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Abstract— A new approach based on global optimization technique is applied to invert Self-Potential (SP) data which is a highly 
nonlinear inversion problem. This technique is called Memory-based Hybrid Dragonfly Algorithm (MHDA). This algorithm is 
proposed to balance out the high exploration behavior of Dragonfly Algorithm (DA), which causes a low convergence rate and often 
leads to the local optimum solution. MHDA was developed by adding internal memory and iterative level hybridization into DA 
which successfully balanced the exploration and exploitation behaviors of DA. In order to assess the performance of MHDA, it is 
firstly implemented to invert the single and multiple noises contaminated in synthetic SP data, which were caused by several simple 
geometries of buried anomalies: sphere and inclined sheet. MHDA is subsequently implemented to invert the field SP data for several 
cases: buried metallic drum, landslide, and Lumpur Sidoarjo (LUSI) embankment anomalies. As a stochastic method, MHDA is able 
to provide Posterior Distribution Model (PDM), which contains possible solutions of the SP data inversion. PDM is obtained from the 
exploration behavior of MHDA. All accepted models as PDM have a lower misfit value than the specified tolerance value of the 
objective function in the inversion process. In this research, solutions of the synthetic and field SP data inversions are estimated by 
the median value of PDM. Furthermore, the uncertainty value of obtained solutions can be estimated by the standard deviation value 
of PDM. The inversion results of synthetic and field SP data show that MHDA is able to estimate the solutions and the uncertainty 
values of solutions well. It indicates that MHDA is a good and an innovative technique to be implemented in solving the SP data 
inversion problem. 
 
Keywords— memory-based hybrid dragonfly algorithm; posterior distribution model; model uncertainty; self-potential. 
 
 

I. INTRODUCTION 

The Self-Potential (SP) method is one of the oldest 
geophysical methods and is a part of passive electrical 
surveying methods [1], [2]. It utilizes natural potential which 
is caused by electrokinetic, electrochemical, and 
thermoelectric activities in subsurface to measure potential 
difference at the ground surface [3]. The SP method has 
been applied widely in several cases, such as archeology [4], 
[5], mineral and geothermal explorations [6]–[10], 

contaminant detection [11], [12], landslide investigations 
[13], [14], embankment stability study [13], and 
groundwater investigations [15], [16]. Due to its relevance in 
those cases, interpretation of SP data is crucial. 
Interpretation of SP data can be classified into three groups: 
graphical, tomographic, and numerical approaches [17]. 

In numerical approach, the SP anomalies as in Figure 1 
below are frequently modelled by polarized body in simple 
geometry forms, such as sphere, horizontal and vertical 
cylinder, or inclined sheet [18]. . 

 
 
 
 
 
 
 
 
 
 
 

Fig.1 SP parameters of buried sphere and horizontal cylinder (a), vertical cylinder (b), and inclined sheet (c) anomalies 
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Several numerical approaches has been applied to 
interpret SP anomalies including least square methods [19]–
21], spectral analyzes [22]–[24], derivative and gradient 
analyzes [25], [26], moving average methods [27], [28], and 
global optimization methods, for example: particle swarm 
optimization (PSO) [29], [30], genetic algorithm (GA) [17], 
[30], simulated annealing (SA) [31], [30], differential 
evolution algorithm (DEA) [32], and black hole algorithm 
(BHA) [13]. These approaches are applied by researchers to 
obtain the suitable method which is able to find global 
optimum solution because the SP data inversion is a highly 
nonlinear inversion problem. 

In this research, a new approach based on global 
optimization technique is implemented to invert the single 
and multiple SP anomalies, which are caused by spherical, 
cylindrical, or inclined sheet sources. This approach is called 
memory-based hybrid dragonfly algorithm (MHDA) [33]. 
This algorithm is developed from Dragonfly Algorithm (DA) 
and combined with PSO to solve the drawbacks of DA, i.e. 
low convergence rate. This drawback often leads to local 
optimum solution. In order to assess the performance of 
MHDA, it is applied for the noise contaminated in synthetic 
SP data because it has not been applied for this problem nor 
any geophysical inverse problems. Subsequently, MHDA is 
applied to obtain model parameters of the field SP data for 
several cases. 

