

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

Test Case Minimization Applying Firefly Algorithm
Nor Laily Hashim#, Yasir Salman Dawood#

Human-Centered Computing Lab, Universiti Utara Malaysia, School of Computing, Sintok, 06010, Kedah, Malaysia
 E-mail: laily@uum.edu.my, yasir.dawod@gmail.com

Abstract— The objective of this study is to propose a test case minimization method performed on UML statechart to produce test
cases that are optimal while considering higher coverage criteria. Current test case generation techniques consume a large amount of
time and cost with less testing coverage, while generating large number or test cases, what results in difficulties in detecting the faults
and errors in the tested systems. Many approaches on test case minimization use genetic algorithms, model checking, or graph search
algorithms to reduce the number of generated test cases, also the using of UML diagrams to test the system requirements and design
before implementing it in the coding phase. However, these studies lack concentration in achieving higher coverage criteria and
minimization in the generated test cases in the same time. The proposed test case minimization method has the following steps:
provide weight to the paths, calculate path coverage for each path, transform an immediate graph into an adjacency matrix, which
later is used to apply firefly algorithm and generate optimal test cases. A review on of the previous similar research in this domain has
been presented and analysed to identify the issues and gaps in this domain. The steps use to perform the test case minimization have
been presented together with some example and formula used. Findings from this study shows that this test case minimization has
successful covered more types of test coverage which are all state, all transition, all transition pairs and all-one-loop paths. At the
same time, it is capable of minimizing the number of test cases.

Keywords— test case minimization; firefly algorithm; UML state chart.

I. INTRODUCTION

Testing consumes a substantial amount of development
time. Thus, developing an automatic test case generation
algorithm for Model-Based Testing (MBT), which supports
the commencement of the software testing process
immediately after the design phase of the system lifecycle or
as soon as the modelled requirements becomes available, is
imperative [1]. Software testing is considered a critical part
of the software development lifecycle [2] because software
testing is performed during software development through a
sequence of instructions of test inputs followed by expected
outputs [3]. The quality of the system is evaluated by
executing the test cases. To measure the quality of the
generated test cases that contain both important and
unimportant test cases, which need to be reduced by using
some systematic procedure. Test case generations need to be
effective in terms of both time and resources [3]. In the
generated test cases, the possibility of redundant test cases
needs to be reduced and eliminated, which leads to the
process of test case minimization.

The purpose of test case minimization is to reduce the
number of the test cases using method and technique, while
maintaining the coverage criteria [3]. Minimization
procedure is applied to maximize coverage, decrease

computational complexity, increase fault detection rate, and
minimize running time [3]. Studies were conducted to
generate a minimized number of test cases with the same
coverage criteria as the original generated test cases[4]–[6] .

Coverage criteria is usually a rule or requirement that test
cases need to satisfy [7]. According to [8], many types of
coverage criteria can be used with the UML state chart
diagram, such as all-states coverage, all-configurations
coverage, all-transitions coverage, all-transition-pairs
coverage, all-loop-free-paths coverage, all-one-loop-paths
coverage, all-round-trips coverage, and all-paths coverage.
Therefore, there are advantages in developing such
mechanism that increases the coverage and diversity of test
cases, while minimize and prioritize the generated test cases
[9]. MBT is used to validate requirements, check the
requirement’s consistencies, and generate test cases that are
focused on the behavioural aspects of the software (Society,
2014). State chart diagrams, activity diagrams, and sequence
diagrams, are the most commonly used UML structures to
generate test cases [10]. The UML state chart diagram is a
better option than other UML diagrams in test case
generation because its lifecycle and the changes that it
endures upon the delivery of an event are shown. This
diagram can also reveal unit-level faults [11].

The firefly algorithm, is a new nature-inspired algorithm,
it is widely used to solve minimization problems, also results

1777

in efficient prioritization of the generated test cases [12]–
[14]. According to [15], the firefly algorithm performed
really well in optimizing the results.

Current test case generation techniques consume a large
amount of time and cost with less testing coverage [16].
Many approaches, such as genetic algorithms, model
checking, or graph search algorithms are used to perform
test case minimization and at the same time measure the
coverage criteria for UML diagrams [17]. As in [18-19],
they applied only one coverage criteria, which is the
transaction coverage, and generated a large number of test
cases that were not minimized. Moreover, they did not
minimize their generated test cases. Therefore, a test
generation method that generates minimized test cases with
more comprehensive test coverage criteria is highly required.

