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Abstract—  Harmony Search (HS) is the behaviour imitation of a musician looking for a balanced harmony. HS has difficulty finding 
the best tuning parameter, especially for Pitch Adjustment Rate (PAR). PAR plays a crucial role in selecting historical solution and 
adjusting it using Bandwidth (BW) value. PAR in HS requires a constant value to be initialized. Furthermore, there is a delay in 
convergence speed due to the disproportion of global and local search capabilities. Although some HS variants have claimed to 
overcome this shortcoming by introducing the self-modification of PAR, these justifications have been found to be imprecise and 
require more extensive experiments. Local Opposition-Based Learning Self-Adaptation Global Harmony Search (LHS) implements a 
heuristic factor, η for self-modification of PAR. It (η) manages the probability for selecting the adaptive step, either global adaptive 
step or worst adaptive step. If the value of η is large, the prospects of selecting the global adaptive step is higher, thereby allowing the 
algorithm to exploit a better harmony value. Conversely, if η is small, the worst adaptive step is prone to selection, therefore the 
algorithm is closed to the best global solution. In this paper, in addressing the existing HS obstacle, we introduce a Cosine Harmony 
Search (CHS) which incorporates an additional strategy rule. This additional strategy employs the η inspired by LHS and contains 
the cosine parameter. This allows for self-modification of pitch tuning to enlarge the exploitation capabilities. We test our proposed 
CHS on twelve standard static benchmark functions and compare it with basic HS and five state-of-the-art HS variants. Our 
proposed method and these state-of-the-art algorithms are executed using 30 and 50 dimensions. The numerical results demonstrated 
that the CHS has outperformed other state-of-the-art algorithms in terms of accuracy and convergence speed evaluations. 
 
Keywords— additional strategy rule; cosine; global pitch adjustment; accuracy; convergence speed. 
 
 

I. INTRODUCTION 

Harmony Search (HS) was introduced by Geem in 2001 
[1] which imitates the behavior of a musician looking for a 
well-balanced harmony. HS has the advantages of having a 
simple model and good performance in the global search 
domain. Furthermore, HS has been employed and engaged in 
numerous real-world optimization problems [2-10]. 
Research in HS is still striving to introduce a mechanism to 
find the best tuning parameters, especially the Pitch 
Adjustment Rate (PAR). PAR plays a crucial role in 
selecting historical solution and adjusting it using Bandwidth 
(BW) value [11]. Currently, PAR in HS needs to be 
initialized with a constant value at the initial step. This 
effects the convergence time due to a disproportion of global 
and local search capabilities [12]. Consequently, HS falls 
easily into the local optimum and produces low accuracy 
[13]. 

Other than PAR, Harmony Memory Consideration Rate 
(HMCR) is another element that can be utilized to select 
historical solution. HCMR frequently uses BW for parameter 
tuning. Therefore, both HCMR and PAR play an important 

role in HS for the exploitation process.  Exploitation refers 
to a better global solution relying on a better local solution. 
This study aims to improve the exploitation capability of HS. 

Many variants of HS have been proposed to overcome 
this problem, namely Improved Harmony Search (IHS) [13], 
Improved Global-Best Harmony Search Algorithm (IGHS) 
[14], Global-Best Harmony Search (GHS) [15], Self-
Adaptive Harmony Search Algorithm (SAHS) [16], 
Cooperative-Competitive Master-Slave Multi-Population 
GHS (CC-GHS) [17], Enhance Basic HSA (called EHSA) 
[18], Meta-HSA [19], Dual Population Multi Operators 
Harmony Search Algorithm [20], and A Multi-Population 
Harmony Search Algorithm [21]. However, these HS 
variants are still poor in terms of performance, in particular, 
the accuracy and robustness in solving numerical 
optimization problems. Hence, Local Opposition-Based 
Learning Self-Adaptation Global Harmony Search (LHS) 
has been proposed [11] to overcome this issue. LHS become 
more effective through the introduction of self-modification 
of pitch tuning at first key improvements whereby its 
exploitation ability of solution space increased [11].  

The introduction of Heuristic Factor, �  can manage the 
probability of global adaptive step or worst adaptive step to 
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generate self-modification of pitch tuning in LHS. It 
determines � value in three steps, involving early, middle 
and late stages. Although LHS has higher local exploitation 
capabilities with the self-modification of pitch tuning, its 
restraint into three stages may limit its global exploitation 
capabilities. Thus, this paper proposes a new rule for 
determining �  value by embedding a cosine parameter. This 
improvisation of the self-modification of pitch tuning is 
called Cosine Harmony Search (CHS). This addition that 
now results in four stages, further expands the exploitation 
capabilities. As a result, CHS is able to exploit more search 
space and provides better results than current state-of-the-art 
algorithms. This approach will eventually serve as an 
alternative solution to the static optimization problems.   

