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Abstract— Harmony Search (HS) is the behaviour imitation of a musician looking for a balanced harmony. HS has difficulty finding
the best tuning parameter, especially for Pitch Adjustment Rate (PAR). PAR plays a crucial role in selecting historical solution and
adjusting it using Bandwidth (BW) value. PAR in HS requires a constant value to be initialized. Furthermore, there is a delay in
conver gence speed due to the disproportion of global and local search capabilities. Although some HS variants have claimed to
overcome this shortcoming by introducing the self-modification of PAR, these justifications have been found to be imprecise and
require more extensive experiments. Local Opposition-Based L ear ning Self-Adaptation Global Harmony Search (LHS) implements a
heuristic factor, n for self-modification of PAR. It (y) manages the probability for selecting the adaptive step, either global adaptive
step or worst adaptive step. If the value of n islarge, the prospects of selecting the global adaptive step is higher, ther eby allowing the
algorithm to exploit a better harmony value. Conversely, if n is small, the worst adaptive step is prone to selection, therefore the
algorithm is closed to the best global solution. In this paper, in addressing the existing HS obstacle, we introduce a Cosine Har mony
Search (CHS) which incorporates an additional strategy rule. This additional strategy employs the n inspired by LHS and contains
the cosine parameter. This allows for self-modification of pitch tuning to enlarge the exploitation capabilities. We test our proposed
CHS on twelve standard static benchmark functions and compare it with basic HS and five state-of-the-art HS variants. Our
proposed method and these state-of-the-art algorithms ar e executed using 30 and 50 dimensions. The numerical results demonstrated
that the CHS has outperformed other state-of-the-art algorithmsin terms of accuracy and conver gence speed evaluations.

Keywords— additional strategy rule; cosine; global pitch adjustment; accuracy; conver gence speed.

role in HS for the exploitation process. Exploitation refers
[. INTRODUCTION to a better global solution relying on a better local solution.

Harmony Search (HS) was introduced by Geem in 2001This study a@ms to improve the exploitation capability of HS.
[1] which imitates the behavior of a musician looking for a . Many variants of HS have been proposed to overcome
well-balanced harmony. HS has the advantages of having his problem, namely Improved Harmony Searqh (IHS) [13],
simple model and good performance in the global search mproveld bGllobaI—Best Harmony Seahrch Algorithm (IGH?
domain. Furthermore, HS has been employed and engaged ihl;]' ,G obal-Best Harmonyh Se;arc . h(GHS) [15], Self-
numerous reak-world  optimization  problems  [2-10] éo?)gi¥§tivs ?Ir(r)nn?ggtiti\?ee arl(\:/last':rggIQV(Qn I\SIﬁQHPSo)puI[;S(])’n
Research in HS is still striving to introduce a mechanism to . -~ .
find the best tuning parameters, especially the Pitch GHS (CC-GHS) [17], Enhance Basu; HSA (c_alled EHSA)
Adjustment Rate (PAR). PAR plays a crucial role in [18], Meta-HSA [19], I_Dual Population Multl_ Operat(_)rs
selecting historical solution and adjusting it using Bandwidth Harmony Search Algorlthm [20]. and A Multi-Population
(BW) value [11]. Currently, PAR in HS needs to be Har_mony Se?rCh AI_gonthm [21]. However, . these_ HS
initialized with a constant value at the initial step. This Variants are still poor in terms of performance, in particular,
effects the convergence time due to a disproportion of globalt® accuracy and robustness in ~solving ~numerical

timization problems. Hence, Local Opposition-Based
and local search capabilities [12]. Consequently, HS falls opumi. .
easily into the local optimum and produces low accuracy Learning Self-Adaptation Global Harm_or_1y Search (LHS)
[13]. has been proposed [11] to overcome this issue. LHS become

more effective through the introduction of self-modification
of pitch tuning at first key improvements whereby its
exploitation ability of solution space increased [11].

The introduction of Heuristic Factay,can manage the
probability of global adaptive step or worst adaptive step to

Other than PAR, Harmony Memory Consideration Rate
(HMCR) is another element that can be utilized to select
historical solution. HCMR frequently uses BW for parameter
tuning. Therefore, both HCMR and PAR play an important
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generate self-modification of pitch tuning in LHS. It where ¢ is a number in the range [-1, 1] which is
determines) value in three steps, involving early, middle consistently divided in random. The parameterBéf is
and late stages. Although LHS has higher local exploitation remains as a solid value.

capabilities with the self-modification of pitch tuning, its If rand, is greater than HMCR, then a new harmony
restraint into three stages may limit its global exploitation provided, as seen in Eq.(2),

capabilities. Thus, this paper proposes a new rule for

determiningy value by embedding a cosine parameter. This Xnew,j = Xj, +rand X (xjy — xj.), (2)
improvisation of the self-modification of pitch tuning is

called Cosine Harmony Search (CHS). This addition that\where rand is a number in the range [0, 1] and is
now results in four stages, further expands the exploitationhomogenously distributed at random.