The objective of this study is to propose a test case
minimization method performed on UML state chart to
produce test cases that are optimal while considering higher
coverage criteria. In this paper the discussion will me more
concentrated on minimization and less on prioritization due
to limited number of pages. This paper is organized as
follows. Section II covers background concept and related
work on test cases minimization and their techniques.
Section III covers on the steps involve in the proposed test
case minimization method, together with example. Finally,
section IV concludes the results and provides further
research directions.

Generating optimal test sequences and prioritizing the test
sequences are still challenging tasks [14]. According to [20],
no complete method is able to find optimal test cases up to
the present. However, many researchers used a number of
methods to reach optimal possible test cases. The most
commonly used methods used by researchers to minimize
the number of test cases include ant colony optimization, bee
colony optimization, genetic algorithm, and firefly algorithm
[2, 9, 19–21]. These methods try to generate test data in an
automated manner to facilitate the task of software testing
[24]. Therefore, numerous studies have been conducted to
minimize the test sequences or test cases [27]. These
methods are also used in test case prioritization techniques in
software product lines [25] and also in other fields such as in
monitoring water status of plants [26].

As shown in Table 1, the genetic algorithm is commonly
used to minimize the number of test cases. However, the
genetic algorithm includes no memorization, delayed
convergence, risk of suboptimal solution, and nonlinear
optimization [28], [29]. Therefore, a global optimal solution
using genetic algorithm has no guarantee of success even
when it is reached [30]. In addition, generating optimized
test cases requires more time compared to other methods
[31]. Bee colony optimization for test case minimization
seemed to work effectively for programs with small sizes.
However, as the size of software increases, finding paths and
test data becomes more difficult [32] because the bee colony
optimization method may be trapped in local search space
and the number of iterations is quite high [24].

The firefly algorithm, is a new nature-inspired algorithm,
it is widely used to solve minimization problems, also results
in efficient prioritization of the generated test cases [12]–
[14]. In study conducted by [23], they found that the test
cases processed by firefly algorithm in compared with

particle swarm optimization (PSO), bat, harmony search,
and cuckoo search, reveals optimal result with efficiently in
very less time and with more accuracy. Furthermore,
compared to the genetic algorithm and PSO techniques, the
firefly algorithm reduces the overall computational effort by
86% and 74%, respectively [31-32] In addition, according to
a survey by [35], the Meta heuristic approach firefly
algorithm has proven to be successful minimization test case
generation method. Their results covers each and every
vertex of the graph of problem under test. Therefore, this
study uses a firefly algorithm to minimize and prioritize test
cases.

TABLE 1
TEST CASE MINIMIZATION METHODS

Author(s) Methods Objective

[31] Genetic
algorithm

Generation of minimal all-pair
test cases

[30] Bee colony
optimization

Non-pheromone-based test case
optimization

[36] Bee colony
optimization

Automatic generation of
structural software tests

[29] Hybrid genetic
algorithm

Test case optimization during
the solution generation process
by improving the quality of test
cases

[37] Genetic
algorithms and
bee colony
optimization

Regression test case reduction

[6] Ant colony
optimization

Optimal test path identification

[14] Firefly
algorithm

Prioritization of test sequence
generation

[38] Firefly
algorithm

Prioritization of generated test
paths

[9] Ant colony
optimization

Test case optimization for
automated testing

[23] Firefly
algorithm

Test sequence generating and
optimize the generate test
sequence

In this section, a review of the techniques listed in Table 1

used for an automatic test case generation with test case
minimization and/or prioritization is presented.

As in [30], they proposed a technique that used ant colony
optimization for path prioritization; the researchers used the
directed graph to show the system and presented different
paths of the model during the execution. Their method
automatically selects the best path sequence that covers the
maximum coverage by calculating the strength of each path.

A firefly-optimization-based approach for test sequence
generation and prioritization using a composite state in the
UML state machine diagram were proposed by [14]. Using
the proposed algorithm, a group of fireflies can effectively
explore the UML state machine diagram and automatically
generate test sequences to achieve the test adequacy
requirement. Redundant exploration of the state diagrams
and the iteration over the state loops are avoided through the
construction of the feasible control flow graph. The use of
the firefly algorithm resulted in the efficient prioritization of

1778

the generated test sequences. However, they did not generate
the test cases or consider about coverage criterion.