In line with the objectives of this research, this study was 
conducted on twelve standard static benchmark functions for 
optimization tests to verify our proposed idea.  We also 
compared CHS with existing state-of-the-art approaches, 
namely basic HS, IHS, GHS, IGHS, SAHS and LHS, across 
two dimensions comprising of 30 and 50 variables which 
have been widely used in static optimization studies. 

The rest of the paper is arranged as follows: Section 2 
indicates material and method of this paper; Section 3 
presents results and discussion; Section 4 concludes with a 
summary of the findings and possible future work.  

II. MATERIAL AND METHOD 

A. Related Material 

The basic HS algorithm is a stochastic global optimizer 
and population-based. Five steps of HS searching are; (1). 
Initialize the optimization problem and algorithm parameter 
such as maximum size of harmony memory (HMS), pitch 
adjusting rate (PAR), harmony memory consideration rate 
(HMCR), Bandwidth (BW), maximal iteration number (�) 
and current iteration �, (2). Initialize the harmony memory, 
(3). Improvise a new harmony from harmony memory (HM), 
(4). Update harmony memory and (5). Test the termination 
condition [1]. It also requires three parameters: HMS, 
HMCR and PAR with a constant value at the first step.  

Importantly, a new harmony generated by HS is relying 
on PAR. Generally, PAR plays an important role in the 
exploitation mechanism in HS. PAR with constant value at 
the first step may affect the exploitation capabilities of HS, 
hence making it harder to yield better global solutions.  

Initially, if random number ��	
1 is smaller than HMCR, 
then it employs the consideration of harmony memory, ���,� = ��,� . This equation considers �  as one of the 
elements, ranged from 1 to �, such as � ∈ �1,2,3, … , ��. In 
this case, �  denotes the maximal dimensions.  � ∈�1,2,3, … , ���� denotes the harmony index. 

Subsequently, if ��	
2 represents a random number less 
than PAR value, then fine-tune decision variables ���,�,  � 
such as in Eq.(1), 

 

���,� = ⎩⎨
⎧ ���,�   + $ × &', if ��	
* ≤ ,-. �	
 ��	
/ ≤ 0.5 .���,�  − $ × &',if ��	
* ≤ ,-. �	
 ��	
/ > 0.5.  

 

(1) 
 

 

where $  is a number in the range [-1, 1] which is 
consistently divided in random. The parameter of &'  is 
remains as a solid value. 

If ��	
 1 is greater than HMCR, then a new harmony 
provided, as seen in Eq.(2),  

 ���,� = ��,4 + ��	
 × (��,5 − ��,4), (2) 
 
where ��	
  is a number in the range [0, 1] and is 
homogenously distributed at random. 

A different harmony is generated through � cycles, on 
which the fitness is then computed. Next, check the 
condition of fitness of harmony memory. For example, if 
new harmony is better than worst harmony, choose new 
harmony as a better harmony, otherwise choose worst 
harmony. 
Finally, the criteria for the termination condition is analysed. 
If  �, the number of maximal iterations is fulfilled, then the 
computation is discontinued. Contrarily, all of the processes 
will rerun. 

B.  Improved Harmony Search (LHS)  

LHS has advantage in self-modification of pitch tuning 
due to enhance the exploitative ability.  LHS applies the two 
harmonies which are the best harmony and the worst 
harmony regarding to  achieve an optimal solution [11]. 

The self-modification of pitch tuning in LHS indicates 
that the heuristic factor, � is introduced to enable dynamical 
increment with the generation number.  The self-
modification of pitch tuning shown in Eq.(3). 

 ���,�= 6���,�  , +��	
 × 7�89:,� − ���,�; , if ��	
 ≤ ����,� , −��	
 × 7��<�9:,� − ���,�;, otherwise,  
 

(3) 
 

where ���  is a new candidate harmony vector, ���,� is the 
jth components of ���. ��<�9:,� denotes the jth components 
of the worst harmony in HM, whereas �89:,� denotes the �th 
component of the best harmony. �   is a heuristic factor, 
which characterizes the searching process. The parameter  � 
manages the probability of selecting the adaptive step – 
either  global or worst. 