II. MATERIAL AND METHOD 

A. Forward Formulation of SP Anomaly 

The observed SP anomaly at point  over a sphere or 
cylindrical anomaly (Fig. 1a and 1b) can be expressed in the 
following formula [34]: 

 

  (1) 

 
where  is the electrical dipole moment (mV m2q-1),  is the 
measurement point at ground surface along the profile line 
(m),  denotes the  central coordinates of the anomaly (m), 

 is the depth of the anomaly’s center (m),  is the 
polarization angle (0), and  is the shape factor. The shape 
factors are 0.5, 1.0, and 1.5 for vertical cylinder, horizontal 
cylinder, and sphere respectively. Meanwhile, the SP 
anomaly at point  on the profile line which is 
perpendicular to the strike of inclined sheet anomaly (Fig. 1c) 
can be expressed as follows [35]: 
 

  (2) 

 
where  is the half-width of inclined sheet (m). In the field 
observations, two or more anomalies are commonly found 
along a profile line, which make an interesting point for 
further investigation. Therefore, the multiple SP anomalies 
at point  on profile line can be expressed in the formula 
below [35]: 
 
  (3) 
 

where  is anomaly at  for -th body and n denotes 
number of anomalies. 

B. Memory-based Hybrid Dragonfly Algorithm 

Dragonfly algorithm (DA) is a new meta-heuristic 
optimization technique which is proposed by Mirjalili [36]. 
DA was inspired by the swarming behaviors of dragonflies, 
which consists of static and dynamic swarms. In the static 
swarm behavior, also known as hunting behavior, small 
groups of dragonflies moves locally and change courses 
abruptly to hunt preys over a small area. Meanwhile, in the 
dynamic swarm, also known as migratory behavior, a 
substantial number of dragonflies migrate over long 
distances in one direction. Those swarm behaviors represent 
the main characteristics of meta-heuristic based optimization 
including exploitation and exploration. The exploitation 
finds the best candidate for a solution in the local region, 
while the exploration enables solution candidates to explore 
search space and generate a variety of solutions [13]. A 
meta-heuristic algorithm must balance both characteristics to 
find a global optimum solution and avoid local optimum 
solution. 

 Those behaviors are modelled as interaction among 
dragonflies in several operators such as separation, 
alignment, cohesion, attraction to food, and threats of 
external enemies [36]. Separation operator avoids static 
collision of a dragonfly with other dragonflies in the 
neighborhood, alignment operator matches the velocity of a 
dragonfly to other dragonflies in the neighborhood, cohesion 
operator refers to the tendency of a dragonfly towards the 
mass center of the neighborhood, food operator attracts 
dragonflies towards the best solution, and enemy operator 
prevents dragonflies from the worst solution. Each of these 
operators is assigned by weight factors, which are adaptively 
tuned, to balance the exploration and exploitation behaviors 
in optimization process. Additionally, the exploration and 
exploitation behaviors are also guaranteed by the radii of 
neighborhoods, which increase proportionally to the number 
of iterations.  

DA has been applied to geophysical inverse problems and 
obtained sufficiently good solution [37]. However, DA is 
more explorative which causes low convergence rate and 
often leads to the local optimum solution. The high 
exploration behavior of DA is caused by Levy flight process 
to explore search space if there is no any neighboring around 
a dragonflies [36]. In order to solve these drawbacks, Ranjini 
and Murugan [33] proposed MHDA which adapts PSO 
concepts including pbest and gbest, into DA. These concepts, 
which are known as internal momory, enable dragonflies to 
remember previous potential positions. Furthermore, 
iterative level hybridization, which executes DA and PSO in 
sequence, is applied to exploit promising area solution with 
consideration to the internal memory of DA. This process 
will improve the exploitation of DA and balance the high 
exploration characteristic of DA. Therefore, MHDA 
successfully balances both characteristics to achive global 
optimum solution.  

The scheme of MHDA consists of two main parts 
including implementation of internal memory and 
hybridization scheme [33]. The internal memory is 
implemented in DA scheme to provide pbest and gbest 
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positions. Pbest positions are obtained by comparing fitness 
value of current population with previous best fitness. 
Meanwhile, gbest position is obtained by comparing food 
fitness of current population with previous one. Those 
quantities are saved in pbest and gbest matrix. Subsequently, 
the internal memory is considered in the hybridization 
scheme. In this process, population and global best of PSO 
are initialized respectively by DA-pbest and DA-gbest. PSO 
is implemented to exploit promising areas, which is obtained 
from DA scheme. The velocity and position update 
equations of PSO in iterative level hybridization process can 
be expressed in the formula below: 

 

 
(4) 

 
 

  (5) 
 
where  and  are respectively two successive iterations 
of PSO,   and  denote vectors which contain 
respectively velocity and position components of -th 
particle in D dimensions space, and  indicate local and 
global acceleration constants,  and  are uniformly 
distributed random numbers,  is inertia weight, 

 is called “personal best” of -th PSO particle, 
and  is called “global best” of best overall 
swarm best solution in -th iteration for PSO. 

