of a target in the text. It trains a model similar to the training
in [19] to optimize the objective function that is the result of
linearly combining all the three objective functions.

In [19], [21] and [22], a KB is used to build entity
representations. Then anchors are used to aligning them into
the same space as word representations. Another method
proposed in [23] learns entity representations using their
example occurrences in a large text corpus (Wikipedia)
instead of a KB. This allows for the utilization of
distributional knowledge about entities in text. It introduces
the concept of Extended Anchor Text (EAT) which extends
the given corpus with more sentences that relate entities to
their context words. This is done by substituting the anchor
text in Wikipedia pages with the corresponding entities and
adding the result to the corpus as new sentences. Then it uses
the training approach similar to [17]. The original models
proposed in [1] i.e. the CBOW and the Skip-gram models
can also be used as well. This method has the advantage of
using the original context of entities instead of KB-built
contexts. This allows for building the entity representations
using a large number of different contexts where an entity
co-occurs. When using a large corpus to learn vector
representations of entities, the components of these vectors
are sharpened with more information each time new contexts
are encountered. Vectors will be adapted to keep the most
distinctive features about the entities they represent.

As a conclusion, building the vector representations of
named entities can be done using contexts built from a KB
or the contexts in a large corpus. The first is useful to build
the representations of a specific set of entities. The KB can
be queried for each entity in the set to generate its contexts.
This comes at the expense of limiting the number of contexts
that can be used to learn high-quality features about the
entities. On the other hand, using a large corpus allows for
utilizing the many occurrences of named entities in order to
enhance the representations and keep the most useful
features. However, when using a corpus, only named entities
mentioned in the corpus will be considered. This doesn’t
allow for learning the representations of a specific set of
entities such as entities of an ontology. In addition, many
reviewed methods do not provide solutions to differentiate
between the representations of different named entity senses.

In this paper, we present a method to learn named entity
vector representations to be used for tasks related to
ontology population namely NED and relation instance
extraction. In ontology population related tasks, the goal is
to identify the correct sense of an entity in the natural
language text using its context. This requires the use of a
training set of named entities and a method to build

expressive entity embedding for the different entity senses.
We define the problem as the following: given a seed
ontology with instances of concepts as disambiguated named
entities, we aim to learn the vector representations of these
entities in order to identify their occurrences in the text.
High-quality entity embedding facilitate the task of spotting
the correct sense of entities in the text and thus extracting
correct facts about them. Wikidata is used to extract the set
of neighboring entities connected with semantic relations to
a given entity. To jointly link entity and word
representations, the description text of Wikidata entities is
used. The collected knowledge from Wikidata will be used
to train a CBOW model to learn the joint embedding.
Entities will be assigned contexts that maximize the chances
of keeping the most descriptive features using the learned
embedding. To sharpen entity representations and remove
any irrelevant information, entities are represented as
compact, dense continuous vectors using a deep stacked auto
encoders model.

The proposed method to build the compact entity
representations consists of three main components. These
components are explained in detail in the following sections.

A. The Crawler

We utilize Wikidata, a collaboratively built public
knowledge base containing a large number of entities
referring to real-world objects such as a person, location,
organization or abstract concepts such as “gravity” and
“seasons” with all their semantic interpretations (i.e., senses).
It contains the structured knowledge of other Wikimedia
Foundation projects mainly the knowledge of Wikipedia,
which is the world’s largest encyclopedia. As of December
2014, Wikidata also contains the resources of Freebase [24].
We build a crawler to find the neighboring entities of a given
named entity called the co-entities, as well as extracting the
keywords associated with the entity found in its description
referred to as the co-words. Given a set of named entities E,
the crawler extends the input set by adding all the senses of
each entity to create E′. It also associates each entity e′ ∈ E′
with its unique Wikidata id in order to differentiate between
different senses of an entity. The crawler objective is to
build the context of each entity e′ ∈ E′ using its co-entities
SE�� moreover, co-words SW�� . Co-entities set (SE��)
contains only named entities that have a semantic relation
with e′ in its Wiki page. The crawler heuristically identifies
entities by checking the capitalization of each token in the
entity label. This is to exclude non-named entity concepts in
the Wiki page (e.g., the universe and space concepts).
Entities of SE�� are represented as underscore-separated
lowercase tokens with their unique Wikidata id as the last
token such as united_states_of_america_q30. Co-words set
SW�� is built by taking the non-stop words from e′
description. Entities will be ignored if their description is
empty. We define the context C�e�� of an entity e� as the set
of co-words and co-entitiesSA�� = SE�� ∪ SW�� . While
crawling, the same context size α is kept for all entities by
using a subset of SA�� if its size is more than α and padding
using the first keyword from the description if the size is less
than α. Entity contexts are then written as separated lines to
a text file. Each line in the file contains α + 1 space
separated elements with the target entity e′ in the middle and