capabilities. As a result, CHS is able to exploit more search A different harmony is generated throuphcycles, on
space and provides better results than current state-of-the-afihich the fitness is then computed. Next, check the
algorithms. This approach will eventually serve as an condition of fitness of harmony memory. For example, if
alternative solution to the static optimization problems. new harmony is better than worst harmony, choose new
In line with the objectives of this research, this StUdy was harmony as a better harmony, otherwise choose worst
conducted on twelve standard static benchmark functions forharmony.
optimization tests to verify our proposed idea. We also Finally, the criteria for the termination condition is analysed.
compared CHS with existing state-of-the-art approaches,|f g the number of maximal iterations is fulfilled, then the
namely basic HS, IHS, GHS, IGHS, SAHS and LHS, across computation is discontinued. Contrarily, all of the processes
two dimensions comprising of 30 and 50 variables which will rerun.
have been widely used in static optimization studies.
The rest of the paper is arranged as follows: Section 2B. Improved Harmony Search (LHS)
indicates material and method of this paper; Section 3 |HS has advantage in self-modification of pitch tuning
presents results and discussion; Section 4 concludes with @ue to enhance the exploitative ability. LHS applies the two

summary of the findings and possible future work. harmonies which are the best harmony and the worst
harmony regarding to achieve an optimal solution [11].
[I. MATERIAL AND METHOD The self-modification of pitch tuning in LHS indicates

that the heuristic factor, is introduced to enable dynamical

A Related_MatenaI _ _ _ ~increment with the generation number. The self-
The basic HS algorithm is a stochastic global optimizer modification of pitch tuning shown in Eq.(3).

and population-based. Five steps of HS searching are; (1).

Initialize the optimization problem and algorithm parameter ,

such as maximum size of harmony memory (HMS), pitch e d ifrand <

adjusting rate (PAR), harmony memory consideration rate = {x"ew'j sArand X (Xpestj = Xnew;) ifrand <n - (3)

(HMCR), Bandwidth (BW), maximal iteration numbgf)

and current iteratiok, (2). Initialize the harmony memory,

(3). Improvise a new harmony from harmony memory (HM), wherex,,,, is a new candidate harmony vectey,,, ; is the

(4). Update harmony memory and (5). Test the terminationjth components af,.,, . X,,ors,; denotes thgth components

condition [1]. It also requires three parameters: HMS, of the worst harmony in HM, whereas,, ; denotes thgth

HMCR and PAR with a constant value at the first step. ~ component of the best harmony. is a heuristic factor,
Importantly, a new harmony generated by HS is relying which characterizes the searching process. The parameter

on PAR. Generally, PAR plays an important role in the manages the probability of selecting the adaptive step —

exploitation mechanism in HS. PAR with constant value at gjther global or worst.

the first step may affect th_e exploitation capabili'gies of HS, Then expression wherei andk are the maximal and

hence making it harder to yield better global solutions. current iteration numbers respectively, are shown in Eq.(4).
Initially, if random numberand, is smaller than HMCR,  The completed LHS algorithm is shown Aigorithm 1.

then it employs the consideration of harmony memory, par . andPAR,,,, in Algorithm 1 are the minimum and

Xnew,j = Xrj - This equation considerg as one of the  maximum adjusting rates respectively. In additidhijs the

Xnew,j» —rand X (xworst,j = Xnew, j), otherwise,

elements, ranged from 1 i such ag € {1,2,3,...,D}. In maximum number of iterations, wherelagepresents the
this case,D denotes the maximal dimensions.r € current iteration.
{1,2,3, ..., HMS} denotes the harmony index. With regards to the searching process in LHS, if the value
Subsequently, ifand, represents a random number less of parametem is large, there is a greater opportunity of
than PAR value, then fine-tune decision variablgs, ;, j yielding the global adaptive step instead of the worst
such as in Eq.(1), adaptive step. Iy is smaller, there is an inclination to
provide a higher chance of attaining the worst adaptive step.
Xnew,j +¢@ XBW, We also found that if is fixed to 0.5, there is an equal
. =] ifrand; < PAR andrand; < 0.5. (1) chance of obtaining either the global or worst adaptive steps
newJ Xnew,j — ® X BW, during execution.
ifrand, < PAR and randz > 0.5.
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1 1.5k k<K/2
(K), / @

r]:

05 K/2<k<3K/4
[exp(—(J 14.53 — 14.04k/K)), otherwise.

Algorithm 1: LHS [11]

Input: Maximum size of harmony memoHMS, maximal dimensiod,
maximal generatiol¥, PAR,,;, andPAR,,, ...