As in [38], they proposed a UML-model-based test paths
generated from UML activity diagram using the firefly
algorithm. Their approach is based on the complexity of
different constructs of the UML activity diagram. They used
cyclomatic complexity and information flow metric to
prioritize generated test paths. Cyclomatic complexity and
information flow metric can be calculated from the
adjacency metric of the flow graph of the UML activity
graph.

An optimized test case system for the automated testing
using ant colony optimization [9]. To improve the
performance of the testing process, they used data mining
techniques to reduce the size of the test cases. In their study,
a technique called parallel early-binding recursive ant colony
optimization system was presented with automated testing to
provide an efficient way of software testing.

Firefly algorithm to generate test sequence using test data
and then optimize the generated test sequence [23]. Test data
values are selected based on the fitness function. Their work
described how the test sequence are generated using the
firefly algorithm and how they are useful in finding the
optimal solution to maximize the problem. In their study,
they found that the firefly algorithm is more accurate than
other methods and the algorithm is able to generate
automated test cases with test data efficiently.

The previous studies [9, 14, 23, 24, 36] focused on
minimization and prioritization for the test sequence, where
they only generate the paths and didn’t generate the test
cases. They used many types of methods and techniques to
achieve their objectives. However, these studies provide
preliminary data on the test cases as test sequence; also, the
coverage criteria of the generated sequences were not taken
into consideration. The conclusion from these studies
describe that the use of firefly algorithm is the optimal
selection for minimization and prioritization of the present
study generated test cases.

II. MATERIAL AND METHOD

In this section, the step, equation and the example used to
present the proposed test case minimization is presented.
After generating the test case paths from UML statechart
diagram is conducted, test case minimization was conducted
to reduce the generation of the test cases paths numbers
while maximizing test coverage and generate an effective
size of generated test cases.

Test case minimization starts by assuming each visited or
amount of visited edge Ei in a specific path as 1 and 0 for
unvisited edge. The generated path was converted to path
weight as shown in Table 2. The weight of a path is the
summation of the weights of the path traversed [39].
Therefore, this study proposed Equation 1 to calculate
weight values to determine each path weight of transactions
in the system, as shown in Table 2.





=

== n

i i

R

i i
v

f

E
W

0

0 (1)

where R represents the total number of edges and in this
example is equal to 12. fi =1, where n is the number of states.

Table 2 shows the value of Wv for each single path. As an
example, the first path Ei summation is equal to 6 because it
visits six edges, and fi summation equals to 7 because it
contains seven different vertices. Therefore, Wv = 6/7= 0.85.

TABLE II

PATH WEIGHT FOR EACH PATH

T
P

S
→

1

1
→

2

1
→

5

2
→

3

2
→

5

2
→

E

3
→

4

3
→

5

4
→

5

4
→

3

5
→

E

1 1 1 0 1 0 0 1 0 1 0 1 0.85
2 1 0 1 0 0 0 0 0 0 0 1 075
3 1 1 0 0 1 0 0 0 0 0 1 0.8
4 1 1 0 0 0 1 0 0 0 0 0 075
5 1 1 0 1 0 0 0 1 0 0 1 0.83
6 1 1 0 1 0 0 1 0 1 1 1 0.77
7 1 1 0 1 0 0 1 1 0 1 1 0.87

After generating the path weight, the next step starts by

calculating the path coverage for each single path, as shown
in Table 3. Let the test cases TP be a set of test paths, TP =
(T1, T2, T3,…, Tn). If one of the TP achieves full coverage,
then this test case will be selected. If more than one test path
achieves full coverage, the path with lower Wv will be
selected. When no test case achieves full coverage, selecting
an effective set of test cases that will achieve full coverage
by its combination is necessary. Now, this step is presented
through an algorithm.

In most cases, one testing path cannot achieve full
coverage, as there may be many paths from several decision
vertices, as shown in Table 3, where the sixth path achieves
all-state and all-one-loop-path coverage, but not achieving
all-transition and all-transition-pair coverage. An approach
has been proposed in this study to select more than one
testing path to increase the testing coverage using the firefly
algorithm. Then, the selection continues until it reaches full
coverage. The selection method for the next best testing path
depends on the firefly algorithm in the edges contained in
the best testing path. In other words, the next best testing
path should contain various edges as possible compared with
the best testing path [40] with the lowest weight possible.
The testing paths, which are eliminated, have the largest
similarity degree.