1439

#
$ elements from C�e�� to the left and right. To keep the

target entity in the middle, α is chosen as an even number.
For example, considering the named entity
“united_states_of_america_q30” and a context size of 4, the
corresponding line for this entity in the text file can be as the
following: new_york_city_q60 federal
united_states_of_america_q30 republic
thirteen_colonies_q179997. The words “federal” and
“republic” are elements of SW�� whereas the entities
“new_york_city_q60” and “thirteen_colonies_q179997” are
elements of SE��.Algorithms 1 and 2 shown in Fig. 1 and Fig.
2 respectively explain the functionalities of the crawler in
detail.

Fig. 1 Steps of Algorithm 1 to build the extended entity set.

Fig. 2 Steps of Algorithm 2 to build the contexts of target entities.

B. Building Joint Vector Representations

To build the joint vector representations of words and
entities in the same vector space, we extend the CBOW
model proposed in [1] to cover not only words but also
entities as well. We will use the result of the crawler as the
training input. Each line in the output text file contains the
context of a specifically named entity sense. Pairs of training
examples �w�, w'� are generated only within the same line to
predict the target entity w' from a context elementw� .
Therefore, the training is achieved by maximizing the
following objective function using stochastic gradient
descent (SGD):

1
()) Log -�.′/|123�

4

567

8

/67
 (1)

where L is the total number of entities in the extended entity
set 9′, .′/ is an entity in 9′, α is the entity context size and
123 ∈ :�.′/� is a co-word or a co-entity from the .′/ context.

To avoid complexity, we use NEG proposed in [17],
defined by the following objective function:

Log -�.�/|123� = Log σ�<�

=�>
? <@A5�

+) BCD~FG�C� HLog σ�−<�
CD
? <@A5�I

J

K67

(2)

Where σ�x� = 7
7M�N��ON� is the sigmoid function, P is the

number of negative samples (noise words) indicated as QK
and taken from the noise distribution -R�Q� defined as:

-R�Q� = S�Q�T
U

∑ SWQ5X
T
UR56Y

(3)

Where f is the frequency of the word Q in a vocabulary of
size n.

We maximize the objective function in equation (1) using
a two-layer neural network similar to the structure of the
word2vect model [17]. The vector representations
(embedding) of the words and entities will be stored as the
rows of the weight matrix of the model’s hidden layer. To
maintain vectors properties in the Euclidean space for the
following steps, embedding are normalized using ℓ$ norm as
per equation (4):

]R^_` =]
a∑ |]K|$bK67

(4)

where] is an embedding vector of length c.

C. Building the Final Entity Vector Representations

After building the joint vector representations by training
to predict the target entity .′ from its context’s words and
entities, the final entity representations are built using the
embedding of prominent elements from the corresponding
contexts. To remove redundant features and emphasize the
distinctive ones, entity representations are compressed into
high level compact vector representations using auto
encoders. The concept of auto encoders were first discussed
in [14] and then used in [25] as unsupervised neural
networks trained to produce their inputs as outputs. Auto
encoders composed of two parts: the encoder .de�]� and the
decoder f.e�]�. Both can be seen as neural networks with
multiple hidden layers. The encoder maps its input vector
X ∈ ℝi to an output vector Y ∈ ℝ� where d l p if the
autoencoder is undercomplete. Then the decoder part
attempts to reconstruct the input vector X from a smaller
vector Y. Training the autoencoder is done by minimizing
the construction error of all vectors v� in the training set S of
size L i.e. minimizi isng th,,e function:

1440

op3 =) ||<K − f.e�.de�<K��||$
8

K67
 (5)

After training the auto encoder, the vectors produced by
the encoder part can be seen as compact representations of
the input vectors. These representations contain knowledge
good enough to rebuild the original vectors with high
confidence. The encoder part can be used to map the training
vectors of S to a new vector space with smaller dimension
and use the new set of vectors to train another autoencoder.
This structure is called a stacked auto encoders, which
represents a deep neural network with many hidden layers.