Output :worst harmonyx,,.s: » function objective of worst harmony

f(xwarst)
Step l:nitialize parameters of harmony search such as HMS,
PAR,,;, andPAR, -
Step 2: Initialize harmony memory as below:
For i=1 to HMS do
Forj=1to D
xyj = %, + rand. (xy — x;.);

End For
Calculaté (x; )
End For

Step 3: Improvise g=0, while the termination criteria is inadequate (g

do
For j=1 to D do
If randG<HMCR
% memory consideration
Xnew,j=Xr,;(r € 1,2,3, ... HMS);

Xnew,j = Xju t XjL — Xnew,j;

Calculate the parametey such as Eq.(4)
% pitch adjustment
Execute Eq.(3)
End If
Else
% random selection
Xnew,j = X, + rand. (xjy —x;,) ;
Fnew,j = X, +rand. (xjy — x;,) ;
End If
End For
Step 4: Update the worst harmony
Select the worst harmony vectqy,,. in the current harmony memo
and calculatef (x,,,,) and f (X_new)
If f(xnew) < f(fnew)
Xworst = Xnews
f(xworst) = f(Xnew)
Else

Xworst = Xnew 1

fCworse) = f(Enew):
End If

g=g+1;
End While
Step 5: Algorithm stops after obtaining the best solution is obtained

which isk < %, has embedded cosine parameter multiplied
by parametew,. Then, the part of the second stage which is
§< k<§ has embedded cosine parameter multiplied by

parametera, . The proposed additional strategy rule to
determine the value ofis shown in Eq.(5). This parameter
n is designed to increase exploitation while avoiding being
trapped in the local optima.

Algorithm 2: The proposed CHS

D,G,

N

G)

C. Our Proposed Method: Cosine Harmony Search (CHS)
Cosine Harmony Search (CHS) has been inspired by LH

~
e

Input: Maximum size of harmony memoHMS, maximal dimensiod,
maximal generatio¥, PAR,,;, andPAR,, .-
Output :worst harmonyx,,..s: ,» function objective of worst harmony
f(xWOTSt')
Step 1:1 Initialize parameters of harmony search such as HMS, D,G,
PAR i, @ndPAR .
Step 2: Initialize harmony memory as below:
For i=1 to HMS do
For j=1 td
X j =%, + rand. (Xjy — X;,);
End For
Calculatéf (x; )
End For
Step 3: Improvise g=0, while the termination criteria is inadequate (9g4G)
do
For j=1 toD do
If randj<HMCR
% memory consideration
Xnew,j=Xr,j(r € 1,2,3,.. HMS),

xnew,j = xj,U + xj,L - xnew,j;

Calculate the parameter such as Eq.(5)
% pitch adjustment
Execute Eq.(3)
End If
Else
% random selection
Xnew,j = X, + rand. (xy — x;,) ;
Fnew,j = X, +rand. (xjy — x;,) ;

End If
End For
Step 4: Update the worst harmony
Select the worst harmony vectqy,,..; in the current harmony memory
and calculat¢ (x,.,,) and f(%_new)
If f(xnew) < f(fnew)
Xworst = Xnew:
[ worse) = f(new):;
Else

Xworst = Xnew 1

fworst) = f(FZnew)s

and has three similar key features [11]; 1. self-modification

of pitch tuning; 2. opposition-based learning technique; and
3. competition selection mechanism. These features are

shown in Algorithm 2.

CHS has four stages to determine the valug.ofhe

End If
g
End While
Step 5: Algorithm stops after the best solution is obtained
1.5k K (5)
1-— (T) x cos(6) X a; ,k < e

1.5k K K
1—(T)><cos(6)xa2,—<k<—

operation of the third stage in CHS is based on the second , _ 4 2’
stage in LHS, while the operation of the fourth stage in CHS 0s KXk <3_K
is similar to the third stage of LHS. The modification to a 27 4
four-stage system occurs in the first and second stages of 14.04k
CHS. The first and second stages in CHS have been exp ‘( 14.53 - > ,others,

embedded with a cosine parameter. The part of the first stage,
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wherecos(6) = cos(45), a; = 1.8 anda, = 2.4 . Based on Table IV, CHS surpasses in test funcfign

_ compared to other algorithms, and has better optimal
D. Experimental Setup solutions than when run in 30 dimensions.
Other HS variants and the proposed CHS algorithms has In the case of dimension increment up to 50 dimensions,
compared and analyzed by using the 12 standard staticCHS still produces equally optimal solutions, where 0 value
benchmark functions implemented in the Matlab Languageon f, andf, are similar to test functions with 30 dimensions.
with Intel (R) Core ™ i7-2620M CPU @ 2.70GHz 2.70 CHS has shown better results fig, with 30 dimensions
GHz and 4.00 GB RAM under operation system Microsoft than 50 dimensions.
10 Pro. The functions have been used not only for the HS  SAHS proposed a new operation of pitch adjusting,
algorithm, but also for other metaheuristic algorithi2a, providing better results with 50 dimensions compared to 30
23] . Table 1 shows the list of the 12 test functions including dimensions on test functigfy. Unfortunately, IHS and GHS
the characteristics, initial rate and global optimal value. All gre less efficient in comparison to the state-of-the-art
of the parameters for the proposed method and otheralgorithms even when the dimension is increased.
algorithms were set according to Table Il. For two set  Even though LHS outperforms others algorithm on all of
dimensionsD, test functions, CHS successfully achieves a near-same global
which are 30 and 50, they represent the scalability of thepptimal solution with LHS on 6 test functiorfs, — f, and
algorithms in terms of their optimization performance. The fy — £, in 30 dimensions. In 50 dimensions, CHS
maximum number of evaluations for the proposed method issuccessfully achieves a near-same global optimas solution
set to 3000. Each of the evaluations is accomplished 50yith LHS on 5 test function,fs — f, andfg — f10. This

