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Abstract— A new approach based on global optimization technique is applied to invert Self-Potential (SP) data which is a highly
nonlinear inversion problem. This technique is called Memory-based Hybrid Dragonfly Algorithm (MHDA). This algorithm is
proposed to balance out the high exploration behavior of Dragonfly Algorithm (DA), which causes a low convergence rate and often
leads to the local optimum solution. MHDA was developed by adding internal memory and iterative level hybridization into DA
which successfully balanced the exploration and exploitation behaviors of DA. In order to assess the performance of MHDA, it is
firstly implemented to invert the single and multiple noises contaminated in synthetic SP data, which were caused by several smple
geometries of buried anomalies: sphere and inclined sheet. MHDA is subsequently implemented to invert the field SP data for several
cases. buried metallic drum, landdlide, and Lumpur Sidoarjo (LUSI) embankment anomalies. As a stochastic method, MHDA is able
to provide Posterior Distribution Model (PDM), which contains possible solutions of the SP data inversion. PDM is obtained from the
exploration behavior of MHDA. All accepted models as PDM have a lower misfit value than the specified tolerance value of the
objective function in the inversion process. In this research, solutions of the synthetic and field SP data inversions are estimated by
the median value of PDM. Further more, the uncertainty value of obtained solutions can be estimated by the standard deviation value
of PDM. The inversion results of synthetic and field SP data show that MHDA is able to estimate the solutions and the uncertainty
values of solutions well. It indicates that MHDA is a good and an innovative technique to be implemented in solving the SP data
inversion problem.

Keywords— memory-based hybrid dragonfly algorithm; posterior distribution model; model uncertainty; self-potential.

contaminant detection [11], [12], landslide investigations
I. INTRODUCTION [13], [14], embankment stability study [13], and
The Self-Potential (SP) method is one of the oldest groundwater inve_stigations_[lS], [16]. Due to its rglevance_in
geophysical methods and is a part of passive electricalthose cases, Interpretation of SP. d_ata IS crumal..
surveying methods [1], [2]. It utilizes natural potential which Interp_retatlon of SP o_lata can be cl_assmed into three groups:
is caused by electrokinetic, electrochemical, and graphical, tomographic, and numerical approaches [17].

thermoelectric activities in subsurface to measure potential " numerical approach, the SP anomalies as in Figure 1
difference at the ground surface [3]. The SP method hasP€low are frequently modelled by polarized body in simple
been applied widely in several cases, such as archeology [4]geometry forms, such as sphere, horizontal and vertical

[5], mineral and geothermal explorations [6]-[10], tylinder, or inclined sheet [18]. .
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Fig.1 SP parameters of buried sphere and horizontal cylinder (a), vertical cylinder (b), and inclined sheet (c) anomalies
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Several numerical approaches has been applied towherel] {x;) is anomaly a; for j-th body andn denotes
interpret SP anomalies including least square methods [19]number of anomalies.
21], spectral analyzes [22]-[24], derivative and gradient
analyzes [25], [26], moving average methods [27], [28], and B. Memory-based Hybrid Dragonfly Algorithm
global optimization methods, for example: particle swarm  Dragonfly algorithm (DA) is a new meta-heuristic
optimization (PSO) [29], [30], genetic algorithm (GA) [17], optimization technique which is proposed by Mirjalili [36].
[30], simulated annealing (SA) [31], [30], differential DA was inspired by the swarming behaviors of dragonflies,
evolution algorithm (DEA) [32], and black hole algorithm which consists of static and dynamic swarms. In the static
(BHA) [13]. These approaches are applied by researchers tgwarm behavior, also known as hunting behavior, small
obtain the suitable method which is able to find global groups of dragonflies moves locally and change courses
optimum solution because the SP data inversion is a highlyabruptly to hunt preys over a small area. Meanwhile, in the
nonlinear inversion problem. dynamic swarm, also known as migratory behavior, a
In this research, a new approach based on globalsubstantial number of dragonflies migrate over long
optimization technique is implemented to invert the single distances in one direction. Those swarm behaviors represent
and multiple SP anomalies, which are caused by sphericalthe main characteristics of meta-heuristic based optimization
cylindrical, or inclined sheet sources. This approach is calledincluding exploitation and exploration. The exploitation
memory-based hybrid dragonfly algorithm (MHDA) [33]. finds the best candidate for a solution in the local region,
This algorithm is developed from Dragonfly Algorithm (DA) while the exploration enables solution candidates to explore
and combined with PSO to solve the drawbacks of DA, i.e. search space and generate a variety of solutions [13]. A
low convergence rate. This drawback often leads to localmeta-heuristic algorithm must balance both characteristics to
optimum solution. In order to assess the performance offind a global optimum solution and avoid local optimum
MHDA, it is applied for the noise contaminated in synthetic solution.
SP data because it has not been applied for this problem nor Those behaviors are modelled as interaction among
any geophysical inverse problems. Subsequently, MHDA is dragonflies in several operators such as separation,
applied to obtain model parameters of the field SP data foralignment, cohesion, attraction to food, and threats of
several cases. external enemies [36]. Separation operator avoids static
collision of a dragonfly with other dragonflies in the
[I. MATERIAL AND METHOD neighborhood, alignment operator matches the velocity of a
. dragonfly to other dragonflies in the neighborhood, cohesion
A. Forward Formulation of SP Anomaly operator refers to the tendency of a dragonfly towards the
The observed SP anomaly at pcigtover a sphere or mass center of the neighborhood, food operator attracts
cylindrical anomaly (Fig. 1a and 1b) can be expressed in thedragonflies towards the best solution, and enemy operator

