

Vol.8 (2018) No. 5

ISSN: 2088-5334

Challenge-Based Programming Learning Design
Rodziah Latih#, Marini Abu Bakar#, Norleyza Jailani#, Noorazean Mohd Ali#, Syahanim Mohd Salleh#,

Abdullah Mohd. Zin#
Center for Software Technology and Management, Faculty of Information Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
 E-mail: {1rodziah.latih, 2marini, 3njailani, 4aliazean, 5syahanim, 6amzftsm}@ukm.edu.my

Abstract— Computer Science students are expected to acquire good programming skills. Both students and instructors accept that
learning programming for first-year college students is fairly difficult. To assist students to achieve this goal, instructors will have to
adopt a suitable design for programming courses. This paper reports on the design of a Computer Programming course based on the
integrated course design approach, which was conducted by a research group at Universiti Kebangsaan Malaysia from the Faculty of
Information Science and Technology. The course is designed to provide relevant teaching and learning activities, feedback, and
assessment that will ultimately support the learning goals of students. The design will provide opportunities for preparation time,
meaningful feedback, and a competitive feel to the course. The effectiveness of this approach is then evaluated via an online survey
that was administered to first-year undergraduate students. The results obtained from 162 first-year students showed that the
students were able to improve the results of their the first-year program with the utilization of PC2, as it allowed them to obtain
prompt feedback. The use of PC2 also gives them a competitive atmosphere, which motivates them to perform better. The survey
results also indicate that the students used their time to prepare for lab sessions via tutorials and self-learning.

Keywords— integrated course design; three-tier course structure; automated feedback; programming exercise; programming
assessment.

I. INTRODUCTION

The process of writing computer programs (also known as
programming) is a skill that must be honed and applied.
Learning and understanding the basic programming
structures and elements might be easy; applying this
knowledge to solve problems, however, is quite the opposite
[1]. Because programming is an applied skill, a programmer
must always practice it to become competent [2]. According
to Kani and Saad [3, 4], one must practice deliberately by
not only repeatedly practicing programming, but also
challenging oneself to perform tasks that are ahead of one’s
current skill level. This must also be accompanied by
correcting mistakes and performance analysis. Another
factor that contributes towards the effective learning of
computer programming is feedback. Feedback could give
clear guidance and assist students in understanding the
current topic and improving solutions to programs [5].
However, for a lecturer with a huge number of students,
giving prompt feedback and repetitive practice could be
especially difficult. The former activity can usually be
realized but the latter activity, which involves providing
immediate feedback to all students, is nearly impossible to
conduct via traditional methods of program marking. Hence,

all these issues have to be addressed when designing a
Computer Programming course. This paper reports the
efforts of a team of instructors in a university in Malaysia in
designing a Computer Programming undergraduate course.

II. MATERIAL AND METHOD

Computer Science is a typical STEM discipline, sharing
attributes with Science, Technology, Engineering, and
Mathematics. Computer programming has also turned out to
be a core subject in the STEM discipline. In most
universities, a Computer Programming course is a three-
credit course with a two-hour lecture and two or three-hour
lab sessions a week [6, 7]. The tutorial session is optional for
some universities. The venue for lectures is also different as
some universities conduct lectures in a lecture room while
others are conducted in a computer lab together with the lab
session.

The authors of this work used an integrated course design
(ICD) approach to design an introductory programming class
at the Faculty of Information Science and Technology
(FTSM), University Kebangsaan Malaysia to achieve
significant learning in computer programming [8]. Three
main interacting elements, i.e., learning goals, teaching and
learning activities, and feedback and assessment make up the

1912

Learning Goals

Teaching and
Learning Activities

Feedback and
Assessment

Situational Factors

integrated course design. All these elements are influenced
by situational factors [9]. This is depicted in Figure 1.

Fig. 1 Integrated Course Design [8]

The ICD approach presents a useful way of looking at the

factors, which are important in designing courses. Each of
these factors is elaborated as follows:

A. Situational factors

Situational factors are factors that will influence the
feedback and assessment process as well as the choice of
teaching and learning activities. The computer programming
course is a compulsory first-year introductory course. There
are about 180-210 students enrolled per academic session.
About half of the students do not have any prior exposure to
formal programming classes. The last few intakes consisted
of students from Gen Z, that is, those born in 1994 onwards.