times independently. proves that CHS is comparable.
In comparing basic HS with other algorithms in 30 and
Ill. RESULTSAND DISCUSSION 50 dimensions on all test functions, basic HS performs

The results are organized as follows: Subsection A showsPoorly. Basic HS yields better results in 30 dimensions than
the mean value from objective functions derived from each in 50 dimensions.
algorithm using 30_d|n_1en5|ons._ Subsection B presents thec_ Success Rate (SR) for Proposed Method (CHS) and HS
mean value of objective functions conducted from each : :

. . . : ; variant with 30D and 50D

algorithm using 50 dimensions. The near global optimal
solutions are also highlighted after being tested on 12 testTo compare the reliability of CHS with other HS variants for
functions. Subsection C explains the success rate (S_R) fooptimization problemg; — f,, , the success rate (SR) is
our proposed method (CHS) and HS variant after testing onconsidered. Table V and Table VI shows SR of CHS and
both dimensions - 30D and 50D. other HS variants for 30 and 50 dimensions respectively.

A. Proposed Method (CHS) and HS variant for 30D CHS ranks third in SR average in 30 dimensions with
75%, followed by IHS, GHS, SAHS and basic HS, with an

Table 1ll and Table IV illustrate the objectives of the value SR average of 23%, 16%, 11% and 0% respectively. LHS
function for the optimization of the problefiy — f4, for leads with 92% f0||0\,Ned b;/ IGHS y

the proposed method, CHS and competing algorithms such | ; -
. n 50 dimensions, the SR average of IHS, GHS, SAHS,
as IHS, GHS, SAHS, IGHS, LHS and HS with 30 and 50 IGHS and LHS are unreported in literature. In comparing

dimensions, respectively. CHS with basic HS, CHS outperforms basic HS with

Table Ill shows that the proposed CHS has better optima73 83 : ) . )
; ; ; ) .83%. CHS achieved better SR average in 30 dimensions
solution than GHS, SAHS and basic HS in all test functions. than 50 dimensions. Based on achievement of CHS in terms

CHS succ.:essfully_yiellds bett_er optimal solution thf”m. LH_S in of SR average in 30 and 50 dimension, CHS is considered as

test functionfg which is multimodal separable optimization comparable

problem. ‘
The self-modification of pitch tuning mechanism with D. Convergence of Our Proposed Method (CHS)

the embedment of a cosine parameter through a new rule T4 f rther analyze the convergence of the CHS, we used

construction ofy parameter determination present in CHS ¢ test functions to compare the proposed method with

was able to improve its performance of the algorithm. basic HS. The first test was a Sphere functify) ( the
CHS finds the same optimum solution with IGHS and gecong was a Rosenbrock functidig)( the third test was a

LHS in two test functions which ang andfy. IHS is Rastrigin function fy), and the fourth test was an Ackley
subpar in this context because it depends on possible Valu‘f'unction (f1o) With unimodal separable, unimodal non-

of parameter BW and PAR. The parameter dynamically sonaraple,  multimodal separable and multimodal non-

changes with iteration numbers that caused IHS is hardlygenarapie tests respectively. These functions were tested on
served in the global search. 30 dimensions

In another case, GHS converges prematurely, whdt_eby Fig.1-Fig.4 shows the convergence progress of CHS and
has not assumed that the current best harmony may yield a,qic"Hs to the best fit with the number of iterations. With

optimal solution for local search. respect to the 30-dimensional Sphere function, CHS

B. Proposed Method (CHS) and HS variant for 50D converged to the total global minimum (2.10E-247) of the
o . function, with 100% success rate, much faster than basic HS.
To evaluate the scalability of CHS, test functigps-

) d its di . 0 50 di . Th It can be seen in Fig. 1 that the proposed method — CHS -
fiz ncreased Its dimension up 1o IMEnsIons. € converged to the global optimum after 103.86 iterations.
maximum iteration is 3000, with 50 run independently.
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TABLE |
STANDARD STATIC BENCHMARK FUNCTIONS(FN: FUNCTION NAME, FM: FUNCTION MODEL, C: CHARACTERISTIC,IR: INITIAL RANGE, GOV:
GLOBAL OPTIMUM VALUE

