

Vol.8 (2018) No. 6

ISSN: 2088-5334

Blocks Correctness Evaluation Methodology for Block-Based
Software Development

Abdullah Mohd Zin#1, Mustafa Almatary#2, Marini Abu Bakar#4, Rodziah Latih#5, Norleyza Jailani#6
#Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600

Bangi Selangor, Malaysia
 E-mail: 1amzftsm@ukm.edu.my, 2vim4mustafa@yahoo.com, 3marini@ukm.edu.my, 4rodziah.latih@ukm.edu.my, 5njailani@ukm.edu.my

Abstract— The term “block” in Block-Based Software Development (BBSD) refers to a software component that has the
characteristics of reusable, composition, customizable and configurable. Based on the principles of component-based software
development and end-user development, the objective of BBSD is to allow non-programmer known as end-user to build a new
application by using a set of blocks by creating composite blocks, configuring and customizing for a specific application domain. In
the current implementation, a Domain Initiator is responsible for identifying blocks’ specifications, which will be uploaded to the
block store repository. Block developers can contribute to developing blocks using the Java programming language. Blocks for a
specific domain are bundled as a JAR file. These blocks will be stored in a block store. The block store is a software repository that
provides a sharing mechanism for domain driven blocks specification, cataloging, archiving, and distribution. Before the blocks
submitted to the block store can be distributed to end-users, they are required to undergo the process of block verification and
evaluation to ensure that they conform to the requirement specification. The submitted blocks will also need to be approved by the
domain initiator before they are made available to the end users. This paper proposes the block-based evaluation methodology as well
as the software tool which helps domain initiator in the process of blocks verification and evaluation. The proposed methodology
consists of three types of validation namely Automatic Validation Approach, JSR-303 or JSR-349 standard bean Validation
Specification, and the manual testing. The proposed methodology itself was verified through a case study using a list of blocks
submitted to the block store repository.

Keywords— software reuse repository; end user development; block-based software development; component-based software
development; component evaluation.

I. INTRODUCTION

The block store repository is a domain driven software
blocks sharing mechanism to support the Block-Based
Software Development (BBSD). BBSD is a software
development approach based on the principles of
Component-Based Software Development (CBSD) and End-
User Development (EUD) [1]. The main objective of BBSD
is to allow end user programmers to develop applications by
integrating blocks. End user programmers are software
developers who are not trained as professional programmers,
such as teachers, accountants, scientists, engineers and
parents.

Within the context of BBSD, the term “block” refers to a
software component that can be reused, highly composable,
customizable and configurable. Blocks can be combined
with other blocks to form an application without going
through the normal coding process [2].

Apart from end user programmers, there are four other
actors in BBSD as shown in Fig. 1. These actors are
administrator, visitors, domain initiators and block

developers. Administrator is a person responsible for
managing the block store. Administrator is responsible for
managing users accounts, creating of domains/subdomains,
managing users profiles, authentication information and
handling communication with all users through inbox
messaging. Domain initiator is responsible for identifying a
new application domain, creating sub-domains and then
identifing blocks required for that particular domain. Block
developers are professional programmers who are
responsible for the blocks development.

A number of tools and methodologies have been
developed to support the BBSD. Two of the methodologies
are Blocks Identification Methodology and Block Creation
Methodology. Tools that have been developed include
Blocks Creation Tool [3] and Blocks Integration Tool [4].
Blocks Creation Tool helps block developers to develop
blocks while Blocks Integration Tool helps end user
programmers to integrate blocks.

Blocks submitted to the block store repository by block

2663

developers need to be managed and verified by project
initiator, before they can be published and distributed. This
paper describes a methodology and software tools that can
be used in the evaluation and verification of software blocks.
The proposed methodology consists of three types of
validation: Automatic Validation Approach, JSR-303 or

JSR-349 standard bean Validation Specification, and the
manual testing. The proposed methodology is then validated
through a case study on a list of blocks submitted to the
block store repository.

Admin

Initiator

End User

Developer

Visitor

UpdateProfile

Login

Communicate

BrowseBlocks

Manage User
Account

Manage
Domain/

Subdomain Status

Initiate Domain

Initiate Subdomain

Identify Blocks

Develop Blocks

Upload Blocks

Download Blocks

Customize Blocks

Integrate Blocks

Manage Apps

Verify Blocks

Fig. 1 The Block Store Use Case diagram

II. MATERIAL AND METHOD

A block is basically a software component. Currently a
block is implemented by using JavaBeans technology. Thus
block evaluation is related to software component evaluation.
In the following subsections, we will first describe works
that have been carried out in component evaluation in
general and JavaBeans evaluation in particular. The third
subsection describes our proposed methodology for blocks
evaluation.