The �  expression wherein �  and �  are the maximal and 
current iteration numbers respectively, are shown in Eq.(4). 
The completed LHS algorithm is shown in Algorithm 1. ,-.DE� and ,-.DFG in Algorithm 1 are the minimum and 
maximum adjusting rates respectively. In addition,  � is the 
maximum number of iterations, whereas �  represents the 
current iteration. 

With regards to the searching process in LHS, if the value 
of parameter η is large, there is a greater opportunity of 
yielding the global adaptive step instead of the worst 
adaptive step. If �  is smaller, there is an inclination to 
provide a higher chance of attaining the worst adaptive step. 
We also found that if � is fixed to 0.5, there is an equal 
chance of obtaining either the global or worst adaptive steps 
during execution. 
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      � =
⎩⎪⎨
⎪⎧ I1 − (1.5�� ), � < �/2

0.5, �/2 ≤ � < 3�/4 exp (−(O14.53 − 14.04�/�)), otherwise.
     (4) 

 

 
Algorithm 1: LHS [11] 
Input: Maximum size of harmony memory ���, maximal dimension �,  
maximal generation P, ,-.DE� and ,-.DFG. 
Output :worst harmony, ��<�9:  , function objective of worst harmony Q(��<�9:) 
Step 1:Initialize parameters of harmony search such as HMS, D,G, ,-.DE� and ,-.DFG. 
Step 2: Initialize harmony memory as below: 

For i=1 to HMS do 
    For j=1 to D �E,� = ��,4 +  ��	
. (��,5 − ��,4);  
 
 End For 

         Calculate Q(�E  ) 
        End For 

Step 3: Improvise g=0, while the termination criteria is inadequate (g<G) 
do 

   For j=1 to D do 
        If rand()≤HMCR 
       % memory consideration ���,�R ��,�(� ∈ 1,2,3, … ���);  

 �S��,� =  ��,5 + ��,4 − ���,�;  
 

         Calculate the parameter   η such as Eq.(4)  
         % pitch adjustment  
         Execute Eq.(3) 
         End If 
         Else 
         % random selection    ���,� = ��,4 +  ��	
. (��,5 − ��,4) ;  �S��,� =  ��,4 + ��	
. (��,5 − ��,4) ;  

End If 
End For 

Step 4: Update the worst harmony  
Select the worst harmony vector ��<�9: in the current harmony memory 
and calculate Q(���) and  Q(�S_	UV) 

If Q(���) <  Q(�S��)  ��<�9: = ���;  Q(��<�9:) =  Q(���);  
Else ��<�9: = �S�� ;  Q(��<�9:) =  Q(�S��);  
End If W = W + 1 ; 

End While 
Step 5: Algorithm stops after obtaining the best solution is obtained 
 
 

C. Our Proposed Method: Cosine Harmony Search (CHS) 

Cosine Harmony Search (CHS) has been inspired by LHS, 
and has three similar key features [11]; 1. self-modification 
of pitch tuning; 2. opposition-based learning technique; and 
3. competition selection mechanism. These features are 
shown in  Algorithm 2. 

CHS has four stages to determine the value of η. The 
operation of the third stage in CHS is based on the second 
stage in LHS, while the operation of the fourth stage in CHS 
is similar to the third stage of LHS. The modification to a 
four-stage system occurs in the first and second stages of 
CHS. The first and second stages in CHS have been 
embedded with a cosine parameter. The part of the first stage, 

which is k < Z[ , has embedded cosine parameter multiplied 

by parameter α]. Then, the part of the second stage which is Z[ < k < Z*  has embedded cosine parameter multiplied by 

parameter α* .  The proposed additional strategy rule to 
determine the value of η is shown in Eq.(5). This parameter � is designed to increase exploitation while avoiding being 
trapped in the local optima.  

 
Algorithm 2: The proposed CHS 
Input: Maximum size of harmony memory ���, maximal  dimension �,  
maximal generation P, ,-.DE� and ,-.DFG. 
Output :worst harmony, ��<�9:  , function objective of worst harmony Q(��<�9:) 
Step 1:I Initialize parameters of harmony search such as HMS, D,G, ,-.DE� and ,-.DFG. 
Step 2: Initialize harmony memory as below: 

For i=1 to HMS do 
           For j=1 to � �E,� = ��,4 +  ��	
. (��,5 − ��,4);  
 End For 

         Calculate Q(�E  ) 
        End For 

Step 3: Improvise g=0, while the termination criteria is inadequate (g<G)       
             do 

   For j=1 to � do 
        If rand()≤HMCR 
       % memory consideration ���,�R ��,�(� ∈ 1,2,3, … ���);  