FN FM C IR GOV
Sphere D us [-100,100]° 0
fi= Z x?
i=1
Schwefel 2.22 D D UN [~100,100]? 0
fo= Y el + ] il
i=1 i=1
Schwefel 1.2 UN [-100,100]? 0
D i
fz= Z Z Xj 2
i=1 \j=1
Schwefel 2.21 Us [~100,100]? 0
fa = max{|x;|,1<i <D}
Rosenbrock UN [-30,30]° 0
D-1
fs = Y [100Gegs; = 5% + (¢ = 7
i=1
Step Us [~100,100]” 0

D
fo= ) (i +05):2

Quartic D us [-1.28,1.28]° 0
fr = Z ix} + random[0,1]

i=1

Schwefel MS [-500,500]° -418.9829D
D

fe=

=1

i

—x; X sin/|[x;]|

Rastrigin MS [-5.12,5.12]° 0

D
fo= Z:[xi2 — 10cos (2mx;) + 10]
=1

Ackley MN [-32,32]P 0
1% 1%
fio =—20exp| —0.2 BZ x? | —exp (EZ cosani> + 20e
i=1 i=1
Griewank MN [-600,600]° 0
1 D D
= 2 i
f 4000@1%) [ Jeos (") 1
Penalized MN [-50,50]° 0

D
fro = 5 (10 sin2@y) + ) (= 1) [1+10sin* (13,

i=1

D
1
+O,— D+ Z u(x;,10,100,4)y; =1+ Z(xi +1)

i=1
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TABLE Il
PARAMETER SETTING OF PROPOSEDMETHOD (CHS)AND OTHERHS VARIANT (SIGN [-] REPRESENTINOT RELATED)