A. Component Evaluation

Component evaluation is performed in order to find the
best component that fit a given task and to certify properties
of the component [5]. The evaluation can be done in one of
the three stages: during requirement analysis, design and
implementation, or deployment [6]. However, Alvaro et al [7]
proposes that component evaluation can only be done during
certification and selection.

Component evaluation is performed based on certain
goals. Thus, the mechanism, methods and type of validation
is determined based on these goals. Some of the goals for
components evaluation are regarding components security,
performance, usability, reusability [8, 9] and maintainability
[10, 11]. Research in software components evaluation is still
immature and further research is required to develop
techniques, methods, processes and tools [12].

B. JavaBean Validation

The JavaBean become more popular in recent years since
JavaBeans specifications and conventions made it easier to
implement changes to properties through setter/getter

methods. In order to ensure that properties in JavaBeans
have the right values in them, Java Bean Validation (JSR-
303) was introduced and approved by Java Community
Process (JCP) in Nov 2009. Java Bean Validation 1.1 (JSR-
349) is an improved version of JSR-303 and was released in
May 2013. Both JSR-303 and JSR-349 specification have
made a clear imprint to standardize the dynamic validation
among different providers and open the gate for a custom
constraints design and implementation. Most of the
frameworks for implementing JSR-303 and JSR-349 involve
the use of annotations since annotations are easy to use,
create and add clarity to the code, and they also provide
good type safety and increase reusability [13]. However, this
kind of validation is only suitable for a runtime validation
and commonly used for data entry validation.

An automatic documentation annotation also can be
realized on data sharing inside a program itself [14].
Simultaneously, software engineers are allowed to program
the same style used previously. However, the annotations
have been used as semantics validation and specification
technique. In addition, the JML is designed to specify java
modules and tools created to allow users to view the
specifications in a convenient documentation manner, such
as JMLDoc, javadoc-like, doc++, Doclet, and iDoclet [15].

The validation and evaluation surpass the syntax and
semantics of data content to component compatibility issues,
especially in BBSD, to help end user programmers compose
blocks to form an application. A number of frameworks
implement JSR-303 and JSR-349, such as JAX-RS, JAXB,
JPA, CDI, Wicket, Spring, and Jface. However, these
frameworks are mainly designed to work with JavaBeans

2664

using Plain Old Java Object (POJO). Strong assumptions can
be made on the type of applications that can utilize the
frameworks. In addition, these frameworks should be easy to
integrate with any Java project [13].

C. Proposed Methodology

A block is a type of single layer component with several
characteristics identified in requirement specification
documents. The specification identifies the attributes and
behaviours to be verified. The list of behaviours and
attributes, such as block input and output attributes, and list
of behaviours/methods required are identified in the
specification documents. To gain more clarity and to identify
the main specification of blocks, we need to emphasize the
main characteristics of the disparity between blocks and
common components. These characteristics are mainly based
on the interfacing and communication among the blocks and
other disparities. Differences between blocks and
components are shown in Table I.

TABLE I.

DIFFERENCES BETWEEN BLOCKS AND COMPONENTS

Component Block

Communicate directly with
another component

Cannot communicate
directly with each other

They need to be designed to
fit with a desired
environment.

The interface designed to
be more flexible to adapt
the plugged block.

Complicated (can have
nested component)

Single layer type of
component

Can act as a complete
system

Need to be composed with
another block

Can handle more than one
intersection process

It complete a single task
(no tasks intersection)

Required and provide
directly affect the processed
result.

No result processed through
different blocks

Required and provided
result may differ from one
to another.

Required and provided
result should be
standardized for all blocks
(exp 0,1,…n)

Blocks are more independent in design and

implementation. These blocks have nothing to share with
each other directly other than through a connector. A
connector is just a piece of code that handles the sequence of
blocks execution. Three types of connectors are available:
sequential, alternative, and random.

Table II shows the main specifications of block and
connector that need to be evaluated during blocks
verification. Blocks specifications consist of block number,
block type, input, and output. The block type is required to
determine the connector type. The input of the block is
required value, while the output represents the provided
value. The specification for a connector includes connector
type, number of blocks, connector number, and connector
type.