TABLE III

COVERAGE CRITERIA FOR EACH PATH

TP
No.

All state All
transition

All-
transition
pairs

All-one-
loop
paths

1 100% 54% 44% 0%

2 57% 63% 11% 0%

3 71% 27% 22% 0%

4 57% 63% 22% 0%

5 85% 45% 33% 0%

6 100% 63% 55% 100%
7 100% 63% 55% 100%

The path weight (as shown in Table 2) and coverage

criteria for each path are generated first (as shown in Table
3). The proposed intermediate graph is converted to an
adjacency matrix and then used to generate a guidance

1779

matrix for the graph. Adjacency matrix is a two-dimensional
matrix that indicates the relationship between vertices and
edges [24].

Next, the value of each element of the adjacency matrix is
specified. If connectivity between nodes i and j is detected,
then the elements aij = 1and aij = 0 otherwise, [41], as
shown in Table 4. The following are the steps in creating an
adjacency matrix [41] :

Step 1: Construct an n x n null matrix (let it be Adj
(i,j)).

Step 2: Check whether an edge exists for all vertices.
Step 3: If E(Vi, Vj) == 1

Adj (i,j) = 1;
Step 4: Repeat step 3 for all values of i.

The adjacency matrix in Table 4 was created best on the

graph in Fig. 1 as an example. However, vertices 2 and 2`
were combined.

Fig. 1 State Relationship Graph

TABLE IV
ADJACENCY MATRIX

States 0 1 2 3 4 5 6
0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0
2 0 0 0 1 0 1 1
3 0 0 0 0 1 1 0
4 0 0 0 1 0 1 0
5 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

Then, the created adjacency matrix is used to generate a

guidance matrix. A guidance matrix holds guidance factors

to probe the fireflies in making decisions at predicate
vertices in choosing the path [24]. The out degree of a vertex
is the total number of edges that move out from a vertex, and
a vertex with an out degree greater than 1 is defined as a
predicate vertex [24]. It is used for the decision matrix for a
given graph. For a firefly at a predicate vertex, the decision
to choose a path or not is carried out by referring to the
guidance factor in the guidance matrix. It blocks the global
view of the domain or graph. The guidance factor GF can be
defined as follows [24]:

)1.0)((10 −−= iVCCGF i (2)

The guidance value for the final state is usually set to

1,000 or any high value. The cyclomatic complexity (CCi) of
the given vertex i can be calculated by the following
formula [42]:

2+−= VECC (3)

where E is the number of edges of the graph and V is the
number of vertices of the graph.

Fireflies at a predicate vertex use the guidance factor as
discussed above to traverse the vertex. Therefore, the
brightness can be defined as follows:

factorguidance
functionBrightness

_
1

_ = (4)

Thus, a firefly at a predicate vertex follows the guidance

factor with a lower value.
In the example in Fig. 2, the number of vertices is 7, and

the number of edges is 11; therefore, the Cyclomatic
Complexity equal to 6. However, the Cyclomatic
Complexity for each vertex should be obtained (using
Equation 3) to calculate the guidance value. For example, for
the third state, CC3=4-3+2=3, and for the same state, GF3
=10(3((7-4)-0.1)) = 117, as shown in Table 5.

Fig. 2 UML State chart Diagram of ATM System

1780

TABLE V
GUIDANCE VALUE

States
Cyclomatic

Complexity (CC) Guidance value (GF)

0 6 414
1 6 354
2 5 245
3 3 117
4 2 58
5 1 19
6 1,000 [END

vertex infinity]
1,000 [finial state]

The guidance matrix (Table 6) is only a look-up/decision

table of the adjacency matrix with each guidance factor
corresponding to every edge. Table 6 was created based on
Table 4 by multiplying each state value by the guidance
value from the same state in Table 5.