 �S��,� =  ��,5 + ��,4 − ���,�;  
 
         Calculate the parameter   η such as Eq.(5)  
         % pitch adjustment  
         Execute Eq.(3) 
         End If 
         Else 
         % random selection            ���,� = ��,4 +  ��	
. (��,5 − ��,4) ;  �S��,� =  ��,4 + ��	
. (��,5 − ��,4) ;  

 
          End If 
    End For 

Step 4: Update the worst harmony  
Select the worst harmony vector ��<�9: in the current harmony memory 
and calculate Q(���) and  Q(�S_	UV) 

If Q(���) <  Q(�S��)  ��<�9: = ���;  Q(��<�9:) =  Q(���);  
Else ��<�9: = �S�� ;  Q(��<�9:) =  Q(�S��);  
End If 

 W
End While 

Step 5: Algorithm stops after the best solution is obtained 
 

 

      � =

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧ I1 − ^1.5�� _ × cos(a) × b] , � < �4 ,

I1 − ^1.5�� _ × cos(a) × b* , �4 < � < �2 ,
0.5, �2 ≤ � < 3�4 ,

exp c− dI14.53 − 14.04�� ef , others,
      

 

(5) 
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where cos(a) = cos(45), b] = 1.8  and b* = 2.4 . 

D. Experimental Setup 

Other HS variants and the proposed CHS algorithms has 
compared and analyzed by using the 12 standard static 
benchmark functions implemented in the Matlab Language 
with Intel (R) Core ™ i7-2620M CPU @ 2.70GHz 2.70 
GHz and 4.00 GB RAM under operation system Microsoft 
10 Pro. The functions have been used not only for the HS 
algorithm, but also for other metaheuristic algorithms [22, 
23] . Table 1 shows the list of the 12 test functions including 
the characteristics, initial rate and global optimal value. All 
of the parameters for the proposed method and other 
algorithms were set according to Table II. For two set 
dimensions �,  
which are 30 and 50, they represent the scalability of the 
algorithms in terms of their optimization performance. The 
maximum number of evaluations for the proposed method is 
set to 3000. Each of the evaluations is accomplished 50 
times independently. 

III.  RESULTS AND DISCUSSION 

The results are organized as follows: Subsection A shows 
the mean value from objective functions derived from each 
algorithm using 30 dimensions. Subsection B presents the 
mean value of objective functions conducted from each 
algorithm using 50 dimensions. The near global optimal 
solutions are also highlighted after being tested on 12 test 
functions. Subsection C explains the success rate (SR) for 
our proposed method (CHS) and HS variant after testing on 
both dimensions - 30D and 50D.  

A. Proposed Method (CHS) and HS variant for 30D  

Table III and Table IV illustrate the objectives of the value 
function for the optimization of the problem hi − hij  for 
the proposed method, CHS and competing algorithms such 
as IHS, GHS, SAHS, IGHS, LHS and HS with 30 and 50 
dimensions, respectively.  

Table III shows that the proposed CHS has better optima 
solution than GHS, SAHS and basic HS in all test functions. 
CHS successfully yields better optimal solution than LHS in 
test function hk which is multimodal separable optimization 
problem.  

The self-modification of pitch tuning mechanism with 
the embedment of a cosine parameter through a new rule 
construction of �  parameter determination present in CHS 
was able to improve its performance of the algorithm.  

CHS finds the same optimum solution with IGHS and 
LHS in two test functions which are hl  and hm.  IHS is 
subpar in this context because it depends on possible value 
of parameter BW and PAR. The parameter dynamically 
changes with iteration numbers that caused IHS is hardly 
served in the global search.  

In another case, GHS converges prematurely, whereby it 
has not assumed that the current best harmony may yield an 
optimal solution for local search. 

B. Proposed Method (CHS) and HS variant for 50D 

To evaluate the scalability of CHS, test functions hi −hij  increased its dimension up to 50 dimensions. The 
maximum iteration is 3000, with 50 run independently. 

Based on Table IV, CHS surpasses in test function hk  
compared to other algorithms, and has better optimal 
solutions than when run in 30 dimensions.  

In the case of dimension increment up to 50 dimensions, 
CHS still produces equally optimal solutions, where 0 value 
on hl and hm are similar to test functions with 30 dimensions. 
CHS has shown better results in hii  with 30 dimensions 
than 50 dimensions.  