Par ameter Algorithms
HS IHS GHS SAHS IGHS LHS CHS
HMCR 0.99 0.9 0.9 0.9 0.99 0.99 0.99
HMS 5 5 5 5 5 5 5
PARin 0.1 0.1 0.1 0 0.01 - -
PAR oy - 0.99 0.99 1 0.99 - -
PAR 0.1 - - - - - -
bWpin - 0.0001 - - 0.0001 - -
DWnax - (xY —x")/20 - - (Y —xb)/ 20 - -
bw 0.1 - - - - - -
ay - - - - - - 1.8
a; - - - - - - 2.4
cos - - - - - - 6 =45
TABLE 11l
MEAN OF OBJECTIVE FUNCTION AND STANDARD DEVIATION FORPROBLEMSf; — f1, (d = 30) BY CHSAND OTHERHS VARIANT
IHS GHS SAHS IGHS LHS HS CHS
Standard Standard Standard Standard Standard Standard Standard
Mean L Mean " Mean L Mean L Mean L Mean " Mean L
deviation deviation deviation deviation deviation deviation deviation
fl 5.38E-07 1.45E-07 1.07E+01 4.62E+00 1.35E+D0 7.31E-0D.00E+00 0.00E+00 0.00E+00 0.00E+00 2.74E+01 1.92E+01 2.10E-247 0.00E+00
f2 1.55E-01 4.09E-01 1.06E+01 2.07E+00 3.28E+P0 7.89E{01.00E+00 0.00E+00 5.51E-260 0.00E+00 1.60E+01 4.65E+00 7.45E-142 5.03E-141
3 4.17E+03 1.11E+03 4.47E+03 1.33E+03 8.73E+D3 2.76E4+03 1.42K-30 7.72KE-30.73E-66 4.18E-65 2.08E+04 4.92E+03 1.70E-39 1.18E-38
f4 6.70E+00 9.80E-01 7.03E+0( 8.92E-0fL 6.35E+D0 1.26E+00 1.47E}132 7.13H-13230E-143 7.04E-143 1.83E+01 4.16E+00 1.44E-89 6.16E-89
5 1.77E+02 1.34E+02 5.06E+02 3.12E+Q2 3.69E+D2 1.70E4+02 2.786+01 8.56[E-02.68E+01 5.76E-01 3.82E+02 4.63E+02 3.14E+01 1.67E+01
6 1.63E+00 1.50E+00 1.21E+01 3.96E+00 2.47E+D0 1.57E+00.00E+00 0.00E+00 0.00E+00 0.00E+00 5.07E+01 1.71E+01 0.00E+00 0.00E+00
7 6.46E-02 1.88E-02 8.60E-02 3.71E-02 7.80E-02 2.79E402 5.69H-04 2.58E-04.83E-04 1.82E-04 2.27E-01 6.58E-02 6.76E-04 6.21E-04
8 -1.26E+04 4.52E-01 -1.25E+04 9.74E+00 -1.26E+04 3.24E100 -7.54E+03 4.74E+02 -1.26E+04 2.25E-06 1.26E+02 5/13E8@BE+30 5.82E+31
f9 2.14E+00 1.28E+00 3.83E+0( 1.11E+00 1.11E+DO 5.63E;010.00E+00 0.00E+00 0.00E+00 0.00E+00 4.76E+00 1.72E+00 0.00E+00 0.00E+00
f10 3.01E-01 3.47E-01 1.64E+0! 3.01E-01L 4.80E-01 1.92E{01 4.748-15 1.70K-1%.08E-15 1.23E-15 2.38E+00 3.53E-01 4.37E-15 5.02E-16
f11 2.27E-02 6.04E-02 1.10E+0( 3.34E-0p 7.83E-01 1.82E;01 9.04K-04 2.86E-08.00E+00 0.00E+00 1.41E+00 1.38E-01 0.00E+00 0.00E+00
f12 2.28E-02 2.96E-02 5.38E-02 5.36E-0p 1.69E-02 2.86E102 9.99H-02 9.80K-021.43E-08 8.66E-08 2.88E-01 1.72E-01 3.08E-02 1.92E-02
TABLE IV
MEAN OF OBJECTIVE FUNCTION AND STANDARD DEVIATION FORPROBLEMS f; — f1, (d = 50) BY CHSAND OTHER HS VARIANT
IHS GHS SAHS IGHS LHS HS CHS
Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard
deviation deviation deviation deviation deviation deviation deviation
fl 2.70E+01 1.02E+01 5.38E+0] 1.54E+(1 2.18E-01 1.25H-01 7.838-07 6.94F-08.00E+00 0.00E+00 8.63E+01 3.30E+01 6.74E-172 0.00E+00
f2 1.44E+01 3.77E+00 2.84E+01 3.63E+00 1.66E+D0 4.14E}01 3.67E-02 1.74E-00.00E+00 0.00E+00 4.84E+04 1.03E+04 2.87E-97 1.59E-96
3 1.31E+04 2.60E+03 1.30E+04 2.85E+(03 1.10E+P4 2.52E+03 1.85K-01 7.42[E-0203E-279 0.00E+00 4.95E+04 8.67E+03 6.13E-03 4.21E-02
4 1.11E+01 1.12E+00 1.15E+01 1.06E+00 3.51E+D0 5.05E01 4.49€-04 3.25k-086.00E+00 0.00E+00 2.97E+01 4.37E+00 3.10E-64 1.08E-63
5 1.17E+03 6.92E+02 1.59E+0. 6.97E+(02 1.78E+p2 4.42E+01 6.12H+01 3.23FE+04.58E+01 1.78E-01 1.53E+03 7.06E+02 5.41E+01 2.23E+01
6 3.91E+01 1.39E+01 6.04E+01 1.90E+(1 0.00E+00 0.00E+00 3.33E-02 1.83E-01 0.00E+00 0.00E+00 1.17E+02 3.37E+01 0.00E+00 0.00E+00
7 1.46E-01 3.45E-02 2.06E-01] 6.19E-0p 5.88E-(02 1.87E{02 7.428-03 1.94K-0%.73E-05 3.94E-05 4.25E-01 1.12E-01 9.56E-04 6.17E-04
8 -2.09E+04 2.48E+01 -2.08E+04 4.61E+01 -2.09E+04 4.31E;01 -2.09E+04 9.56[-09 -2.09E+04 1.08E-05 2.91E+02 7J49E#04E+29 3.50E+30
f9 1.24E+01 2.32E+00 1.58E+01 2.32E+00 1.36E-01 5.60E{02 1.46E-04 1.61K-08.00E+00 0.00E+00 1.04E+01 3.14E+00 0.00E+00 0.00E+00
f10 2.13E+00 3.13E-01 2.76E+0 2.86E-0fL 1.11E-01 3.68E{02 4.978-04 1.77E-08.43E-15 6.49E-16 2.72E+00 2.53E-01 4.37E-15 5.02E-16
f11 1.38E+00 9.99E-02 1.52E+0 1.61E-0[L 2.27E-p1 8.69E{02 4.85HK-03 5.95K-08.00E+00 0.00E+00 1.98E+00 2.82E-01 2.05E+01 2.74E-01
f12 2.50E-01 1.14E-01 1.65E-01 5.81E-0p 1.17E-03 2.33E{03 4.43-09 3.77K-10.23E-09 1.65E-09 5.32E-01 1.50E-01 1.22E-01 1.86E-02
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TABLE V
SUCCESSRATE (%) ACHIEVED BY PROBLEMSf; — f1, (d = 30) By CHSAND OTHERHS VARIANT

IHS GHS SAHS IGHS LHS HS CHS
f1 0 0 0 100 100 0 100
f2 0 0 0 100 100 0 100
f3 0 0 0 100 100 0 100
f4 0 0 0 90 100 0 100
f5 25 0 0 0 0 0 0
f6 100 100 100 100 100 0 100
7 0 0 0 75 100 0 0
f8 65 60 15 30 100 0 100
9 0 0 0 100 100 0 100
f10 0 0 0 100 100 0 100
f11 0 0 0 100 100 0 100
f12 100 27.5 12.5 100 100 0 0
Avg. 23 16 11 83 92 0 75