following formula [34]: prevents dragonflies from the worst solution. Each of these
_ R operators is assigned by weight factors, which are adaptively
Vi) =K% cosl8)+h =in (8- (1) tuned, to balance the exploration and exploitation behaviors

([xp—xg)2+R209

in optimization process. Additionally, the exploration and

. . . ! . exploitation behaviors are also guaranteed by the radii of
whereK is the electrical dipole moment (mV*f), x; is the neighborhoods, which increase proportionally to the number
measurement point at ground surface along the profile line itarations.

(m_), xy denotes the: central coordinates of the anqmaly (m), DA has been applied to geophysical inverse problems and
h is the depth of the anomaly’s center (rf),is the obtained sufficiently good solution [37]. However, DA is
polarization angle®, andg is the shape factor. The shape more explorative which causes low convergence rate and
factors are 0.5, 1.0, and 1.5 for vertical cylinder, horizontal gften leads to the local optimum solution. The high
cylinder, and sphere respectively. Meanwhile, the SP exploration behavior of DA is caused by Levy flight process
anomaly at pointx; on the profile line which is  to explore search space if there is no any neighboring around
perpendicular to the strike of inclined sheet anomaly (Fig. 1ch dragonflies [36]. In order to solve these drawbacks, Ranjini

can be expressed as follows [35]: and Murugan [33] proposed MHDA which adapts PSO
. e concepts includingbest andgbest, into DA. These concepts,
Vix) =KIn [[ xi—xq)—a ““:;95'*"*['"‘“3'”:;95'*"] @) which are known as internal momory, enable dragonflies to
' [(xj-2p)+a cos(f)32 +{h+a=in(8)32

remember previous potential positions. Furthermore,
iterative level hybridization, which executes DA and PSO in
sequence, is applied to exploit promising area solution with
consideration to the internal memory of DA. This process

wherea is the half-width of inclined sheet (m). In the field
observations, two or more anomalies are commonly found
along a profile line, which make an interesting point for i imnrove the exploitation of DA and balance the high
further investigation. Therefore, the multiple SP anomalies exploration characteristic of DA. Therefore, MHDA
at pointx; on profile line can be expressed in the formula gyccessfully balances both characteristics to achive global
below [35]: optimum solution.
The scheme of MHDA consists of two main parts
UEDEDNIYEED ®) including implementation of internal memory and
hybridization scheme [33]. The internal memory is
implemented in DA scheme to providasbest and gbest
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positions.Pbest positions are obtained by comparing fitness . Y o2

value of current population with previous best fitness. mis fit (%) = E !E-}’_l(”‘ ?u"‘ ] (7)
Meanwhile, gbest position is obtained by comparing food Ny u

fitness of current population with previous one. Those

quantities are saved pbest andgbest matrix. Subsequently,  whereN is the number of observed SP data.