The block store repository is a distribution mechanism to
support the BBSD. Fig. 2 illustrates the block evaluation
environment where the block store plays the main role.
Domain Initiator is responsible for identifying blocks
specification that is then put into the block store repository.
A block developer obtains the specification and then submits
the developed blocks into the block store repository. The
submitted blocks need to be approved by the domain
initiator before they are made available to the end users.

The proposed method for evaluating blocks in the block
store repository is shown in Fig. 3. It involves three types of
evaluation: (i) Type 1: the validation of the standard block
specification, (ii) Type 2: the runtime validation by using
Standard JSR, and (iii) Type 3: manual method.

TABLE II

LIST OF COMMON BLOCK SPECIFICATIONS

Block Specification

A
ttr

ib
ut

es

Type Methods Description

Input getRequiredIn() Get the block
input

Output getProvideOut() Get the block
output

Block getBlockType() Get the block
type

connector getConnectorType() Get the connector
type

B
eh

av
io

ur
s

Property
method

CheckProList() Get the list of
properties of the
block

Action
method

getListofEvent-
Method()

The list of
methods handle
the actions

Task
method

getListofTask-
Method()

The list of
methods achieves
some tasks

Fig. 2. Block evaluation environment

2665

Fig. 3. Block evaluation processes

The first type of evaluation involves the validation of the

standard block specification. An example of the standard
block specification is shown in Table III. The evaluation of
the standard block specification involves validating the main
block specifications implemented in the submitted block. It
also checks whether all attributes and behaviors identified in
a block specification are implemented in the submitted
block.

TABLE III

 LOGIN BLOCK REQUIREMENT SPECIFICATION

Block Name Login Block

Block Id B-E-C-10001

Contract Type Sequential

Actors User

Attributes Block ID, Contract Type, Block Input,
Block Output

Behaviors Color, Font, Message, Main Label.

Use Cases Login.

Remark The user can change the color, font, main
label, and response message

In the implementation of a block, the standard block

specification should be grouped in an interface that
implements the main attributes and behaviors, as shown in
the following code:

/** The Standard Block Specifications interface */
package specs;
public interface BlockSpecs
{
 int getBlockID();
 int getBlockContractType();
 int getBlockInput();
 int getBlockOutput();
} // End of BlockSpecs interface

Since each block has different behaviours and attributes,

each of these behaviours and attributes need to be properly
specified. Examples of behaviours and attributes for some
blocks are given in Table IV.

The validation of the standard block specification is
achieved by using the following steps:

1. Check that the JAR JavaBean main class has
implemented the interface BlockSpecs:
This step will ensure that all methods returning the main
specification are implemented, which can be achieved
using the following code grouped into two classes: class
finder and JAR Manager.

2. Check that all attributes and behaviors of the block
specifications are implemented:
This step will check whether the developed block
consists of all the behaviors listed in the specification
docs. It involves two sub-steps: parsing through the JAR
file followed by identifying all methods and attributes
that have been implemented. These methods are then
compared with required specifications if available or
missing is displayed.

TABLE IV
EXAMPLES OF BEHAVIOURS AND ATTRIBUTES OF DIFFERENT BLOCKS

Block
Name Behaviors Attributes

Login Color, Font, Message, Main
Label

BackID,
ContractType,
BlockInpput,
BlockOutpout

Capture
Deals

Change printer, change text
color, change tax schema,
and switch to invoice option.

BackID,
ContractType,
BlockInpput,
BlockOutpout

Manage
Order

Change text color, change
background color, change
order source, and change
customer info

BackID,
ContractType,
BlockInpput,
BlockOutpout

Process
Payment

Change payment method,
change text color, and switch
to offline payment

BackID,
ContractType,
BlockInpput,
BlockOutpout

Manage
Stock

Change text color, change
background color, report
product shortage, and report
nearly expired product.

BackID,
ContractType,
BlockInpput,
BlockOutpout

The second type of evaluation is the validation of the

custom block specification to ensure that properties in a
block have the right values in them. In order to do this type
of validation, blocks need to be annotated by using
annotation method based on the standard JSR-303 & JSR-
349. An example of how to design a custom block
specification validator is shown in the following code:

/* @author Mostafa */
@Target({METHOD, FIELD,ANNOTATION_TYPE})
@Retention(RUNTIME)
@Constraint(validatedBy = BlockProValidator.class)
@Documented
public @interface BlockPro
{
 String message() default "{validator.blockpro}";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

The @interface keyword is used to define an annotation

type where the attributes of an annotation type are declared
in a method. According to the API specifications, any

2666

constraint annotation defines an attribute "message" that
returns the default key for creating custom error messages.
In cases where the constraint is violated, an attribute
"groups" allows the specification of validation groups to
which this constraint belongs. In addition, the annotation
type Meta annotations [13] specifies the class name validator
to be used for validating elements annotated with
@Documented.