SAHS proposed a new operation of pitch adjusting, 
providing better results with 50 dimensions compared to 30 
dimensions on test function hl. Unfortunately, IHS and GHS 
are less efficient in comparison to the state-of-the-art 
algorithms even when the dimension is increased.  

Even though LHS outperforms others algorithm on all of 
test functions, CHS successfully achieves a near-same global 
optimal solution with LHS on 6 test functions, hn − ho  and hm − hii  in 30 dimensions. In 50 dimensions, CHS 
successfully achieves a near-same global optimas solution 
with LHS on 5 test function,  hn − ho  and hm − hip . This 
proves that CHS is comparable.  

In comparing basic HS with other algorithms in 30 and 
50 dimensions on all test functions, basic HS performs 
poorly. Basic HS yields better results in 30 dimensions than 
in 50 dimensions.  

C. Success Rate (SR) for Proposed Method (CHS) and HS 
variant with 30D and 50D 

To compare the reliability of CHS with other HS variants for 
optimization problemshi − hij  , the success rate (SR) is 
considered. Table V and Table VI shows SR of CHS and 
other HS variants for 30 and 50 dimensions respectively.  

CHS ranks third in SR average in 30 dimensions with 
75%, followed by IHS, GHS, SAHS and basic HS, with an 
SR average of 23%, 16%, 11% and 0% respectively. LHS 
leads with 92%, followed by IGHS.   

In 50 dimensions, the SR average of IHS, GHS, SAHS, 
IGHS and LHS are unreported in literature. In comparing 
CHS with basic HS, CHS outperforms basic HS with 
73.83%. CHS achieved better SR average in 30 dimensions 
than 50 dimensions. Based on achievement of CHS in terms 
of SR average in 30 and 50 dimension, CHS is considered as 
comparable. 

D.   Convergence of Our Proposed Method (CHS)  

To further analyze the convergence of the CHS, we used 
four test functions to compare the proposed method with 
basic HS. The first test was a Sphere function (qi) , the 
second was a Rosenbrock function (qn), the third test was a 
Rastrigin function (qm), and the fourth test was an Ackley 
function (qip)  with unimodal separable, unimodal non-
separable, multimodal separable and multimodal non-
separable tests respectively. These functions were tested on 
30 dimensions.  

Fig.1-Fig.4 shows the convergence progress of CHS and 
basic HS to the best fit with the number of iterations. With 
respect to the 30-dimensional Sphere function, CHS 
converged to the total global minimum (2.10E-247) of the 
function, with 100% success rate, much faster than basic HS. 
It can be seen in Fig. 1 that the proposed method – CHS - 
converged to the global optimum after 103.86 iterations.  
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TABLE I 
STANDARD STATIC BENCHMARK FUNCTIONS (FN: FUNCTION NAME, FM: FUNCTION MODEL, C: CHARACTERISTIC, IR: INITIAL RANGE, GOV: 

GLOBAL OPTIMUM VALUE

FN FM C IR GOV 

Sphere Q] = r �]²t
ER]  

 

US u−100,100vt 0 

Schwefel 2.22 Q* = r‖�E‖ + x‖�E‖t
ER]

t
ER]  

 

UN u−100,100vt 0 

Schwefel 1.2 

Q/ = r dr ��
E

�R] e ²

t
ER]  

 

UN u−100,100vt 0 

Schwefel 2.21 Q[ = max �|�E|, 1 ≤ | ≤ �� US u−100,100vt 0 

Rosenbrock 

Q} = ru100(�E~] − �E)* + (�E − 1)²vt�]
ER]  

UN u−30,30vt 0 

Step 

Q� = r(⌊�E + 0.5⌋)t
ER] ² 

US u−100,100vt 0 

Quartic Q� = r |�E[ +  randomu0,1vt
ER]  

US u−1.28,1.28vt 0 

Schwefel 

Q� = r −�E × �|	t
ER] O‖�E‖ 

MS u−500,500vt -418.9829D 

Rastrigin 

Q� = ru�E* − 10���t
ER] (2��E) + 10v 

MS u−5.12,5.12vt 0 

Ackley 

Q]� = −20 exp ⎝⎛−0.2�1� r �E*
t

ER] ⎠⎞ − exp �1� r cos2��E
t

ER] � + 20U 

MN u−32,32vt 0 

Griewank 

Q]] = 14000 �r �E*
t

ER] � − x ��� ^�E √|� _t
ER] + 1 

MN u−600,600vt 0 

Penalized 

Q]* = �� � 10 sin*(π�E) + r(�E −  1) *t
ER]  u1 + 10sin*(��E~])v 

+(�� −  1) *� + r u(�E, 10,100,4)�E
t

ER] = 1 + 14 (�E + 1) 