C. SP data inversion using MHDA 

In the SP data inversion problem,  is the position vector, 
which contains model parameters of SP as in Eq. (1) or Eq. 
(2). For example, if the considered SP data is a sphere or 
horizontal anomaly,  in Eq. (5) must contain model 
parameters including , , , , and . These model 
parameters are needed to calculate SP data (Eq. 1). On the 
other hand, if the considered SP data is inclined sheet 
anomaly,  contains model parameters such as , , , , 
and  (Eq. 2). If the considered SP data contains two or 
more anomalies, model parameters of each anomaly are 
needed to calculate each potential anomaly (Eq. 1 or Eq. 2) 
and Eq. (3) is considered to calculate total potential anomaly. 

In order to obtain model parameters of SP data, MHDA is 
applied to minimize the difference between observed and 
calculated SP data which is represented by the objective 
function . The objective function of SP data inversion is 
defined by [13]: 

 

  (6)

  
where  and  represent observed and calculated SP 
anomaly respectively, at point  on profile line. Calculated 
SP anomaly can be obtained by Eq. (1)-(3) which is based on 
the shape and number of anomaly. Furthermore, misfit 
between observed and calculated SP data can be evaluated 
by average relative error (%) with the following equation 
[13]: 
 

  (7) 

 
where  is the number of observed SP data. 

D. Uncertainty Estimation 

In geophysical data inversion problems, researchers often 
deal with several models which fit with the observation data. 
This phenomenon is known as non-uniqueness and is caused 
by several factors: 1) earth, where properties continuously 
vary in all directions, is modeled as a discrete form in the 
inversion process, 2) the obtained observation data is not 
sensitive to any earth model, and 3) the presence of noise in 
data can increase the degree of the uncertainty value from 
the obtained inversion results [38]. Therefore, in this 
research, statistical approach is applied to estimate solutions 
in posterior distribution model (PDM) terms. This approach 
also enables to estimate the uncertainty boundaries. 

Stochastic inversion methods provide several solutions 
which fit to the observed data. This method is different from 
the deterministic inversion methods which provide only a 
single solution. Therefore, this method can provide PDM 
which contains possible model parameters for global 
optimum solution. The PDM is obtained from the 
exploration process of a global optimization algorithm in the 
search space [13]. All accepted models of PDM have lower 
misfit values than specified tolerance value of the objective 
function in the inversion process. Therefore, all accepted 
models of PDM are associated with high fitness region. 

III.  RESULTS AND DISCUSSION 

A. Inversion of Synthetic SP Data 

In order to assess the performance of MHDA, it was 
initially tested for the noise contaminated synthetic SP data, 
which depict observation data. The presence of noise in data 
will affect the performance of an algorithm to obtain global 
optimum solution. Fernández Martínez et al. in [39] stated 
that noise in data will deform cost function of a nonlinear 
problem. It means that a noisy function will reach a global 
optimum solution, which is not the true global optimum. It is 
caused by hyperquadric shifting which relates to global 
optimum solution. Noise in data also increases the 
uncertainty in inverse solutions because it is amplified to the 
model parameters. Furthermore, noise in data will increase 
local optimum solution in search space [40]. Therefore, 
noisy synthetic SP data is suitable to test the performance of 
MHDA. If the result is not at all or is only slightly affected, 
it can be concluded that MHDA can be implemented in field 
SP data. 