TABLE VI
GUIDANCE MATRIX

States 0 1 2 3 4 5 6
0 0 354 0 0 0 0 0
1 0 0 245 0 0 19 0
2 0 0 0 117 0 19 1000
3 0 0 0 0 58 19 0
4 0 0 0 117 0 19 0
5 0 0 0 0 0 0 1000
6 0 0 0 0 0 0 0

Then, the algorithm will generate the first path = [0, 1, 5,

6] by starting from state 0 and searching the lowest value in
the row, and in this case, it is 354 which represents state 1.
Therefore, the first sequence (0, 1) is created. Then, from
state 1, proceed to the next state with the lowest value. In
this case, it is 19. Thereafter, create (1, 5). State 5 will end to
state 6 to create (5, 6). Then, all the visited states in Table
4.7 [(0, 1), (1, 5), (5, 6)] will be replaced with zero as in
Table 7. The next execution will generate the rest of the
paths until all the states are equal to zero. The paths are Path
2 = [1, 2, 5], Path 3 = [2, 3, 5], Path 4 = [2, 6], Path 5 = [3, 4,
5] and Path 6 = [4, 3]. The fifth path starts with 3, and the
sixth path ends with 3. Therefore, they will be combined as
[4, 3, 4, 5].

TABLE VII
GUIDANCE MATRIX AFTER FIRST PATH

States 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0 245 0 0 0 0
2 0 0 0 117 0 19 1000
3 0 0 0 0 58 19 0
4 0 0 0 117 0 19 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

The algorithm will match each optimal path sequence with

the test paths in Fig. 3 to optimize the test cases, and the
matched path is chosen. When more than one matched path
is present, choose the lowest path weight Wv from Table 8
between the selected match paths.

TP 1: [S→1→2→3→4→5→E]
TP 2: [S→1→5→E]
TP 3: [S→1→2→5→E]
TP 4: [S→1→2→E]
TP 5: [S→1→2→3→5→E]
TP 6: [S→1→2→3→4→3→4→5→E]
TP 7: [S→1→2→3→4→3→5→E]

Fig. 3 All Possible Test Paths Using

TP 2: [S→1→5→E]
TP 3: [S→1→2→5→E]
TP 5: [S→1→2→3→5→E]
TP 4: [S→1→2→E]
TP 6: [S→1→2→3→4→3→4→5→E]

Fig. 4 Optimized Test Paths

III. RESULT AND DISCUSSION

The highest coverage percentage of a testing path that can
cover a system is the best path. However, the highest
percentage does not mean the largest number of vertices.
Each path has its own coverage, as illustrated in Table 3.

This method minimized the number of test paths to five
(see Fig. 4) from the seven test paths, as shown in Fig. 3,
where the first and seventh paths have been deleted.
However, the experiment shows that the minimization
method depends on the complexity of the inputted graph,
especially on the numbers of the loop in it.

The combination of these five paths leads to achieving all-
state coverage, all-transition coverage, all-transition-pair
coverage, and all-one-loop coverage, as shown in Table 8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

10

Test Cases Number

E
xp

e
ri

m
e

n
ta

ti
o

n

Minimized test cases Generate Test cases

Fig. 5 Test Case Minimization Result

1781

TABLE VIII

COVERAGE CRITERIA PERCENTAGE FOR MINIMIZED PATHS

TP No All
state

All
transit
ion

All-
transition
pairs

All-one-
loop
paths

2, 3, 5, 4, 6 100% 100% 100% 100%

Fig. 5 shows the test case minimization from 10 UML

state chart diagram examples where the total minimization
achieved from the total number is 31%. With reduction in
the total number of test cases, this approach also managed to
achieve high coverage in four type of coverage as shown in
Table 8. As mentioned earlier in Section I, similar to this
work which are [18-19], they only apply transition coverage
and are not focusing on minimizing the number of test cases.
In this study, the state chart examples used are having
different complexities such as from ATM system, university
library, online shop, airline check-in, and retail point of sale.

IV. CONCLUSIONS

In this paper, methods used for test case minimization in
general or the one applied on UML state chart have been
analyzed. In particular, the highlight is more on identifying
what algorithm were used and how the test case
minimization was conducted. The proposed algorithm has
been presented by providing the steps taken and the equation
used together with some sample data. To summarize the
finding, the proposed minimization approach has
successfully covered more types of test coverage and at the
same time able to minimize the number of test cases.

The work presented in this paper, is a subset of a larger
research, which was to produce a framework for test case
generation for UML state chart. The procedure on how to
convert a state chart diagram to test paths, test prioritization
and automatic test case generation are not included in this
paper. For future work, a comparison with similar test case
generation and minimization methods with be explored and
compare them in terms of their test coverage and
minimization level.

ACKNOWLEDGMENT

We would like to thank Ministry of Education for
providing us with FRGS grant Code SO 13183.