We use a two-layer stacked under complete auto encoders
to build the final entity representations. This allows for
capturing high-level abstract features about the entities. Each
auto encoder consists of two hidden layers in the encoding
part and two hidden layers in the decoding part. The first
auto encoder is trained using input vectors that represent the
target entity contexts. These vectors are built by
concatenating the embedding of β chosen context elements,
which can be either a co-word, a co-entity or the target entity
itself. The context elements are chosen in a way to keep the
most distinctive features about the context. These elements
are then ordered alphabetically, and their embedding is
concatenated to construct the first auto encoder training
vectors. We chose β − 1 elements that have the highest
average distances from the embeddings of the remaining
context elements. These elements are the top β − 1 elements
from the context that maximize the objective function in
equation 6. To include features from the rest of the context,
the element with the smallest average distance from all the
other context elements, i.e. the element that minimizes the
objective function in equation 6 is also chosen. We call this
element the context agent. This way, the chosen context
elements maximize the chances of keeping the most
descriptive features about the target entities.

r�s� = 1
t) f�

4M7

K67.FD vw
-K , s� (6)

Where s , -K are embeddings of context elements in the
vector space ℝx where z is the embedding vector size, α is
the context size and f�-K , s� is the Euclidean distance
between Pi and Q.

Each auto encoder has two hidden layers, and each hidden
layer is half the size of the previous layer. This gives the
used stacked auto encoders structure a vector-compressing
factor of 16. The size of the input vectors of the first auto
encoder is z × β. We train the first auto encoder to represent

the size
x×{

U which is the size of the input vectors to be used

to train the second auto encoder. The final entity embedding

has a size of
x×{
7| moreover; it is obtained from the encoder

part of the second auto encoder.
In our experiments, we use Wikidata as the source of the

training set of named entities. We collected top 500 named
entities from Wikidata using a simple collection algorithm
that automatically checks Wikidata entities starting from
id = 1 and an empty set E . The algorithm heuristically
checks the label in the corresponding Wikidata page looking
for named entities. Detected entities will be added to the
entity set E. Crawler Algorithm 1 in Fig. 1 is then used to

build the extended entity set E′ with all entity senses. The
size of the built set E′ is 1559 with an average of about three
senses per entity. The extended set is then used as input to
crawler’s Algorithm 2 in Fig. 2 to build the contexts C�e��
For all e′ ∈ E′ with a fixed context size α = 14. The output
is a text file contains 1559 lines representing entity contexts.
For example, the named entity “Syria” in the set E has 6
senses in E′ where it can be either a country, female name,
journal name, a Roman province, Italian singer or a family
name. Related co-words and co-entities surround each of
these six senses. For example, the country sense is written as
Syria_q858 with neighbors such as Asia, republic,
damascus_q3766, turkey_q43, etc. The singer sense is
written as Syria_q3979196 with neighbors including Italian,
singer, italy_q38, and rome_q220.

The second step is to train the model described in section
III.B using the crawler’s output text file. We use Google’s
Tensor flow Python library [26] to implement the two-layer
neural network where the input and output layers have the
same size as the vocabulary size. The vocabulary size is the
number of unique words/entities in the input text file. The
hidden layer’s size equals the required embedding vectors
size. We set the embedding size, i.e. the size of the hidden
layer to 128. We set the rest of the model’s parameters like
the following: the number of negative samplesNEG = 64,
gradient descent learning rate is set to 1.0. Training
examples are generated from each line as pairs �w�, w'�
where w'the target entity of the line is and w�is a context
element. Since we use a context size of 14, each line can
produce 14 training pairs. The model is trained for 100,000
iterations using a batch of training pairs. We use a batch size
of 280 to cover all pairs of 20 randomly selected contexts in
the same training batch. Once the model training is
completed, the hidden layer’s weight matrix is saved as the
embedding of the training vocabulary. It contains the
embedding of both words and entities mapped to the same
vector space.