In this research, 5% Gaussian noise is introduced to the 
synthetic data. Sphere and inclined sheet geometry forms are 
used for calculation in forward modelling of single and 
multiple SP data. The model parameters of each anomaly 
were adopted from several previous researches. In order to 
invert noise contaminated synthetic SP data, MHDA uses 50 
particles, 300 and 500 iterations for single and multiple SP 
anomalies respectively, as well as 100 hybridization 
iterations. 
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1)  Inversion of a Sphere Anomaly 

The model parameters, which are used to generate SP data 
of sphere anomaly, are shown in Table 1. The model 
parameters were adopted from a research by Sungkono and 
Warnana [13]. In order to invert SP anomaly, initially, 
search space boundaries of each model parameter were 
determined as shown in Table I. The wide search space is 
used to test the performance of MHDA in exploring and 
exploiting the search space. In this research, the solution and 
the uncertainty of the solution are estimated by PDM, which 
is obtained from the inversion process. Sungkono and 
Santosa [41] stated that the solution can be estimated by 
means, medians, or modal values of PDM. If PDM follows 
Gaussian distribution, those values are almost the same. 
Meanwhile, the uncertainty of the solution can be estimated 
by the standard deviation of PDM. 

TABLE I 
TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL 

PARAMETERS OF A SPHERE ANOMALY  

Model 
Parameters 

True 
Model 

Search Space Inverted Model  

K (mV) -10000 -100000-100000 -10224 ±  1529 
 (deg) 60 -20-180 59.73 ± 0.51 

z (m) 10 0-100 10.09 ± 0.28 
x0 (m) 40 1-100 39.95 ± 0.14 
q  1.5 0.7-1.8 1.5050 ± 0.02 
Misfit  - - 0.0053 
 

Histogram of model parameters from a sphere anomaly 
inversion is shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Histogram of PDM for each model parameter from a sphere anomaly inversion result 
 
All accepted model parameters have lower misfit value 

than specified tolerance value, which can be determined by 
the best misfit curve as iteration function (Fig. 3b). In Fig. 
3b, misfit curve is relatively constant below 0.05. Therefore, 
it is set as the tolerance value to determine PDM. The value 
of each PDM is represented by median value (blue cross), 
which is very close to the true model parameter (red dot). 
Furthermore, the highest frequency on the histogram 
correlates to the true model parameter, which can indicate 
the solution of the SP data inversion. Therefore, it means 
that the inversion result is very good. The inversion result of 
a sphere anomaly is shown in Table I, which is presented by 

median ± standard deviation values of PDM. The median 
value represents the solution of a sphere anomaly inversion, 
while standard deviation represents the uncertainty value of 
the obtained solution. The uncertainty values of each 
inverted model parameter are sufficiently low and true 
model parameters lie within range of the uncertainty values. 
It indicates robustness of MHDA to invert the noisy sphere 
anomaly data. Fitted curve between observed and calculated 
SP data is shown in Fig. 3a which is very good with 0.0053 
(0.53%) misfit value. In addition, MHDA has rapid 
convergence rate, which converges before 50 iterations (Fig. 
3b). 

 
Fig. 3 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of a sphere anomaly 
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2)  Inversion of an Inclined Sheet Anomaly 

For an inclined sheet anomaly, the model parameters are 
shown in Table II. The model parameters are adopted from a 
research of Biswas and Sharma in [42]. The wide search 

space boundaries for each model parameter are also used as 
shown in Table II. Histogram of model parameters from an 
inclined sheet anomaly inversion is shown in Fig. 4.  

 

Fig. 4 Histogram of PDM for each model parameter from an inclined sheet anomaly inversion result 
 
 
All accepted models as PDM have a lower misfit value 

than specified tolerance value. Based on the best misfit curve 
as iteration function (Fig. 5b), the tolerance value is 0.05. In 
Fig. 4, each PDM is represented by median value (blue cross) 
which is very close to the true model parameter (red dot). In 
addition, the highest frequency of the histogram correlates to 
the true model parameter, which indicates that the inversion 
result is very good. The inversion result of an inclined sheet 
anomaly, which is represented by median ± standard 
deviation, is shown in Table II. The uncertainty values of 
each inverted model parameter are sufficiently low. 
Additionally, true model parameters lie in range of the 
uncertainty value. Therefore, MHDA is robust in inverting 
noisy inclined sheet anomaly data. The inversion result can 
also be assessed by curve fitting between observed and 
calculated an inclined sheet SP data in Fig. 5a. It shows that 

very good fitted curve with 0.00613 (0.613%) misfit value. 
Additionally, rapid convergence rate of MHDA is shown in 
Fig. 5b which converges before 50 iterations. 