REFERENCES
[1] H. Oluwagbemi, O., & Asmuni, “Development of a robust parser for

extracting artifacts during model-based testing from UML
diagrams.,” Int. J. Softw. Eng. Technol., vol. 1, no. 2, pp. 43–50,
2014.

[2] J. Gulia, P., & Chugh, “Comparative analysis of traditional and
object-oriented software testing,” ACM SIGSOFT Softw. Eng. Notes,
vol. 40, no. 2, pp. 1–4, 2015.

[3] G. S. V. P. Sumalath, V. & Raji, “Model Based Test Case
Optimization of UML Activity Diagrams using Evolutionary
Algorithms,” Int. J. Comput. Sci. Mob. Appl., vol. 2, no. 11, pp.
131–142, 2014.

[4] B. S. Ahmed, “Test case minimization approach using fault detection
and combinatorial optimization techniques for configuration-aware
structural testing.,” Int. J. Eng. Sci. Technol., vol. 19, no. 2, p. 737–
753., 2016.

[5] A. Belli, F., & Hollmann, “Test generation and minimization with
basic statecharts,” in of the 2008 ACM symposium on Applied
Computing.

[6] G. Srivastava, P. R., Baby, K., & Raghurama, “An approach of
optimal path generation using ant colony optimization,” in TENCON
2009-2009 IEEE Region 10 Conference.

[7] O. Paul, A. & Jeff, Introduction to Software Testing. New York, NY,
USA: Cambridge University Press., 2008.

[8] B. Utting, M., & Legeard, Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[9] A. Dubey, Y., Singh, D., & Singh, “A parallel early binding recursive
Ant Colony optimization (PEB-RAC) approach for generating
optimized auto test cases from programming inputs.,” Int. J. Comput.
Appl., vol. 136, no. 3, pp. 11–17, 2016.

[10] R. Shirole, M., & Kumar, “A hybrid genetic algorithm based test
case generation using sequence diagrams,” Contemp. Comput., pp.
53–63, 2010.

[11] A. Abdurazik, A., Offutt, J., & Baldini, “A controlled experimental
evaluation of test cases generated from UML diagrams.Technical
Report, ISE-TR-04-03,” 2004.

[12] K. Choudhary, Y. Gigras, Shilpa, and P. Rani, “Cuckoo Search in
Test Case Generation and Conforming Optimality Using Firefly
Algorithm,” in Proceedings of the Second International Conference
on Computer and Communication Technologies, 2016, pp. 781–791.

[13] B. Kwiecień, J., & Filipowicz, “Firefly algorithm in optimization of
queueing systems.,” Bull. Polish Acad. Sci. Tech. Sci., vol. 60, no. 2,
pp. 363–368, 2012.

[14] D. Panthi, V., & Mohapatra, “Generating prioritized test sequences
using Firefly optimization technique,” Comput. Intell. Data Min., vol.
2, pp. 627–635, 2015.

[15] A. Hashmi, N. Goel, S. Goel, and D. Gupta, “Firefly Algorithm for
Unconstrained Optimization,” IOSR J. Comput. Eng., vol. 11, no. 1,
pp. 75–78, 2013.

[16] J. Kosindrdecha, N., & Daengdej, “A test generation method based
on state diagram,” JATIT, p. 28–44., 2010.

[17] S. Weißleder, Test models and coverage criteria for automatic model-
based test generation with UML state machines. Humboldt
University of Berlin., 2010.

[18] F. Chimisliu, V., & Wotawa, “Using dependency relations to
improve test case generation from UML statecharts,” in Software and
Applications Conference Workshops (COMPSACW), 2013.

[19] F. Chimisliu, V., & Wotawa, “Model based test case generation for
distributed embedded systems.,” in Industrial Technology (ICIT),
2012 IEEE International Conference on., 2012.

[20] P. Tomar, A., & Singh, “Software testing with different optimization
techniques,” Int. J. Emerg. Technol. Adv. Eng., vol. 6, no. 6, pp.
169–171, 2016.

[21] P. R. (2011). T. case optimization using artificial bee colony
algorithm. 570-579. Kulkarni, N. J., Naveen, K. V., Singh, P., &
Srivastava, “Test case optimization using artificial bee colony
algorithm.,” Adv. Comput. Commun., pp. 570–579, 2011.

[22] V. Mala, D. J., Kamalapriya, M., Shobana, R., & Mohan, “A non-
pheromone based intelligent swarm optimization technique in
software test suite optimization,” in International Conference on
Intelligent Agent & Multi-Agent System, 2009.