the internal memory is considered in the hybridization _ o

scheme. In this process, population and global best of PSA?- Uncertainty Estimation

are initialized respectively by Dpbest and DAgbest. PSO In geophysical data inversion problems, researchers often
is implemented to exploit promising areas, which is obtained deal with several models which fit with the observation data.
from DA scheme. The velocity and position update This phenomenon is known asn-uniqueness and is caused
equations of PSO in iterative level hybridization process canby several factors: 1) earth, where properties continuously

be expressed in the formula below: vary in all directions, is modeled as a discrete form in the
inversion process, 2) the obtained observation data is not
Vi, = wW +c,n(DA— pbestl —XL) + @ sensitive to any earth model, and 3) the presence of noise in

data can increase the degree of the uncertainty value from
the obtained inversion results [38]. Therefore, in this
research, statistical approach is applied to estimate solutions

i = vy in posterior distribution model (PDM) terms. This approach
Lo = G+ Vipy ) : - :

also enables to estimate the uncertainty boundaries.

Stochastic inversion methods provide several solutions
which fit to the observed data. This method is different from
the deterministic inversion methods which provide only a
single solution. Therefore, this method can provide PDM
) X which contains possible model parameters for global
global acceleration constantz; and =, are uniformly  ooimum  solution. The PDM is obtained from the
distributed random numbersw is inertia - weight,  eyploration process of a global optimization algorithm in the
DA — phesty is called “personal best” ¢fth PSO particle,  search space [13]. All accepted models of PDM have lower
and DA — gbest is called “global best” of best overall misfit values than specified tolerance value of the objective
swarm best solution ik-th iteration for PSO. function in the inversion process. Therefore, all accepted
models of PDM are associated with high fitness region.

cr (DA — gbest ! — xi)

wherek + 1 andk are respectively two successive iterations
of PSO, ¥ and x* denote vectors which contain
respectively velocity and position components iofth
particle in D dimensions spacgandc; indicate local and

C. SP datainversion using MHDA

In the SP data inversion problefy, is the position vector, I1l. RESULTS ANDDISCUSSION
which contains model parameters of SP as in Eq. (1) or Eq. ) .
(2). For example, if the considered SP data is a sphere o Inversion of Synthetic SP Data
horizontal anomaly,¥! in Eg. (5) must contain model In order to assess the performance of MHDA, it was
parameters including, xg, h, &, andg. These model initially tested for the noise contaminated synthetic SP data,
parameters are needed to calculate SP data (Eq. 1). On thahich depict observation data. The presence of noise in data
other hand, if the considered SP data is inclined sheetwill affect the performance of an algorithm to obtain global
anomaly,¥* contains model parameters suchkag,, k, &, optimum solution. Fernandez Martinez et al. in [39] stated
anda (Eq. 2). If the considered SP data contains two or that noise in data will deform cost function of a nonlinear
more anomalies, model parameters of each anomaly aré@roblem. It means that a noisy function will reach a global
needed to calculate each potential anomaly (Eq. 1 or Eq. 2pptimum solution, which is not the true global optimum. It is
and Eq. (3) is considered to calculate total potential anomalycaused by hyperquadric shifting which relates to global

In order to obtain model parameters of SP data, MHDA is optimum solution. Noise in data also increases the
applied to minimize the difference between observed anduncertainty in inverse solutions because it is amplified to the
calculated SP data which is represented by the objectivenodel parameters. Furthermore, noise in data will increase
function@. The objective function of SP data inversion is local optimum solution in search space [40]. Therefore,
defined by [13]: noisy synthetic SP data is suitable to test the performance of

MHDA. If the result is not at all or is only slightly affected,
_ 2l | ©6) it can be concluded that MHDA can be implemented in field
Q= TEsvE SP data.