Gen Z is generally motivated by new challenges and is
more competitive. An exclusive study conducted by Vision
Critical, the world’s leading consumer intelligence platform
in 2015, points towards the habit of younger consumers in
consuming media, which is continuously changing [10].
Usually, this group is quick to adopt new technologies.
Besides having numerous platforms and screens at hand,
they also favor new technology over conventional media.
This study also shows that Gen Z is the first true digital
native; on average, they use smartphones—over other
devices—15.4 hours a week [11]. Their two top motivations
for engagement are that the activity must be entertaining and
fun, and they like to learn new things [12]. This
characteristic should be exploited to encourage students to
learn in a fun and challenge-based learning environment.
Studies conducted on students and teachers show that both
agree that Gen Z learns best through doing or hands-on
experience [13].

Since this is a first-year course and programming is a very
important skill in Computer Science that students must excel
in, instructors are feeling the heat from both peers and the
faculty management, to make sure that each student has
acquired an accepted level of proficiency in programming.

B. Learning Goals:

The taxonomy of significant learning is used as a guide to
developing the learning goals in this study [8]. As a rule, the
taxonomy outlines six types of learning—foundational
knowledge, application, integration, human dimension,
caring, and learning how to learn—that must be taken into
account for the course studied. Those who strongly advocate

significant learning hold by the principle that a course
should promote all six types of learning so that the students
will enjoy a significant learning experience.

The first two kinds of learning, knowledge, and
application are embodied formally in the following learning
outcomes of the course, as follows:
LO1: Be able to write programs based on good

programming practices
LO2: Be able to trace programs in order to understand the

structure and logic of programs
LO3: Be able to develop programs to solve problems

C. Teaching and Learning Activities

Based on the situational factors and the learning goals, a
three-tier approach to teaching and learning was adopted.
The three tiers are lecture, tutorial, and lab sessions (Fig. 2).
Lecture sessions are used to deliver course content. It adopts
the by-example approach whereby the lecturer will discuss
and demonstrate possible approaches to solving a problem.
The learning materials for the course can be accessed via an
online learning environment.

Fig. 2 Three-tier course structure

Tutorial sessions are conducted after the students have

attended the lectures. In these sessions, the students are split
into smaller groups, with each group having ten members.
Tutorial sessions are conducted to develop program
understanding or comprehension and program composition.
The role of the students is to discuss possible solutions to
problems, in an interactive and collaborative setting. The
role of the tutors, on the other hand, is to facilitate the
discussions, set directions, and goals for the tutorial session,
and encourage and motivate the students.

The lab sessions are held after the students have attended
lectures and tutorial sessions. The students are divided into
three groups of 60-70 each in the lab sessions. Lab sessions
are hands-on sessions where students will hone their
programming skills.

In a typical study week, students are expected to fulfill lab
sessions, tutorial sessions and lectures, all of which are two
hours each. The students must solve two to three
programming problems during these lab sessions.

1913

D. Assessment and Feedback

In designing the right form of assessment and feedback,
and in order to achieve the learning goals, it is important to
take note that:
▪ Students must do many exercise questions both during

lab sessions and also via self- learning [14].
▪ Instructors must check the programs submitted by

students and give prompt feedback accordingly. This is
important because Gen Z is known to reject anything
that does not satisfy their needs and often demand that
their learning have relevance and immediacy [15].
Prompt feedback is also imperative for students to
recognize their mistakes so as not to disrupt their
learning progress. It also assists the lecturers in
recognizing course failings [14].

▪ The students can modify their programs and resubmit
them, to be checked by the instructors, as many times
as is necessary until they get the right answer [16].

▪ To provide a competitive atmosphere during lab
sessions. This is vital as this generation of students are
well acquainted with environments that are based in
competitiveness such as gaming. Students can become
motivated to sharpen their programming skills and
practice coding through competitions. Besides that, it
will also benefit them in their future careers [17].
Student motivation has been known to increase due to
competitions and other incentives [18].

Feedback to students was given in tutorial and lab
sessions. Student performance was assessed via lab tests.
Each week, six different problem-solving questions must be
prepared to cover the three lab sessions during this time. To
prevent students from copying each other, each group is
given a different lab exercise consisting of different sets of
questions (two questions per set). Overall, this resulted in a
minimum of 140 programs for each lab session that must be
graded and the feedback obtained from the students.
Therefore, giving prompt feedback to the students in each
lab session is a key challenge. This study suggests the use of
an automatic grading system PC2 [19] to mark student lab
assignments as a solution.