To build the final entity representations, we train the
stacked auto encoders model to minimize the construction
error of L = 1559 vectors in the input set S as per equation 5.
We choose β = 4, and thus the size of each training vector is
128 × 4 = 512 which is the size of the input layer of the
first autoencoder. The first autoencoder is trained for 30,000
iterations with a learning rate of 0.05 using batches of size
256. It is trained to encode the input to a vector of size 128
which is the size of the input layer of the second auto
encoder. The second auto encoder is then trained using
similar parameters except with a learning rate of 0.01. After
training the second auto encoder, the two stacked auto
encoders model is now ready to be used to encode input
vectors. The result is a set of L vectors of size 32 that
includes the final vector representations of the target named
entities.

III. RESULTS AND DISCUSSION

As described in section III.C, the β context elements that
will be used to build the final entity representations can be
either words or entities. Denoting the chosen set for an entity
e′ as ∅ �� moreover, ∝ = ⋃ ∅ ���� ∈�� , TABLE I shows a

1441

statistical analysis of the distribution of β elements
considering all the 1559 test entities and their contexts.

TABLE I
STATISTICAL ANALYSIS OF THE DISTRIBUTION OF � ELEMENTS OF ALL

CHOSEN SETS

Total
words in

∝

Total
entities

in ∝

Total
words as
context
agents

Total
entities as

context
agents

Numbers 2258 3978 349 1210
Percentage 36.2% 63.79% 5.59% 19.4%

As TABLE I shows, entities are chosen at almost twice
the rate of choosing words to be in the β chosen elements of
target entities. This is largely because the number of co-
words in any context is less than the number of co-entities.
The only source of the co-words is the Wikidata description
text which is usually not more than a couple of sentences.
However, Wikidata page of an entity has plenty of co-
entities found in the binary relations of the target entity.

To evaluate the final vector representations of entities, we
use cosine similarity as a measure of the semantic similarity
between two vectors in the space. We find the closest entity
to all the 1559 test entities by finding the entity from the
same set with the maximum cosine similarity. Since an
entity with a maximum cosine similarity can always be
found, a threshold has to be set to consider that the entities
are semantically related. This threshold depends on the size
and coverage of the training entity set. For small domain-
specific training sets, this threshold has to be large and very
close to 1. TABLE II shows some examples of the most
similar entities found in the used training set with cosine
similarities more than 0.95.

TABLE II

SOME EXAMPLES OF SIMILAR ENTITIES IN THE USED TRAINING SET WITH

COSINE SIMILARITIES MORE THAN 0.95.
Related entities Wikidata descriptions
Bolivia_Q750

&
Paraguay_Q733

A country in South America
&

A country in South America
Moscow_Q2380475

&
Lisbon_Q2310637

City in Tennessee, USA
&

A town in New Hampshire, USA

Maine_Q3708887
&

Flanders_Q3459889

A town in New York, United States
&

Census-designated place in Suffolk
County, New York

Versailles_Q2729504
&

Rhine_Q1886951

A town in Indiana, United States
&

A civil town in Sheboygan County,
Wisconsin

Egypt_Q2083973
&

Versailles_Q2729504

Town in Arkansas
&

A town in Indiana, United States

Lebanon_Q1520670
&

London_Q3061911

City in Wilson County
&

Tennessee, a city in Kentucky,
United States

Panama_Q2204538
&

Lisbon_Q2384470

Town in Oklahoma
&

A town in Maine, USA

August_Q1192731
&

We_Live_In_Public_Q372

2008 American drama film
&

2009 documentary film by Ondi
Timoner which profiles internet

pioneer Josh Harris
Sunday_Q1286562

&
Dubai_Q5310496

Song by British recording duo Hurts
&

2005 Filipino drama film

As TABLE II shows, the cosine similarity is close to 1 for

entities that represent the same real-world concepts such as
cities, countries, and films. Entities that are semantically
related such as city, town, and community also have high
cosine similarities i.e. more than 0.95. The last row in
TABLE II is another example of how semantically related
entities are assigned similar representations where both
entities represent the artwork concept.

To show how entities of our training set are distributed in
the vector space, we use the non-linear dimensionality
reduction tool t-SNE [27] to visualize entity embeddings in
the 2D space. Fig. 3 shows the distribution of 150 randomly
chosen entity embeddings.

As expected, Fig. Three shows that semantically related
entities are clustered relatively near each other in the vector
space. TABLE III shows a few examples of related entities
found in Fig. 3 where examples are numbered from 1 to 6.