In this research, 5% Gaussian noise is introduced to the
where ¥? and V¥ represent observed and calculated SP synthetic data. Sphere and inclined sheet geometry forms are
anomaly respectively, at poist on profile line. Calculated used for calculation in forward modelling of single and
SP anomaly can be obtained by Eq. (1)-(3) which is based ornultiple SP data. The model parameters of each anomaly
the shape and number of anomaly. Furthermore, misfitwere adopted from several previous researches. In order to
between observed and calculated SP data can be evaluatdfvert noise contaminated synthetic SP data, MHDA uses 50

by average relative error (%) with the following equation Particles, 300 and 500 iterations for single and multiple SP
[13]: anomalies respectively, as well as 100 hybridization
iterations.
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1) Inversion of a Sphere Anomaly
The model parameters, which are used to generate SP data

of sphere anomaly, are shown in Table 1. The modjl

TABLE |

TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL
PARAMETERS OF ASPHEREANOMALY

parameters were adopted from a research by Sungkono anif©de! Trug I Search Space | Inverted Model
Warnana [13]. In order to invert SP anomaly, initially, Ka(:re]l\n;)eters _'\ﬁgogo 100000-100000 -10224 = 1529
search space boundaries of each model parameter w re (deg) 50 20-180 5073+051 |
determined as shown in Table I. The wide search space s m) 10 0-100 10.09 £ 0.28
used to test the performance of MHDA in exploring an Xo (M) 20 1-100 39951014
exploiting the search space. In this research, the solution a 15 0.7-18 1.5050 + 0.02
the uncertainty of the solution are estimated by PDM, whiclpisfit - - 0.0053

is obtained from the inversion process. Sungkono and

means, medians, or modal values of PDM. If PDM follows jnyersjon is shown in Fig. 2.

Gaussian distribution, those values are almost the same.
Meanwhile, the uncertainty of the solution can be estimated
by the standard deviation of PDM.
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Fig. 2 Histogram of PDM for each model parameter from a sphere anomaly inversion result

All accepted model parameters have lower misfit value median = standard deviation values of PDM. The median
than specified tolerance value, which can be determined byvalue represents the solution of a sphere anomaly inversion,
the best misfit curve as iteration function (Fig. 3b). In Fig. while standard deviation represents the uncertainty value of
3b, misfit curve is relatively constant below 0.05. Therefore, the obtained solution. The uncertainty values of each
it is set as the tolerance value to determine PDM. The valueinverted model parameter are sufficiently low and true
of each PDM is represented by median value (blue cross)model parameters lie within range of the uncertainty values.
which is very close to the true model parameter (red dot).It indicates robustness of MHDA to invert the noisy sphere
Furthermore, the highest frequency on the histogramanomaly data. Fitted curve between observed and calculated
correlates to the true model parameter, which can indicateSP data is shown in Fig. 3a which is very good with 0.0053
the solution of the SP data inversion. Therefore, it means(0.53%) misfit value. In addition, MHDA has rapid
that the inversion result is very good. The inversion result of convergence rate, which converges before 50 iterations (Fig.
a sphere anomaly is shown in Table I, which is presented by3b).
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Fig. 3 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of a sphere anomaly
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2) Inversion of an Inclined Sheet Anomaly

BODO

space boundaries for each model parameter are also used as

o shown in Table II. Histogram of model parameters from an
For an inclined sheet anomaly, the model parameters argnclined sheet anomaly inversion is shown in Fig. 4.
shown in Table Il. The model parameters are adopted from a

research of Biswas and Sharma in [42]. The wide search
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Fig. 4 Histogram of PDM for each model parameter from an inclined sheet anomaly inversion result

All accepted models as PDM have a lower misfit value very good fitted curve with 0.00613 (0.613%) misfit value.
than specified tolerance value. Based on the best misfit curveAdditionally, rapid convergence rate of MHDA is shown in
as iteration function (Fig. 5b), the tolerance value is 0.05. In Fig. 5b which converges before 50 iterations.

Fig. 4, each PDM is represented by median value (blue cros

which is very close to the true model parameter (red dot). In
addition, the highest frequency of the histogram correlates to

s)