MN u−50,50vt 0 
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TABLE II 
PARAMETER SETTING OF PROPOSED METHOD (CHS) AND OTHER HS VARIANT (SIGN [-]  REPRESENTS NOT RELATED) 

Parameter Algorithms 

HS IHS GHS SAHS IGHS LHS CHS ���. 0.99 0.9 0.9 0.9 0.99 0.99 0.99 ��� 5 5 5 5 5 5 5 ,-.DE� 0.1 0.1 0.1 0 0.01 - - ,-.DFG - 0.99 0.99 1 0.99 - - ,-. 0.1 - - - - - - �VDE� - 0.0001 - - 0.0001 - - �VDFG - (�5 − �4)/ 20 - - (�5 − �4)/ 20 - - �V 0.1 - - - - - - b] - - - - - - 1.8 b* - - - - - - 2.4 cos - - - - - - a =45 

 
TABLE III 

MEAN OF OBJECTIVE FUNCTION AND STANDARD DEVIATION FOR PROBLEMS hi − hij  (
 = 30) BY CHS AND OTHER HS VARIANT  

 
IHS GHS SAHS IGHS LHS HS CHS 

 
Mean 

Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

f1 5.38E-07 1.45E-07 1.07E+01 4.62E+00 1.35E+00 7.31E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.74E+01 1.92E+01 2.10E-247 0.00E+00 
f2 1.55E-01 4.09E-01 1.06E+01 2.07E+00 3.28E+00 7.89E-01 0.00E+00 0.00E+00 5.51E-260 0.00E+00 1.60E+01 4.65E+00 7.45E-142 5.03E-141 
f3 4.17E+03 1.11E+03 4.47E+03 1.33E+03 8.73E+03 2.76E+03 1.42E-30 7.72E-30 7.73E-66 4.18E-65 2.08E+04 4.92E+03 1.70E-39 1.18E-38 
f4 6.70E+00 9.80E-01 7.03E+00 8.92E-01 6.35E+00 1.26E+00 1.47E-132 7.13E-132 1.30E-143 7.04E-143 1.83E+01 4.16E+00 1.44E-89 6.16E-89 
f5 1.77E+02 1.34E+02 5.06E+02 3.12E+02 3.69E+02 1.70E+02 2.78E+01 8.56E-01 2.68E+01 5.76E-01 3.82E+02 4.63E+02 3.14E+01 1.67E+01 
f6 1.63E+00 1.50E+00 1.21E+01 3.96E+00 2.47E+00 1.57E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.07E+01 1.71E+01 0.00E+00 0.00E+00 
f7 6.46E-02 1.88E-02 8.60E-02 3.71E-02 7.80E-02 2.79E-02 5.69E-04 2.58E-04 2.83E-04 1.82E-04 2.27E-01 6.58E-02 6.76E-04 6.21E-04 
f8 -1.26E+04 4.52E-01 -1.25E+04 9.74E+00 -1.26E+04 3.24E+00 -7.54E+03 4.74E+02 -1.26E+04 2.25E-06 1.26E+02 5.13E+01 -8.28E+30 5.82E+31 
f9 2.14E+00 1.28E+00 3.83E+00 1.11E+00 1.11E+00 5.63E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.76E+00 1.72E+00 0.00E+00 0.00E+00 
f10 3.01E-01 3.47E-01 1.64E+00 3.01E-01 4.80E-01 1.92E-01 4.74E-15 1.70E-15 3.08E-15 1.23E-15 2.38E+00 3.53E-01 4.37E-15 5.02E-16 
f11 2.27E-02 6.04E-02 1.10E+00 3.34E-02 7.83E-01 1.82E-01 9.04E-04 2.86E-03 0.00E+00 0.00E+00 1.41E+00 1.38E-01 0.00E+00 0.00E+00 
f12 2.28E-02 2.96E-02 5.38E-02 5.36E-02 1.69E-02 2.86E-02 9.99E-02 9.80E-02 4.43E-08 8.66E-08 2.88E-01 1.72E-01 3.08E-02 1.92E-02 