California State University, Sacramento (CSUS)
developed PC2 (https://pc2.ecs.csus.edu/)—a Programming
Contest Control System—to support computer programming
contest activities. PC2 is also an open source automatic
grading system that is used in many regional and
international collegiate programming contests globally. The
process involved in PC2 is ideal for training students’
abilities to independently analyze and solve problems. It
starts with the students (competitors) submitting programs
over a network provided by PC2. Then, the lecturers (judges)
will provide feedback to the students after recompiling,
executing, and viewing the source code or execution results
of the submitted program. The students will use this
feedback to attempt corrections and then resubmit the
solution. This process starts all over again until the lecturers
(judges) accept the student’s answer or when the time stops
[20].

PC2 will give out five different kinds of feedback: ‘No
(Output Format Error),’ ‘No (Runtime Error),’ ‘No
(Compilation Error’)’ and ‘Yes (Accepted).’ Automated

judging mode can also be enabled, where the software will
perform the judging. PC2 also provides a competitive
atmosphere during lab sessions since the students can view
their performance on the scoreboard in real time. The student
rankings are computed based on three factors; the solutions,
the time the solutions are submitted, and a number of
attempts made to solve the problem.

The deliberations from (A) to (D) above resulted in the
model for the teaching of programming based on ICD. All of
the required elements are captured in Fig 3.

Fig. 3: Elements in a model for the teaching of programming based on ICD

III. RESULTS AND DISCUSSION

The effectiveness of the proposed model described in the
previous section is then evaluated by conducting a survey at
the Faculty of Information Science and Technology with a
group of 162 first-year undergraduates. The following
sections present the analysis of the results obtained.

A. Programming Background and Demographics

Fig. 4 shows that the demographics in this study
consisting of 25 respondents (15.4%) each from the
Software Engineering (Multimedia) program and
Information Technology program, 28 respondents (17.3%)
from the Software Engineering (Information System)
program, and 84 respondents (51.9%) from the Computer
Science program.

Fig. 5 shows the programming languages that the students
had previously learned before entering UKM; 73
respondents (39.9%) had learned a programming language
before entering UKM while 89 respondents (60.1%) had not
learned any programming languages. HTML (13.3%),
Python (13.3%), C++ or C (68%), and Java (18.7%) are
among the programming languages they had learned.

Teaching and
Learning
Activity

Learning Goals

Course
learning
outcomes:

1. LO1
2. LO2
3. LO3

Feedback and
Assessment

 Situational Factors

Three tiers:
Lectures
Tutorial
Lab
sessions

Discussion
during
tutorials
Instant
feedback
Lab tests

Team teaching
Gen Z =>
instant
feedback and
competitive
atmosphere
Limited prior
experience
programming

1914

Fig. 4. Student Distribution according to program

Fig. 5. Programming languages that respondents have learned previously.

B. Perception of Student on using PC2

Altogether 19 questions and one reflection were used to
measure a student’s perception towards the use of PC2. The
questions are grouped into three components, which are the
feedback component, the competition component, and
preparation and self-study component. There are three
categories—Positive, Neutral and Negative—of student
responses towards the use of PC2: ‘Strongly Agree’ and

‘Agree’ answers belong to the Positive category. ‘Neither
Agree or Disagree’ answers are grouped under the Neutral
category, while ‘Disagree’ and ‘Strongly Disagree’ answers
fall under the Negative category.

1) Feedback Component

Table I summarizes the results obtained for the feedback
component, which consists of Q1 to Q6. In Q1, the
respondent had to state whether or not they understood the
objective of using PC2, i.e. to speed up the marking process.
The majority of the respondents (90.8%) understood the
objective while 1.2% of the respondents did not understand.
Another 8% were neutral.

The results show that 22.3% of the respondents did not
agree with the Q2 statement that PC2 makes it easier for lab
assignments to be submitted, while 54.9% respondents
agreed. In Q3, respondents had to state whether or not they
understood the general or specific feedback given by PC2

(Q4). Generally, only 13.6% of respondents did not
understand the feedback whereas 58.1% respondents
understood the feedback. From the Q4 results, the
respondents felt that the feedback message that was most
unclear was ‘NO (Runtime error)’; with many respondents
(30.2%) responding negatively to this feedback message
compared to other feedback messages.