TABLE Il

TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL
PARAMETERS OF ANINCLINED SHEET ANOMALY

the true model parameter, which indicates that the inversiot

. . . . 'Model True Search Space | Inverted Model
result is very good. The inversion result of an inclined she€tp, .ameters | Model
anomaly, which is represented by median + standarffi my) 50 71000-1000 4883+ 2.50
deviation, is shown in Table Il. The uncertainty values of g deg) 30 0-180 2074 +057
each inverted model parameter are sufficiently low 7z (m) 40 0-200 3819+ 057
Additionally, true model parameters lie in range of the| x, (m) 200 0-800 198.62 + 1.20
uncertainty value. Therefore, MHDA is robust in inverting| a (m) 50 1-100 50.93 + 0.63
noisy inclined sheet anomaly data. The inversion result canMisfit - - 0.00613
also be assessed by curve fitting between observed and
calculated an inclined sheet SP data in Fig. 5a. It shows that
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Fig. 5 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of an inclined sheet anomal

3) Inversion of Multiple Anomalies for multiple anomalies (Table Ill) were adopted from a
P research of Sungkono and Warnana in [13]. The wide search

Multiple anomalies (two or more anomalies) are space boundaries were also used for this problem as shown
commonly found in SP surveys. This problem is more iy Table III.

interesting than single SP anomaly problem because there
are more model parameters evaluated. The model parameters
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TABLE Il

TRUE MODEL PARAMETERS, SEARCH SPACE, AND INVERTED MODEL PARAMETERS OFMULTIPLE ANOMAL IES

Model Parameters | True Model | Search Space | Inverted Model
1st Body

K (mV) 500 0-1500 424.29 * 18.25

8 (deg) 30 0-180 31.87 % 0.87

Z (m) 5 0-80 4.87+0.22

q 1.5 0.4-1.8 1.47 £ 0.01

Xo (M) 40 0-100 40.11 £ 0.33
2nd Body

K (mV) 10 0-50 9.82 £0.47

g (deg) 150 0-180 150.28 £ 0.74

Z (m) 10 0-50 9.99+0.25

a (m) 12 230 12.14+0.33

Xo (M) 130 75-150 130.07 + 0.33

Misfit - - 0.0035

PDM of each model parameter obtained from the inversion process are shown in Fig. 6.
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Fig. 6 Histogram of PDM for each model parameter from multiple anomalies inveesiadlh The parameters of first anomaly are upper pan

the other are lower pan:

Based on the best misfit curve as iterations function in Fig.uncertainty values of

inverted model

parameters are

7b, tolerance value is 0.05. In Fig. 6, each PDM is sufficiently low. There are several true models, which do not
represented by median value (blue cross) which is close tdie in range of the uncertainty values; however the effect of
the true model parameter (red dot). The highest frequency othe uncertainty value of the inverted model parameter was
the histogram also correlates to the true model parameterclose to the true model parameter. Therefore, MHDA is
which means that the inversion result is very good for robust for inverting noisy multiple anomalies. Fig. 7a shows

multiple anomalies problem.
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that a good fitted curve between observed and inverted SP
The inversion result of the multiple anomalies problem is data with 0.0035 (0.35%) misfit value. Furthermore, the
shown in Table lll. The model parameters of the first rapid convergence rate of MHDA is shown in Fig. 7b which
anomaly body are parameters of a sphere anomaly, while theonverges before 200 iterations.
other is parameters of an inclined sheet anomaly. The
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B. Inversion of Field SP Data 1) Inversion of a Buried Metallic Drum Anomaly

MHDA has been implemented for the noise contaminated  Srigutomo et al. in [43] investigated a buried metallic
synthetic SP data inversion and the results are very gooddrum which was intentionally buried in May, 2004. It had a
Subsequently, MHDA is implemented for the field SP data diameter of-0.6 m and 1.2 m in length. It was filled with
inversion in several cases, which are adopted from severametal scraps and powder. The metallic drum was buried
previous researches. The inversion results are also compareforizontally at a depth of 2.5 m and N-S direction. After one
by previous researches to test the performance of MHDA foryear, SP method was carried out to measure the buried
the field SP data inversion. For a single anomaly, MHDA metallic drum anomaly. Several inversion methods had been
uses 50 particles, 500 iterations for buried metallic drum applied for this problem: local [19, 43] and global [13]
anomaly and 300 iteration for landslide anomaly, and 200 optimization approaches. In order to invert a buried metallic
hybridization iterations. Meanwhile, for multiple anomalies, drum anomaly data, wide search space boundaries were used
MHDA uses 200 particles, 1000 iterations, and 200 gs shown in Table IV.
hybridization iterations.