TABLE VI

SUCCESSRATE (%) ACHIEVED BY PROBLEMSf; — f1, (d = 50) By CHSAND OTHERHS VARIANT
(SIGN [-] REPRESENTSNOT REPORTEDIN LITERATURE)

IHS [GHS [SAHS [IGHS [LHS [HS [CHS
f1 - - - - - 0 100
f2 - - - - - 0 100
f3 - - - - - 0 90
f4 - - - - - 0 100
5 - - - - - 0 0
6 - - - - - 0 100
7 - - - - - 0 0
f8 _ - - - - 0 100
f9 - - - - - 0 100
f10 - - - - - 0 100
f11 - - - - - 0 96
f12 - - - - - 0 0
Avg. - - - - - 0 73.83

In Figure 2, CHS converged to the global optimum similar to
the basic HS which is after 3000 iterations.

= pasic HS |}

Objective Function Value

Objective Function Walue

@ R R R P
10 10 10° 10 10
Iteration

10 10 10° 10 10
Iteration

Fig. 1 Convergence behaviour of CHS and basic HS algorithm on Sphere

function (unimodal separable) Fig. 2 Convergence behaviour of CHS and basic HS algorithm on
Rosenbrock function (unimodal non-separable)

Conversely, basic HS took large numbers of iterations of
comparable value and achieved 0% success rate. In the 30-dimensional Rastrigin function, CHS converged
With respect to the 30-dimensional Rosenbrock function, to the total global minimum (0.00E+00) of the function, with
CHS converged to the total global minimum (3.14E+01) of 100% success rate, much faster than basic HS. Figure 3
the function, with 0% success rate, similar to the basic HS.shows that CHS converged to the global optimum after
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183.86 iterations. Conversely, basic HS took large numberscosine parameter multiplied lay ande,. This increases the

of iterations of comparable value and achieved 0% successndependence of self-modification of pitch tuning. This
rate. modification allows the algorithm to perform efficiently in
both unimodal and multimodal functions.

Based on these observations, the proposed method was
compared with basic HS, IHS, GHS, SAHS, IGHS and LHS.
All state-of-the-art algorithms were executed with our
proposed environment in 30 and 50 dimensions. The
numerical results indicated that CHS offers superior
performance to the existing methods gg benchmark
function. It is notable that CHS exceeds the basic HS, IHS,
GHS and IGHS while the search space was increased at 50
dimensions.

It is interesting to note that although LHS performed
superiorly to other HS variants in all test functions, CHS
successfully achieved near global optimal solution obtained
by LHS on 6 test functionfs — f, andfe — f1; at 30
dimensions, and 5 test functiorfg, — f, andfq — f10at 50
dimensions. Thus, CHS performance is comparable to that of
the current state-of-the-art

Furthermore, the SR average of CHS is better than basic
Fig. 3 Convergence behaviour of CHS and basic HS algorithm on Rastrigin HS, IHS, GHS and SAHS at 30 dimensions with a score of
function (multimodal separable) 75% in terms of reliability. When the number of dimensions

is increased, CHS is still able to perform better than basic
10° R HS. Metaheuristic algorithm is successfully applied for
P P : |===cus i image segmentation application [24, 26].line with this, it
— — | — is possible that CHS which uses metaheuristic algorithm can
7 be applied in image segmentation in the future.

Objective Function Value

10°
lteration

NOMENCLATURE

Greek letters
xj, L Lower bounds of the decision variables
x;, U Upper bounds of the decision variables
Xnew, U The jth decision variable of the new harmony
PAR,,,;, Minimum adjusting rate
PAR,,, 4, Maximum adjusting rate

Polihmn ;i BW,,in Minimum bandwidth
- R e BW,,.,, Maximum bandwidth
lteration HMCR,, The value of HMCR in thé&th iteration

Xnew  New harmony vector
Fig. 4 Convergence behaviour of CHS and basic HS algorithm on Ackley VVar(x) The variance of the populatian
function (unimodal non-separable) PAR, The value of PAR in thkth iteration
rand A random number uniformly distributed over the
range [0,1]

&

_______

)
=

Objective Function Value

In the 30-dimensional Ackley function, CHS converged to
the total global minimum (4.37E-15) of the function, with . :
100% success rate, much faster than basic HS. It is seen in Problem dimension .