The third type of evaluation is the manual evaluation
where a block is tested for functionality and specified
features.

D. Software Tool

For the first type of evaluation, a specific software tool
has been designed and implemented. Fig. 4 shows the
validation service structure used to verify the submitted
blocks into the block repository and illustrates main classes
used to validate whether the Block Specification interface is
implemented. If the evaluated block has not implemented the
required properties, the evaluation mechanism should
display the missing properties. Moreover, the approval link
shall not be enabled and the block will not be available for
selection by end user programmers.

Fig. 4. Block verification architecture

The second type of evaluation is supported by NetBeans.

The steps for carrying out the evaluation are listed as
follows:
Step 1: Create an application by using NetBeans IDE.
Step 2: Create the block class. The source code should be

provided.
Step 3: Create the custom validator if needed.
Step 4: Generate the test cases automatically.
Step 5: Run/compile the targeted test.
Step 6: View the test report.

The third type of evaluation is carried out by executing
the block. The output of the execution is manually checked
to ensure its correctness.

III. RESULTS AND DISCUSSION

In this section, we show how the process of block
evaluation is carried out. For the purpose of the discussion,
we choose a “ProcessPayment” block that has been
identified as one of the blocks needed to support online

business transaction [16]. The specification of the block is
given in Table V.

The first type of evaluation is done by using the software
tool. To verify the block, we have to select the block to be
verified and click “verify” as shown in Fig. 5. The block is
then evaluated against the requirements analyzed in the
block specification. The implemented behaviour is stated as
“Available” while the behaviour that is not implemented is
stated as “Missing”, as shown in Fig. 6. In this example
“textMethod” and “paymentMethod” are available while
“offlineMode” is missing.

TABLE V

PROCESS PAYMENT BLOCK REQUIREMENT SPECIFICATION

Block Name Process Payment

Block Id B-E-C-10002

Contract Type Alternative

Actors Seller / Customer

Attributes BackID, ContractType

Behaviors Change payment method, change text
color, and switch to offline payment.

Use Cases Validate payment, process payment.

Remark The switch to offline payment should be
enabled at run time.

Fig. 5. List of blocks to be verified

Fig. 6. Result of some specifications implemented

The second type of evaluation is carried out by using six

steps described earlier. The custom validator is created as
shown in Fig. 7. The test cases are generated automatically
as shown in Fig. 8. The result of the evaluation is shown in
Fig. 9.

2667

Fig. 7. Custom JSR-303 annotation specification validator

Fig. 8. Create an automatic test

Fig. 9. Test report result

2668

Fig. 10 illustrates the user interface for the
“ProcessPayment” block. The third type of evaluation is
done to determine the correctness of the block. The
evaluation is done by running the block “ProcessPayment”
and check that the block has implemented all required
properties.

Fig. 10. Result of complete block specifications

IV. CONCLUSION

Block-Based Software Development (BBSD) approach
offers a software development environment that enables end
user programmers to make use of the available blocks to
develop applications. The Block Store repository is a place
where blocks are distributed [17]. The main purpose of the
block store is to enables software developers to share and
distribute blocks and to allow end users to browse and select
required blocks. The availability of the block store enables
end user programmers to develop applications that satisfy
their requirements.

The BBSD is supported by two methodologies: the block
identification methodology and block creation methodology.
This paper describes the third methodology needed for
BBSD: block correctness evaluation methodology.

There are three types of validation that need to be carried
out before a block can be considered acceptable and can then
be put into the block store repository. The three types of
evaluation are (i) Standard blocks specification validation, (ii)
Custom block validation and (iii) manual testing techniques.

This paper has shown the feasibility of the evaluation
methodology through a case study. Finally, the verified
blocks for a particular subdomain have been approved for
distribution and unqualified blocks a fault report is generated
for developers to be corrected.

ACKNOWLEDGMENT

We would like to thank Universiti Kebangsaan Malaysia
for supporting this work through its research grant fund
UKM-GUP-TMK-07-01-032

REFERENCES
[1] A.M. Zin, “Block-Based Approach for End User Software

Development”. Asian Journal of Information Technology, 10(6), pp.
249–258, 2011.