TABLE IV
SEARCH SPACE AND INVERTED MODEL PARAMETERS OF ABURIED METALLIC DRUM ANOMALY FROM SEVERAL APPROACHES

Model Parameterg Search Space of MHDA Inverted Model

Srigutomo et al. [43]| Chandra et al. [19] Sungkono and Warnana [13] MHDA
K (mV) -1000-1000 -10.733 -10.7308 -9.09 £ 0.20 -8.8514 + 0.65
a (deg) 0-180 45.78 44.3241 55.21 £1.59 56.8157 + 2.30
z (m) 0-100 1.234 1.2325 1.15+0.13 1.05+0.10
q 0.3-1.8 0.916 0.9225 0.8+0.0 0.83+0.03
Xg (M) -6.5-8.5 - - 0.25+0.04 0.30 £0.02

Histogram of accepted model parameters from a buried metallic drum anomaly inversion is shown in Fig. 8.
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Fig. 8 Histogram of PDM for each model parameter from a buried metallic drum anomaly inversion result

Table IV. This result is compared with several previous drum anomaly with 0.041 (4.1%) misfit value. Meanwhile,
researches (Table IV). It shows that the obtained result isFig. 9b shows that MHDA converges before 280 iterations.
sufficiently close to other results, which indicates horizontal In Fig. 9b, the best misfit curve is relatively constant below
cylinder anomalyq = 1). Additionally, the other parameters 0.05. Therefore, this value is set as the tolerance value. The
were also close to the previous research results. The highestversion result of a buried metallic drum anomaly
frequency of histogram is also sufficiently close to the represented as median + standard deviation is shown in
previous researches. Furthermore, Fig. 9a shows a goodnversion of a Landslide Anomaly
fitted curve between observed and inverted a buried metallic

1778



a)

SP Anomaly (mV)
r =)

[y

®  Observed
== Calculated

) -8 4 2 0 2 4 3
Distances {m)

"
8 10

0.1

b)

0.09

D.OBIx

0.08

0.05

o

0.04
a

"
50

M M
150 200 250

300
Iterations

1
| L] BestMisﬂII

350 400 450 500

Fig. 9 Rtting curve between observed and calculated (a) and best misfit curve as iterations function (|
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Sungkono and Warnana [13] investigated the causes of a
landslide which occurred in Sawoo district area, Ponorogo

regency, East Java, Indonesia on April 12th, 2017 with SP
method. The main causal factor of the landslide in the area|
was water accumulation in rocks, which caused deformation.
The deformation can be observed by the appearance of scar
on the surface. Meanwhile, the source of anomaly can be
observed by SP data. In order to invert a landslide anomaly,
data, wide search space boundaries were used as shown i

Table V. The inversion result of a landslide anomaly data is

shown in Table V. Histogram of accepted model parameters
from a landslide anomaly inversion are shown in Fig. 10. Fig.

11b shows that the best misfit curve is relatively constant of
below 0.04. Therefore, this value is set as the tolerance value.
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TABLE V
SEARCH SPACE AND INVERTED MODEL PARAMETERS OF ALANDSLIDE
ANOMALY FROM SEVERAL APPROACHES

Model Search Space Inverted Model
Parameters | of MHDA
P Sungkono and MHDA
Warnana [13]
K (mV) -1000-1000 163.39 + 75.80 4.90+0.1
8 (deg) 0-180 82.07 £4.36 90.74 £
N
0.08
z (m) 0-100 11.93+0.85 3.39+0.08
q 0.3-1.8 1.14+0.10 0.34+0.00
Xo (M) 0-30 12.01 +0.62 13.03
0.01
5000 s
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Fig. 10 Histogram of PDM for each model parameter from a landslide anomaly inversion result
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Fig. 11 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of a landslide anomaly
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This result is also compared by previous research. It1). Meanwhile, the inversion result of Sungkono and
shows that the obtained result is different but the centerWarnana [13] indicates that all of the anomaly bodies are
coordinates of anomalyd) is close to the previous research. horizontal cylinders. Furthermore, the center of anomalies
The result obtained by MHDA is close to vertical cylinder obtained by MHDA is relatively close to the previous
anomaly ¢ = 0.5), while horizontal cylinder is obtained by research.