 
TABLE IV 

MEAN OF OBJECTIVE FUNCTION AND STANDARD DEVIATION FOR PROBLEMS hi − hij  (
 = 50)  BY CHS AND OTHER HS VARIANT  

 
IHS GHS SAHS IGHS LHS HS CHS 

 
Mean 

Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

f1 2.70E+01 1.02E+01 5.38E+01 1.54E+01 2.18E-01 1.25E-01 7.83E-07 6.94E-08 0.00E+00 0.00E+00 8.63E+01 3.30E+01 6.74E-172 0.00E+00 
f2 1.44E+01 3.77E+00 2.84E+01 3.63E+00 1.66E+00 4.14E-01 3.67E-02 1.74E-01 0.00E+00 0.00E+00 4.84E+04 1.03E+04 2.87E-97 1.59E-96 
f3 1.31E+04 2.60E+03 1.30E+04 2.85E+03 1.10E+04 2.52E+03 1.85E-01 7.42E-02 4.03E-279 0.00E+00 4.95E+04 8.67E+03 6.13E-03 4.21E-02 
f4 1.11E+01 1.12E+00 1.15E+01 1.06E+00 3.51E+00 5.05E-01 4.49E-04 3.25E-05 0.00E+00 0.00E+00 2.97E+01 4.37E+00 3.10E-64 1.08E-63 
f5 1.17E+03 6.92E+02 1.59E+03 6.97E+02 1.78E+02 4.42E+01 6.12E+01 3.23E+01 4.58E+01 1.78E-01 1.53E+03 7.06E+02 5.41E+01 2.23E+01 
f6 3.91E+01 1.39E+01 6.04E+01 1.90E+01 0.00E+00 0.00E+00 3.33E-02 1.83E-01 0.00E+00 0.00E+00 1.17E+02 3.37E+01 0.00E+00 0.00E+00 
f7 1.46E-01 3.45E-02 2.06E-01 6.19E-02 5.88E-02 1.87E-02 7.42E-03 1.94E-03 6.73E-05 3.94E-05 4.25E-01 1.12E-01 9.56E-04 6.17E-04 
f8 -2.09E+04 2.48E+01 -2.08E+04 4.61E+01 -2.09E+04 4.31E-01 -2.09E+04 9.56E-09 -2.09E+04 1.08E-05 2.91E+02 7.49E+01 -7.14E+29 3.50E+30 
f9 1.24E+01 2.32E+00 1.58E+01 2.32E+00 1.36E-01 5.60E-02 1.46E-04 1.61E-05 0.00E+00 0.00E+00 1.04E+01 3.14E+00 0.00E+00 0.00E+00 
f10 2.13E+00 3.13E-01 2.76E+00 2.86E-01 1.11E-01 3.68E-02 4.97E-04 1.77E-05 3.43E-15 6.49E-16 2.72E+00 2.53E-01 4.37E-15 5.02E-16 
f11 1.38E+00 9.99E-02 1.52E+00 1.61E-01 2.27E-01 8.69E-02 4.85E-03 5.95E-03 0.00E+00 0.00E+00 1.98E+00 2.82E-01 2.05E+01 2.74E-01 
f12 2.50E-01 1.14E-01 1.65E-01 5.81E-02 1.17E-03 2.33E-03 4.43E-09 3.77E-10 1.23E-09 1.65E-09 5.32E-01 1.50E-01 1.22E-01 1.86E-02 
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TABLE V 

SUCCESS RATE (%) ACHIEVED BY PROBLEMS hi − hij    (
 = 30)  BY CHS AND OTHER HS VARIANT  
 

 IHS GHS SAHS IGHS LHS HS CHS 
f1 0 0 0 100 100 0 100 
f2 0 0 0 100 100 0 100 
f3 0 0 0 100 100 0 100 
f4 0 0 0 90 100 0 100 
f5 2.5 0 0 0 0 0 0 
f6 100 100 100 100 100 0 100 
f7 0 0 0 75 100 0 0 
f8 65 60 15 30 100 0 100 
f9 0 0 0 100 100 0 100 
f10 0 0 0 100 100 0 100 
f11 0 0 0 100 100 0 100 
f12 100 27.5 12.5 100 100 0 0 
Avg. 23 16 11 83 92 0 75 

 
TABLE VI 

SUCCESS RATE (%) ACHIEVED BY PROBLEMS hi − hij    (
 = 50)  BY CHS AND OTHER HS VARIANT  
(SIGN [-]  REPRESENTS NOT REPORTED IN LITERATURE) 

 
 IHS GHS SAHS IGHS LHS HS CHS 

f1 - - - - - 0 100 
f2 - - - - - 0 100 
f3 - - - - - 0 90 
f4 - - - - - 0 100 
f5 - - - - - 0 0 
f6 - - - - - 0 100 
f7 - - - - - 0 0 
f8 _ - - - - 0 100 
f9 - - - - - 0 100 
f10 - - - - - 0 100 
f11 - - - - - 0 96 
f12 - - - - - 0 0 
Avg. - - - - - 0 73.83 

 

 
 
Fig. 1 Convergence behaviour of CHS and basic HS algorithm on Sphere 
function (unimodal separable) 

 
Conversely, basic HS took large numbers of iterations of 

comparable value and achieved 0% success rate. 
With respect to the 30-dimensional Rosenbrock function, 

CHS converged to the total global minimum (3.14E+01) of 
the function, with 0% success rate, similar to the basic HS. 