[23] M. R. Sahoo, R. K., Ojha, D., Mohapatra, D. P., & Patra,
“Automated test case generation and optimization: a comparative
review.,” Int. J. Comput. Sci. Inf. Technol., vol. 8, no. 5, pp. 19–32,
2016.

[24] X.-S. Srivatsava, P. R., Mallikarjun, B., & Yang, “Optimal test
sequence generation using firefly algorithm,” Swarm Evol. Comput.,
vol. 8, pp. 44–53, 2013.

[25] M. Sahak, S. Abd Halim, D. N. Abang Jawawi, and M. A. Isa,
“Evaluation of Software Product Line Test Case Prioritization
Technique,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 4–2, p.
1601, 2017.

[26] Y. Hendrawan and D. F. Al Riza, “Machine Vision Optimization
using Nature-Inspired Algorithms to Model Sunagoke Moss Water
Status,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 1, p. 45, 2016.

[27] K. Srividhya, J., & Alagarsamy, “A synthesized overview of test case
optimization techniques.,” J. Recent Res. Eng. Technol., vol. 1, no. 2,
2014.

[28] Y. L. Baudry, B., Fleurey, F., Jezequel, J., & Traon, “Automatic test
case optimization: A bacteriologic algorithm.,” IEEE Softw., vol. 22,
no. 2, pp. 76–82, 2005.

1782

[29] V. Mala, D. J., Ruby, E., & Mohan, “A Hybrid Test Optimization
Framework - Coupling Genetic Algorithm With Local Search
Technique,” Comput. INFORMATICS, vol. 29, no. 1, 2010.

[30] V. Dharmalingam, Jeya Mala and Mohan, “ABC Tester - Artificial
Bee Colony Based Software Test Suite Optimization Approach ABC
Tester - Artificial Bee Colony Based Software,” Int.J. Softw. Eng.
IJSE, vol. 2, no. June, 2009.

[31] J. D. McCaffrey, “Generation of pairwise test sets using a simulated
bee colony algorithm,” in 2009 IEEE International Conference on
Information Reuse Integration, 2009, pp. 115–119.

[32] P. R. Lam, S. S. B., Raju, M. H. P., Ch, S., & Srivastav, . “(2012).
Automated generation of independent paths and test suite
optimization using artificial bee colony.,” Procedia Eng., vol. 30, pp.
191–200, 2012.

[33] V. Panthi and D. P. Mohapatra, “Generating Prioritized Test
Sequences Using Firefly Optimization Technique,” in Computational
Intelligence in Data Mining - Volume 2, 2015, pp. 627–635.

[34] X. Yang, X.-S., & He, “Firefly algorithm: recent advances and
applications.,” Int. J. Swarm Intell., vol. 1, no. 1, pp. 36–50, 2013.

[35] A. Choudhary, K., Gigras, Y., Shilpa, Rani, P. & Grover, “A Survey
Paper on Test Case Generation and Optimization: Cuckoo Search and
Firefly Algorithm,” Int. J. Eng. Dev. Res., vol. 3, no. 2, pp. 584–589,
2015.

[36] S. Dahiya, S. S., Chhabra, J. K., & Kumar, “Application of artificial
bee colony algorithm to software testing.,” in 21st Australian
Software Engineering Conference (ASWEC), 2010.

[37] V. Suri, B., Mangal, I., & Srivastava, “Regression test suite reduction
using an hybrid technique based on BCO and genetic algorithm.,”
Spec. Issue Int. J. Comput. Sci. Informatics.

[38] V. Rhmann, W., & Saxena, “Optimized and prioritized test paths
generation from UML activity diagram using firefly algorithm.,” Int.
J. Comput. Appl., vol. 145, no. 6, pp. 16–22, 2016.

[39] K. Ruohonen, “Graph theory,” 2013. [Online]. Available:
http://math.tut.fi/~ruohonen/GT_English.pdf.

[40] A. Alhroob, “Best Test Cases Selection Approach.,” in Scientific
Cooperations International Workshops on Electrical and Computer
Engineering Subfields., 2014.

[41] J. Das, “Bengali digit recognition using adjacency matrix.,” 2014.
[42] R. L. Kaner, C., & Fiedler, Foundations of Software Testing.

Context-Driven Press., 2013.

1783