. . Xworse WoOrst harmony vector in the current HM
Figure 4 that CHS converged to the global optimum after Subscripts
164.94 iterations. Conversely, basic HS took large numbers X

of iterations of comparable value and achieved 0% succesﬂms ':g"rnn%rr]]{/ ,;\/I/Iirrnnc())rr))// Size

rate. : . HMCR Harmony Memory Consideration Rate
In conclusion, our proposed local search mechanism . L
) . : AR  Pitch Adjusting Rate
(CHS) is able to improve the convergence speed of basic H W Bandwidth
and the quality of the solutions with an almost 100% success
rate without getting trapped in the local optima. ACKNOWLEDGMENT
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1760



(1
(2

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

REFERENCES [14]
(15]
Geem, Z.W., J.H. Kim, and G.V. Loganathan. 2001. A new heuristic
optimization algorithm: harmony search. simulation. 76(2): p. 60-68. [16]
Liu, L. and H. Zhou. 2013. Hybridization of harmony search with
variable neighborhood search for restrictive single-machine
earliness/tardiness problem. Information Sciences. 226: p. 68-92. [17]

Arul, R., G. Ravi, and S. Velusami. 2013. Chaotic self-adaptive
differential harmony search algorithm based dynamic economic
dispatch. International Journal of Electrical Power & Energy Systems. [18]
50: p. 85-96.

Poursalehi, N., A. Zolfaghari, and A. Minuchehr. 2013. Differential
harmony search algorithm to optimize PWRs loading pattern.
Nuclear Engineering and Design. 257: p. 161-174.

Ahmad, I., et al. 2012. Broadcast scheduling in packet radio networks [20]
using Harmony Search algorithm. Expert Systems with Applications.
39(1): p. 1526-1535.

Al-Betar, M.A., A.T. Khader, and M. Zaman. 2012. University
course timetabling using a hybrid harmony search metaheuristic
algorithm. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews). 42(5): p. 664-681.

Oliva, D., et al. 2013. Multilevel thresholding segmentation based on [22]
harmony search optimization. Journal of Applied Mathematics. 2013.
Chun, L.BW.F.C. and H.H.D. Xuzhu. 2013. Harmony Search
Algorithm for Solving Fault Location in Distribution Networks with
DG [J]. Transactions of China Electrotechnical Society. 5: p. 040.
Geem, ZW., K.S. Lee, and Y. Park. 2005. Application of harmony
search to vehicle routing. American Journal of Applied Sciences.
2(12): p. 1552-1557.

dos Santos Coelho, L. and V.C. Mariani. 2009. An improved
harmony search algorithm for power economic load dispatch. Energy
Conversion and Management. 50(10): p. 2522-2526.

Ouyang, H.-b., et al. 2017. Improved Harmony Search Algorithm:
LHS. Applied Soft Computing. 53: p. 133-167.

Worasucheep, C. 2011. A harmony search with adaptive pitch
adjustment for continuous optimization. International Journal of
Hybrid Information Technology. 4(4).

Mahdavi, M., M. Fesanghary, and E. Damangir. 2007. An improved
harmony search algorithm for solving optimization problems.
Applied mathematics and computation. 188(2): p. 1567-1579.

[19]

(21]

(23]

(24]

(25]

1761

El-Abd, M. 2013. An improved global-best harmony search
algorithm. Applied mathematics and computation. 222: p. 94-106.
Omran, M.G. and M. Mahdavi. 2008. Global-best harmony search.
Applied mathematics and computation. 198(2): p. 643-656.

Wang, C.-M. and Y.-F. Huang. 2010. Self-adaptive harmony search
algorithm for optimization. Expert Systems with Applications. 37(4):
p. 2826-2837.

Jaddi, N.S. and S. Abdullah. 2017. A cooperative-competitive
master-slave global-best harmony search for ANN optimization and
water-quality prediction. Applied Soft Computing. 51: p. 209-224.
Ayob, M., et al. 2013. Enhanced harmony search algorithm for nurse
rostering problems. Journal of Applied Sciences. 13(6): p. 846-853.
Yassen, E.T., et al. 2015. Meta-harmony search algorithm for the
vehicle routing problem with time windows. Information Sciences.
325: p. 140-158.

Turky, A., S. Abdullah, and A. Dawod. 2018. A dual-population
multi operators harmony search algorithm for dynamic optimization
problems. Computers & Industrial Engineering. 117: p. 19-28.

Jurjee, M.M.J., et al. 2017. Multi-Population Harmony Search
Algorithm For The Dynamic Travelling Salesman Problem With
Traffic Factors. Journal of Theoretical & Applied Information
Technology. 95(2).

Shatnawi, M., M.F. Nasrudin, and S. Sahran. 2017. A new
initialization technique in polar coordinates for Particle Swarm
Optimization and Polar PSO. International Journal on Advanced
Science, Engineering and Information Technology. 7(1): p. 242-249.
Hussein, W.A,, S. Sahran, and S.N.H.S. Abdullah. 2014. Patch-Levy-
based initialization algorithm for Bees Algorithm. Applied Soft
Computing. 23: p. 104-121.

Hussein, W.A., S. Sahran, and S.N.H.S. Abdullah. 2016. A fast
scheme for multilevel thresholding based on a modified bees
algorithm. Knowledge-Based Systems. 101: p. 114-134.

Nilakant, R., H.P. Menon, and K. Vikram. 2017. A survey on
advanced segmentation techniques for brain MRI image
segmentation. International Journal on Advanced Science,
Engineering and Information Technology. 7(4): p. 1448-1456.