In Figure 2, CHS converged to the global optimum similar to 
the basic HS which is after 3000 iterations.  

 

 
 

Fig. 2 Convergence behaviour of CHS and basic HS algorithm on 
Rosenbrock function (unimodal non-separable) 

 
In the 30-dimensional Rastrigin function, CHS converged 

to the total global minimum (0.00E+00) of the function, with 
100% success rate, much faster than basic HS. Figure 3 
shows that CHS converged to the global optimum after 
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183.86 iterations. Conversely, basic HS took large numbers 
of iterations of comparable value and achieved 0% success 
rate. 

 

 
 
Fig. 3 Convergence behaviour of CHS and basic HS algorithm on Rastrigin 
function (multimodal separable) 
 

 
 

Fig. 4 Convergence behaviour of CHS and basic HS algorithm on Ackley 
function (unimodal non-separable) 
 

In the 30-dimensional Ackley function, CHS converged to 
the total global minimum (4.37E-15) of the function, with 
100% success rate, much faster than basic HS. It is seen in 
Figure 4 that CHS converged to the global optimum after 
164.94 iterations. Conversely, basic HS took large numbers 
of iterations of comparable value and achieved 0% success 
rate. 

In conclusion, our proposed local search mechanism 
(CHS) is able to improve the convergence speed of basic HS 
and the quality of the solutions with an almost 100% success 
rate without getting trapped in the local optima. 

IV.  CONCLUSIONS 

This paper presents Cosine Harmony Search (CHS) as a 
new modification of the Harmony Search (HS) algorithm. 
Our proposed algorithm introduces an additional strategy 
rule of parameter �  determination with the inclusion of a 

cosine parameter multiplied by b] and b*. This increases the 
independence of self-modification of pitch tuning. This 
modification allows the algorithm to perform efficiently in 
both unimodal and multimodal functions.  

Based on these observations, the proposed method was 
compared with basic HS, IHS, GHS, SAHS, IGHS and LHS. 
All state-of-the-art algorithms were executed with our 
proposed environment in 30 and 50 dimensions. The 
numerical results indicated that CHS offers superior 
performance to the existing methods on hk benchmark 
function. It is notable that CHS exceeds the basic HS, IHS, 
GHS and IGHS while the search space was increased at 50 
dimensions.  

It is interesting to note that although LHS performed 
superiorly to other HS variants in all test functions, CHS 
successfully achieved near global optimal solution obtained 
by LHS on 6 test functions, hn − ho  and hm − hii  at 30 
dimensions, and 5 test functions, hn − ho  and hm − hip at 50 
dimensions. Thus, CHS performance is comparable to that of 
the current state-of-the-art 

Furthermore, the SR average of CHS is better than basic 
HS, IHS, GHS and SAHS at 30 dimensions with a score of 
75% in terms of reliability. When the number of dimensions 
is increased, CHS is still able to perform better than basic 
HS. Metaheuristic algorithm is successfully applied for 
image segmentation application [24, 25].  In line with this, it 
is possible that CHS which uses metaheuristic algorithm can 
be applied in image segmentation in the future.  

NOMENCLATURE 

Greek letters �� , �        Lower bounds of the decision variables �� , �       Upper bounds of the decision variables ��� , � The �th decision variable of the new harmony ,-.DE� Minimum adjusting rate ,-.DFG Maximum adjusting rate &'DE� Minimum bandwidth &'DFG Maximum bandwidth ���.� The value of HMCR in the �th iteration ��� New harmony vector 
Var(x) The variance of the population � ,-.� The value of PAR in the �th iteration  ��	
 A random number  uniformly distributed over the 

range [0,1] � Problem dimension ��<�9: Worst harmony vector in the current HM 
Subscripts 
HM Harmony Memory 
HMS Harmony Memory Size 
HMCR Harmony Memory Consideration Rate 
PAR Pitch Adjusting Rate 
BW Bandwidth 
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