TABLE II 
TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL 

PARAMETERS OF AN INCLINED SHEET ANOMALY  

Model 
Parameters 

True 
Model 

Search Space Inverted Model  

K (mV) 50 -1000-1000 48.83 ±  2.50 
 (deg) 30 0-180 29.74 ± 0.57 

z (m) 40 0-200 38.19 ± 0.57 
x0 (m) 200 0-800 198.62 ± 1.20 
a (m) 50 1-100 50.93 ± 0.63 
Misfit  - - 0.00613 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3)  Inversion of Multiple Anomalies 

Multiple anomalies (two or more anomalies) are 
commonly found in SP surveys. This problem is more 
interesting than single SP anomaly problem because there 
are more model parameters evaluated. The model parameters 

for multiple anomalies (Table III) were adopted from a 
research of Sungkono and Warnana in [13]. The wide search 
space boundaries were also used for this problem as shown 
in Table III.  

Fig. 5 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of an inclined sheet anomaly 

1776



TABLE III 
TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL PARAMETERS OF MULTIPLE ANOMAL IES 

Model Parameters True Model Search Space Inverted Model  
1st Body 

K (mV) 500 0-1500 424.29 ± 18.25 
 (deg) 30 0-180 31.87 ± 0.87 

z (m) 5 0-80 4.87 ± 0.22 
q 1.5 0.4-1.8 1.47 ± 0.01 
x0 (m) 40 0-100 40.11 ± 0.33 

2nd Body 
K (mV) 10 0-50 9.82 ± 0.47 
 (deg) 150 0-180 150.28 ± 0.74 

z (m) 10 0-50 9.99 ± 0.25 
a (m) 12 2-30 12.14 ± 0.33 
x0 (m) 130 75-150 130.07 ± 0.33 
Misfit  - - 0.0035 
 
PDM of each model parameter obtained from the inversion process are shown in Fig. 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Based on the best misfit curve as iterations function in Fig. 

7b, tolerance value is 0.05. In Fig. 6, each PDM is 
represented by median value (blue cross) which is close to 
the true model parameter (red dot). The highest frequency of 
the histogram also correlates to the true model parameter, 
which means that the inversion result is very good for 
multiple anomalies problem. 

The inversion result of the multiple anomalies problem is 
shown in Table III. The model parameters of the first 
anomaly body are parameters of a sphere anomaly, while the 
other is parameters of an inclined sheet anomaly. The 

uncertainty values of inverted model parameters are 
sufficiently low. There are several true models, which do not 
lie in range of the uncertainty values; however the effect of 
the uncertainty value of the inverted model parameter was 
close to the true model parameter. Therefore, MHDA is 
robust for inverting noisy multiple anomalies. Fig. 7a shows 
that a good fitted curve between observed and inverted SP 
data with 0.0035 (0.35%) misfit value. Furthermore, the 
rapid convergence rate of MHDA is shown in Fig. 7b which 
converges before 200 iterations. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Histogram of PDM for each model parameter from multiple anomalies inversion result. The parameters of first anomaly are upper panel and 
the other are lower panel.  

Fig. 7 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of multiple anomalies 
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B. Inversion of Field SP Data 

MHDA has been implemented for the noise contaminated 
synthetic SP data inversion and the results are very good. 
Subsequently, MHDA is implemented for the field SP data 
inversion in several cases, which are adopted from several 
previous researches. The inversion results are also compared 
by previous researches to test the performance of MHDA for 
the field SP data inversion. For a single anomaly, MHDA 
uses 50 particles, 500 iterations for buried metallic drum 
anomaly and 300 iteration for landslide anomaly, and 200 
hybridization iterations. Meanwhile, for multiple anomalies, 
MHDA uses 200 particles, 1000 iterations, and 200 
hybridization iterations. 

 

1)  Inversion of a Buried Metallic Drum Anomaly 

Srigutomo et al. in [43] investigated a buried metallic 
drum which was intentionally buried in May, 2004. It had a 
diameter of-0.6 m and 1.2 m in length. It was filled with 
metal scraps and powder. The metallic drum was buried 
horizontally at a depth of 2.5 m and N-S direction. After one 
year, SP method was carried out to measure the buried 
metallic drum anomaly. Several inversion methods had been 
applied for this problem: local [19, 43] and global [13] 
optimization approaches. In order to invert a buried metallic 
drum anomaly data, wide search space boundaries were used  
as shown in Table IV.  