[2] S. N. H. Mohamad, A. Patel, Y. Tew, R. Latih, and Q. Qassim,
“Principles and Dynamics of Block-based Programming Approach”,
pp. 340–345, 2011. DOI: 10.1109/ISCI.2011.5958938

[3] M. Djasmir, S. Idris, M.A. Bakar, and A.M. Zin, “An Integrated
Development Environment for Blocks Creation”. Asian Journal of
Information Technology, 11(6), pp. 194–200, 2012. DOI:
10.3923/ajit.2012.194.200

[4] S.N. Sarif, S. Idris, and A.M. Zin, “The Design of Blocks Integration
Tool to Support End-User Programming”. In 2011 International
Conference on Electrical Engineering and Informatics. pp. 1-5, 2011.
DOI: 10.1109/ICEEI.2011.6021657

[5] T. Vale, I. Crnkovic, E.S.d. Almeida, P. A. da M. S. Neto, Y. C.
Cavalcanti, S.R.d.L. Meira, “Twenty-eight years of component-based
software engineering”, The Journal of Systems and Software, vol.111,
pp.128–14, 2016. http://dx.doi.org/10.1016/j.jss.2015.09.019

[6] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-Based
Development Process and Component Lifecycle”. In International
Conference on Software Engineering Advances, pp. 44–44, 2006.
DOI: 10.1109/ICSEA.2006.261300

[7] A. Alvaro, R. Land, and I. Crnkovic, “Software Component
Evaluation: A Theoretical Study on Component Selection and
Certification”. MRTC report. Mälardalen Real-Time Research Centre,
Mälardalen University, 2007. ISRN: MDH-MRTC-217/2007-1-SE

[8] A.P. Singh, and P. Tomar, “Rule-based fuzzy model for reusability
measurement of a software component”. International Journal of
Computer Aided Engineering and Technology, 9(4), 2017. DOI:
10.1504/IJCAET.2017.086932

[9] M. Tahir, F. Khan, M. Babar, F. Arif, and S. Khan, “Framework for
Better Reusability in Component Based Software Engineering”.
Journal of Applied Environmental and Biological Sciences, 6(4S), pp.
77-81, 2016.

[10] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek and S.
Kounev, "Quantitative Evaluation of Model-Driven Performance
Analysis and Simulation of Component-Based Architectures," IEEE
Transactions on Software Engineering, vol. 41(2), pp.157-175, 2015.
DOI: 10.1109/TSE.2014.2362755

[11] de AG Saraiva, J., De França, M. S., Soares, S. C., Fernando Filho, J.
C. L., & de Souza, R. M., “Classifying metrics for assessing object-
oriented software maintainability: A family of metrics’
catalogs”. Journal of Systems and Software, 103, pp. 85-101, 2015.

[12] A. Tiwari and P. S. Chakraborty, "Software Component Quality
Characteristics Model for Component Based Software
Engineering," 2015 IEEE International Conference on
Computational Intelligence & Communication Technology, pp. 47-51,
2015. DOI: 10.1109/CICT.2015.40

[13] de Siqueira J.L., Silveira F.F., Guerra E.M., “An Approach for Code
Annotation Validation with Metadata Location Transparency”. In:
Gervasi O. et al. (eds) Computational Science and Its Applications --
ICCSA 2016. Lecture Notes in Computer Science, Springer, Cham,
2016, vol. 9789.

[14] M. Sulír and M. Nosál', "Sharing developers' mental models through
source code annotations," 2015 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 997-1006, 2015.
doi: 10.15439/2015F301

[15] Donthala, Arjun Mitra Reddy, "Design of a JMLdoclet for JMLdoc
in OpenJML". Electronic Theses and Dissertations. 5132, 2016
Retrieved from http://stars.library.ucf.edu/etd/5132

[16] M. Almatary, M.A. Bakar, and A.M. Zin, “Block Identification
Methodology: Case Study on Business Domain”. Journal of
Theoretical and Applied Information Technology, 60(1), pp.47–54,
2014. http://www.jatit.org/volumes/Vol60No1/sixtyth_1_2014.php

[17] M. Almatary, M.A. Bakar, and A.M. Zin, “The Block Store of Block-
Based Programming Approach”. Journal of Theoretical & Applied
Information Technology, 60(2), pp. 237–244, 2014.
http://www.jatit.org/volumes/Vol60No2/sixtyth_2_2014.php.

2669