TABLE III
EXAMPLES OF RELATED ENTITIES FOUND IN FIG. 3

Group

Related entities Wikidata descriptions

1

Grenada_Q985543
&

Saginaw_Q7399254
&

Saginaw_Q970802

City in Mississippi
&

An unincorporated
community in Hot Spring

County, Arkansas
&

City in Texas

2
Guatemala_Q11221957

&
Ecuador_Q2347797

Triceratops song
&

1997 song by Sash!

3
Groningen_Q1816384

&
Jamaica_Q3450853

An unincorporated
community in Pine County,

Minnesota
&

A town in Vermont, United
States

4
Dominica_Q784

&
Honduras_Q783

A country in the Caribbean
&

Republic in Central America

5
Ecuador_Q736

&
Mongolia_Q711

A country in South America
&

A country in East Asia,
between China and Russia

6
Venezuela_Q593830

&
Saginaw_Q7399257

City in Cuba
&

An unincorporated
community in St. Louis

County, Minnesota

1442

Fig. 3 t-SNE visualization of 150 randomly selected entity embeddings.

1443

Fig. 3 also shows that not all close entities are
semantically related. As discussed earlier, a high similarity
threshold is required for small training sets. This translates to
a short distance between related vectors especially after
reducing the dimension of embedding for visualization using
t-SNE.

The goal of constructing entity embedding for ontology
population tasks requires that if two entities share similar
contexts, then their embedding are expected to be similar
and vice versa. To test this using our training set, we find all
unique entity pairs where the cosine similarity is more than
0.95. Then we check the corresponding contexts looking for
shared elements, i.e. shared co-words or co-entities. We
consider the pair as correct if there is at least one shared
element found in their contexts, which justifies the high
similarity. For example, the entities Bolivia_Q750 and
Paraguay_Q733 have a cosine similarity of more than 0.95.
For this pair to be considered as correct which means that
they were rightfully assigned similar representations, they
should have common elements in their contexts. By
checking their contexts, we find that four elements are
shared: Spanish_Q1321, South_america_Q18, south, and
country. The first two are named entities, and last two are
words. Based on this, the pair is considered as correct.

Out of 963 unique pairs found, 951 pairs share context
elements with an accuracy of 98.75%. This means that
entities with similar contexts have a high change of being
assigned close embedding. It is also worth noting that the
remaining pairs are not necessarily false positives since we
look for the exact elements in both contexts. Contexts may
share synonyms or other semantically related elements that
caused the embedding to be similar which is the expected
behavior of good embedding. We repeated the experiment
using different thresholds to test the effect on the accuracy.
Table I shows the accuracies for different similarity
thresholds.

TABLE IV
ACCURACIES FOR DIFFERENT SIMILARITY THRESHOLDS

Similarity
threshold

Unique
entity pairs

with
similarity >
threshold

Pairs with at
least one shared
context element

Accuracy

0.95 963 951 98.75%
0.93 1636 1578 96.34%
0.90 3199 2783 86.99%
0.85 11050 6535 59.14%

As Table II shows, the number of unique entity pairs

increases when using lower thresholds with a large number
of wrong entity pairs. This is mainly due to the small size of
the training set. Covering a large amount of entities increases
the chances of the relatedness between close entities. Using a
larger set helps to discover new correct pairs of similar
entities and keeps the number of false positives very low
when using low thresholds.

IV. CONCLUSIONS

In this paper, we presented a method to build entity vector
representations using knowledge from Wikidata. These
representations hold distinctive features about the entities,

which help to identify the correct entity sense in natural
language text to facilitate ontology population tasks.
Ontology population, which is the process of adding new
instances of concepts and relations into an ontology from a
corpus, will benefit from this process in order to minimize
the manual effort as exhibited in [28].

The conducted experiments show that entities are
assigned close vector representations if they have similar
contexts. In the future, we plan to demonstrate the use of the
constructed entity vectors in the tasks NED and relation
extraction. It would also be interesting to investigate the
effect of using Wikidata hierarchies while building entity
contexts.

REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[2] M. A. Taiye, S. S. Kamaruddin, and F. K. Ahmad, “Representing
Semantics of Text by Acquiring its Canonical Form,” International
Journal on Advanced Science, Engineering and Information
Technology, vol. 7, no. 3, pp. 808-814, 2017.