TABLE IV 
SEARCH SPACE AND INVERTED MODEL PARAMETERS OF A BURIED METALLIC DRUM ANOMALY FROM SEVERAL APPROACHES 

 
Histogram of accepted model parameters from a buried metallic drum anomaly inversion is shown in Fig. 8.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table IV. This result is compared with several previous 

researches (Table IV). It shows that the obtained result is 
sufficiently close to other results, which indicates horizontal 
cylinder anomaly (q ≈ 1). Additionally, the other parameters 
were also close to the previous research results. The highest 
frequency of histogram is also sufficiently close to the 
previous researches. Furthermore, Fig. 9a shows a good 
fitted curve between observed and inverted a buried metallic 

drum anomaly with 0.041 (4.1%) misfit value. Meanwhile, 
Fig. 9b shows that MHDA converges before 280 iterations. 
In Fig. 9b, the best misfit curve is relatively constant below 
0.05. Therefore, this value is set as the tolerance value. The 
inversion result of a buried metallic drum anomaly 
represented as median ± standard deviation is shown in 
Inversion of a Landslide Anomaly 

 

Model Parameters Search Space of MHDA Inverted Model 

  Srigutomo et al. [43]  Chandra et al. [19] Sungkono and Warnana [13] MHDA 

K (mV) -1000-1000 -10.733 -10.7308 -9.09 ± 0.20 -8.8514 ± 0.65 
 (deg) 0-180 45.78 44.3241 55.21 ± 1.59 56.8157 ± 2.30 

z (m) 0-100 1.234 1.2325 1.15 ± 0.13 1.05 ± 0.10 
q 0.3-1.8 0.916 0.9225 0.8 ± 0.0 0.83 ± 0.03 
x0 (m) -6.5-8.5 - - 0.25 ± 0.04 0.30 ± 0.02 

Fig. 8 Histogram of PDM for each model parameter from a buried metallic drum anomaly inversion result 
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Sungkono and Warnana [13] investigated the causes of a 

landslide which occurred in Sawoo district area, Ponorogo 
regency, East Java, Indonesia on April 12th, 2017 with SP 
method. The main causal factor of the landslide in the area 
was water accumulation in rocks, which caused deformation. 
The deformation can be observed by the appearance of scarp 
on the surface. Meanwhile, the source of anomaly can be 
observed by SP data. In order to invert a landslide anomaly 
data, wide search space boundaries were used as shown in 
Table V. The inversion result of a landslide anomaly data is 
shown in Table V. Histogram of accepted model parameters 
from a landslide anomaly inversion are shown in Fig. 10. Fig. 
11b shows that the best misfit curve is relatively constant of 
below 0.04. Therefore, this value is set as the tolerance value. 

 

TABLE V 
SEARCH SPACE AND INVERTED MODEL PARAMETERS OF A LANDSLIDE 

ANOMALY FROM SEVERAL APPROACHES 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Histogram of PDM for each model parameter from a landslide anomaly inversion result 
 
 

Model 
Parameters 

Search Space 
of MHDA  

Inverted Model 

  Sungkono and 
Warnana [13] 

MHDA 

K (mV) -1000-1000 163.39 ± 75.80 4.90 ± 0.15 

 (deg) 0-180 82.07 ± 4.36 90.74 ± 
0.08 

z (m) 0-100 11.93 ± 0.85 3.39 ± 0.08 

q 0.3-1.8 1.14 ± 0.10 0.34 ± 0.00 

x0 (m) 0-30 12.01 ± 0.62 13.03 ± 
0.01 

Fig. 9 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the 
inversion result of a buried metallic drum anomaly 
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Fig. 11 Fitting curve between observed and calculated (a) and best misfit curve as iterations function  (b) for the inversion result of a landslide anomaly 
 
 
This result is also compared by previous research. It 

shows that the obtained result is different but the center 
coordinates of anomaly (xo) is close to the previous research. 
The result obtained by MHDA is close to vertical cylinder 
anomaly (q ≈ 0.5), while horizontal cylinder is obtained by 
previous research. However, the obtained result by MHDA 
is supported by a research from Ramadhany et al. [44] which 
implemented Microtremor method in the area. The research 
focused on calculating the slope stability with vulnerability 
index (Kg). Furthermore, Principal Component Analysis 
(PCA) examined the properties of particle motion. Particle 
motion analysis showed that the source of vibration in the 
area was dominated by vertical motion. It was caused by 
fluid in overburdened pores of rocks. Fig. 11a shows that a 
good fitted curve between observed and inverted a landslide 
anomaly data with 0.0294 (0.294 %) misfit value. Further, 
Fig. 9b shows that MHDA converges before 100 iterations.  