previous research. However, the obtained result by MHDA TABLE VI
IS supported by a research from quadhany et al. [44] which SEARCH SPACE AND INVERTED MODEL PARAMETERS OFLUSI
implemented Microtremor method in the area. The research EMBANKMENT ANOMALIES FROM SEVERAL APPROACHES
focused on calculating the slope stability with vulnerability
index (Kg). Furthermore, Principal Component Analysis| Model Search  Space Inverted Model
(PCA) examined the properties of particle motion. Particle Parameters | of MHDA
motion analysis showed that the source of vibration in the Sungkono  and MHDA
area was dominated by vertical motion. It was caused by, —— 15600606 Vﬁg‘gg‘i{%g]go 50
fluid in overburdened pores of rocks. Fig. 11a shows that @ (mv) i i R 015 -
good fitted curve between observed and inverted a landslideg 0-180 8207 £ 436 9074 &
anomaly data with 0.0294 (0.294 %) misfit value. Further (deg) R 0.08 i
Fig. 9b shows that MHDA converges before 100 iterations. [y 0-100 11.93 £ 0.85 339 k
2) Inversion of Lumpur Sdoarjo (LUS) Embankment 0.08
Anomalies q 0.3-1.8 1.14£0.10 0.34 t
0.00
Sungkono and Warnana in [13] investigated the stability x; (m) 0-30 1201 +0.62 13.03 4
of LUSI embankment with SP method on 11th — 20th July 0.01

2016. LUSI embankment was built to control the spreading
hot mudflow at Porong, Sidoarjo. It is an earth-filled The vertical cylinder anomaly obtained by MHDA is
embankment composed of pebble-soil materials [45]. supported by the research of Husein et al. in [47] which
Additionally, it lies on soft grounds, which is composed of indicates a piping phenomenon. The piping is caused by
uncompacted clay and silt soils. Therefore, LUSI saturated embankment and it affects the stability of an
embankment faces three types of embankment failuresiembankment above 11 m in depth. Meanwhile, the
hydraulic, seepage, and structural failures [46]. horizontal cylinder anomalies indicates seepage
Additionallya, LUSI embankment area is controlled by two phenomenon. The occurring seepage was caused by
faults: Watukosek and Siring faults [13]. These faults systempenetration of mud fluid through LUSI embankment. Fig.
can deform the LUSI embankment. The search spacel2a shows good fitted curve between observed and
boundaries of each parameter and the result of LUSIcalculated LUSI embankment anomalies data with 0.20147
embankment anomalies inversion are shown in Table VI.  misfit value. Convergence rate of MHDA for this problem is
The result is also compared with a previous research inlower than previous problem because more model
the area. The inversion result of MHDA indicates that first parameters were evaluated.
anomaly body is close to vertical cylinder anomajy 0.5)
and the other is close to horizontal cylinder anomalties (
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Fig. 12 Fitting curve between observed and calculated (a) and best misfit curve as iterations function (b) for the inversion result of LUSI embankmel

anomalies

[7]
IV. CONCLUSIONS

A new approach based on global optimization technique,
Memory-based Hybrid Dragonfly Algorithm (MHDA), has (8]
been implemented to solve highly nonlinear SP data
inversion problem, which is caused by simple geometry, [9]
bodies, such as sphere, cylinder, and inclined sheet. In this
research, MHDA is initially tested for the noise [10]
contaminated synthetic SP data for single and multiple
anomalies. Furthermore, MHDA is implemented to invert SP
data of a buried metallic drum, a landslide, and LUSI
embankment anomalies. Both inversion results show that!!]
MHDA is able to provide Posterior Distribution Model
(PDM), which is used to estimate solutions via median [12]
values and model uncertainties via standard deviation values
of PDM. For the synthetic data, the estimated solutions arel1?l
close to the true models. Additionally, true models lie in
range of the uncertainty value. It indicates that MHDA is [14]
robust for inverting noisy SP data. Subsequently, for the
field data, MHDA is able to obtain solutions, which have
good correspondence with previous research results.[15]
Moreover, MHDA is able to solve inversion problem of
LUSI embankment anomalies, which are complex problems.
Therefore, MHDA is an innovative technique to solve the SP

data inversion problem. [16]
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