[3] S. A. M. Noah, N. Omar, and A. Y. Amruddin, “Evaluation of
lexical-based approaches to the semantic similarity of Malay
sentences.,” Journal of Quantitative Linguistics, vol. 22, no. 2, pp.
135-156, 2015.

[4] M. Mohd and O. M. A. Bashaddadh, “Investigating the Combination
of Bag of Words and Named Entities Approach in Tracking and
Detection Tasks among Journalists.,” Journal of Information Science
Theory and Practice, vol. 2, no. 4, pp. 31-48, 2014.

[5] N. I. Y. Saat and S. A. M. Noah, “Rule-based Approach for
Automatic Ontology Population of Agriculture Domain,”
Information Technology Journal, vol. 46, no. 51, pp. 46-51, 2016.

[6] Y. I. A. M. Khalid and S. A. M. Noah, “Semantic text-based image
retrieval with multi-modality ontology and DBpedia,” The Electronic
Library, vol. 35, no. 6, pp. 1191-1214, 2017.

[7] W. Ammar, G. Mulcaire, Y. Tsvetkov, G. Lample, C. Dyer and N. A.
Smith, “Massively Multilingual Word Embeddings,” arXiv preprint
arXiv:1602.01925, 2016.

[8] R. E. Salah and L. Q. b. Zakaria, “Arabic Rule-Based Named Entity
Recognition Systems: Progress and Challenges,” International
Journal on Advanced Science, Engineering and Information
Technology, vol. 7, no. 3, pp. 815-821, 2017.

[9] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp.
146 - 162, 1954.

[10] J. R. Firth, “A synopsis of linguistic theory 1930-55,” in Studies in
Linguistic Analysis, Vols. 1952-59, The Philological Society, 1957,
pp. 1-32.

[11] M. Sahlgren, “The distributional hypothesis,” Italian Journal of
Disability Studies, vol. 20, pp. 33-53, 2008.

[12] G. Salton, The SMART Retrieval System—Experiments in
Automatic Document Processing, NJ: Prentice-Hall, Inc. Upper
Saddle River, 1971.

[13] D. E. Rumelhart and J. L. McClelland, Psychological and Biological
Models, MIT Press, 1986.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in Parallel distributed
processing: explorations in the microstructure of cognition,
Cambridge, MA, MIT Press Cambridge, MA, 1986.

[15] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural
Probabilistic Language Model,” Journal of Machine Learning
Research, vol. 3, pp. 1137-1155, 2003.

[16] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in
continuous space word representations,” in Proceedings of the 2013
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2013.

[17] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in neural information processing
systems, 2013.

1444

[18] M. U. Gutmann and A. Hyvärinen, “Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image
statistics,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 307-361, 2012.

[19] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning of
the embedding of words and entities for named entity
disambiguation,” arXiv preprint arXiv:1601.01343, 2016.

[20] D. Milne and I. H. Witten, “An effective, low-cost measure of
semantic relatedness obtained from Wikipedia links,” in In
Proceedings of the First AAAI Workshop on Wikipedia and
Artificial Intelligence (WIKIAI), 2008.

[21] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph and text
jointly embedding,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014.

[22] Y. Cao, L. Huang, H. Ji, X. Chen and J. Li, “Bridging Text and
Knowledge by Learning Multi-Prototype Entity Mention Embedding,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017.

[23] J. G. Moreno, R. Besancon, R. Beaumont, E. D'hondt, A.-L. Ligozat,
S. Rosset, X. Tannier and B. Grau, “Combining word and entity

embeddings for entity linking,” in European Semantic Web
Conference, 2017.

[24] Freebase, 17 December 2014. [Online]. Available:
https://plus.google.com/109936836907132434202/posts/bu3z2wVqc
Qc.

[25] D. H. Ballard, “Modular learning in neural networks,” in AAAI'87
Proceedings of the sixth National conference on Artificial
intelligence, 1987.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz and
L, “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[27] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, pp. 2579-2605, 2008.

[28] Z. Ibrahim, S. A. M. Noah and M. M. Noor, “Knowledge acquisition
from textual documents for the construction of medicinal herbs
domain ontology,” Journal of Applied Science, vol. 9, no. 4, pp. 794-
798, 2009.

1445