2)  Inversion of Lumpur Sidoarjo (LUSI) Embankment  
Anomalies 

Sungkono and Warnana in [13] investigated the stability 
of LUSI embankment with SP method on 11th – 20th July 
2016. LUSI embankment was built to control the spreading 
hot mudflow at Porong, Sidoarjo. It is an earth-filled 
embankment composed of pebble-soil materials [45]. 
Additionally, it lies on soft grounds, which is composed of 
uncompacted clay and silt soils. Therefore, LUSI 
embankment faces three types of embankment failures: 
hydraulic, seepage, and structural failures [46]. 
Additionallya, LUSI embankment area is controlled by two 
faults: Watukosek and Siring faults [13]. These faults system 
can deform the LUSI embankment. The search space 
boundaries of each parameter and the result of LUSI 
embankment anomalies inversion are shown in Table VI.  

The result is also compared with a previous research in 
the area. The inversion result of MHDA indicates that first 
anomaly body is close to vertical cylinder anomaly (q ≈ 0.5) 
and the other is close to horizontal cylinder anomalies (q ≈ 

1). Meanwhile, the inversion result of Sungkono and 
Warnana [13] indicates that all of the anomaly bodies are 
horizontal cylinders. Furthermore, the center of anomalies 
obtained by MHDA is relatively close to the previous 
research.  

TABLE VI 
SEARCH SPACE AND INVERTED MODEL PARAMETERS OF LUSI 

EMBANKMENT ANOMALIES FROM SEVERAL APPROACHES 

 
The vertical cylinder anomaly obtained by MHDA is 

supported by the research of Husein et al. in [47] which 
indicates a piping phenomenon. The piping is caused by 
saturated embankment and it affects the stability of an 
embankment above 11 m in depth. Meanwhile, the 
horizontal cylinder anomalies indicates seepage 
phenomenon. The occurring seepage was caused by 
penetration of mud fluid through LUSI embankment. Fig. 
12a shows good fitted curve between observed and 
calculated LUSI embankment anomalies data with 0.20147 
misfit value. Convergence rate of MHDA for this problem is 
lower than previous problem because more model 
parameters were evaluated. 

 

Model 
Parameters 

Search Space 
of MHDA 

Inverted Model 

  Sungkono and 
Warnana [13] 

MHDA 

K (mV) -1000-1000 163.39 ± 75.80 4.90 ± 
0.15 

 (deg) 0-180 82.07 ± 4.36 90.74 ± 
0.08 

z (m) 0-100 11.93 ± 0.85 3.39 ± 
0.08 

q 0.3-1.8 1.14 ± 0.10 0.34 ± 
0.00 

x0 (m) 0-30 12.01 ± 0.62 13.03 ± 
0.01 
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Fig. 12 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of LUSI embankment 
anomalies 

 

IV.  CONCLUSIONS 

A new approach based on global optimization technique, 
Memory-based Hybrid Dragonfly Algorithm (MHDA), has 
been implemented to solve highly nonlinear SP data 
inversion problem, which is caused by simple geometry, 
bodies, such as sphere, cylinder, and inclined sheet. In this 
research, MHDA is initially tested for the noise 
contaminated synthetic SP data for single and multiple 
anomalies. Furthermore, MHDA is implemented to invert SP 
data of a buried metallic drum, a landslide, and LUSI 
embankment anomalies. Both inversion results show that 
MHDA is able to provide Posterior Distribution Model 
(PDM), which is used to estimate solutions via median 
values and model uncertainties via standard deviation values 
of PDM. For the synthetic data, the estimated solutions are 
close to the true models. Additionally, true models lie in 
range of the uncertainty value. It indicates that MHDA is 
robust for inverting noisy SP data. Subsequently, for the 
field data, MHDA is able to obtain solutions, which have 
good correspondence with previous research results. 
Moreover, MHDA is able to solve inversion problem of 
LUSI embankment anomalies, which are complex problems. 
Therefore, MHDA is an innovative technique to solve the SP 
data inversion problem. 
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