The respondents had to state in Q5 whether or not the
feedbacks helped them to correct their programs. The
majority of respondents (58.0%) agreed with this statement.
Q6 asked the respondents about the least meaningful
feedback to which 29.6% responded that the specific
feedback message ‘No (Runtime Error)’ did not help them
correct their programs. This finding shows that instructors
should explain in more detail the meaning of ‘Runtime
Error’ and why it occurs.

TABLE I
STUDENT PERCEPTION ON USAGE OF PC2: FEEDBACK COMPONENT

No Question Students’ Perception
-ve (%) Neutral (%) +ve (%)

Q1 Can PC2 speed up the marking process? 1.2 8 90.8
Q2 Does PC2 make submitting lab assignments easier? 22.3 18.2 54.9
Q3 Do you understand the feedbacks given by PC2? 13.6 28.4 58.1
Q4 Are the following feedbacks by PC2 easy to understand?

Yes (Accepted) 3.7 16.7 79.6
No (Wrong Answer) 11.7 23.5 64.8
No (Compilation Error) 21.6 29.6 48.8
No (Runtime Error) 30.2 33.3 36.5
No (Output Format Error) 17.9 25.3 56.8

Q5 Do the feedbacks given by PC2 help correct your program? 7.4 34.6 58.0
Q6 Do the following feedbacks by PC2 help correct your program?

Yes (Accepted) 4.9 21.6 73.5
No (Wrong Answer) 16.7 32.1 51.2
No (Compilation Error) 22.8 34.6 42.6
No (Runtime Error) 29.6 33.3 37.0
No (Output Format Error) 18.5 30.2 51.2

2) Competition Component

There are only two questions in the competition
component, which concern the scoreboard (Q7) and the lab
test (Q19). The PC2 scoreboard displays student

achievements, which include student ranking, number of
attempts made, and number of questions solved. In response
to Q19, 54.3% respondents agreed that the use of PC2 during
lab tests could help them get a higher score in the lab tests,
whereas approximately 64.8% respondents agreed that their

1915

motivation to compete with friends increased because of the
scoreboard display (Table II).

TABLE II

STUDENT PERCEPTION ON USAGE OF PC2 COMPETITION COMPONENT

No Question Students’ Perception
-ve
(%)

Neutral
(%)

+ve
(%)

Q7 Does the scoreboard
display increase my
motivation to compete
with other friends?

11.1 24.1 64.8

Q19 The use of PC2 during lab
tests can help me get a
higher score

13.0 32.7 54.3

3) Preparation and Self Study Component

Table III shows the result for the preparation and self-
study component, which consists of Q7–Q18. Questions Q8,
Q9, Q10, and Q11 relate to the level of student preparation
before the lab session, whether they simply read the

question, discussed it with friends, analysed the question to
solve the problem, or wrote the solutions down before
attending the lab session. Q8 asked students whether or not
they read the problem-solving questions in the tutorial sheet.
Only 6.2% did not read the questions beforehand, whereas
58.0% would read beforehand. To answer Q9, most of the
respondents (55.5%) would discuss the possible problem-
solving methods before attending lab sessions. However, for
Q10, less than half (45.0%) of the respondents would
analyse the problem-solving questions before lab sessions,
whereas for Q11, 38.3% of the respondents would write
down the program solutions before attending the lab
sessions. Fig. 6 shows the result for Q8 to Q11 in the form of
a bar chart. Q11 obtained the lowest +ve response, where
only 38.3% would write the program solution before
attending the lab session. Q8 obtained the highest +ve score
amongst the questions, indicating that the majority (58%) of
respondents would read the questions before going for their
lab sessions.

TABLE III

STUDENT PERCEPTION ON USAGE OF PC2: PREPARATION AND SELF STUDY COMPONENT

No Question Students’ Perception
-ve (%) Neutral (%) +ve (%)

Q8 I always read the questions on the tutorial sheet 6.2 35.8 58.0
Q9 I always discuss the way to solve the problem with friends

before attending the lab session
10.5 34.0 55.5

Q10 I always analyse the questions in the problem-solving section
before attending the lab session

13.0 42.0 45.0

Q11 I always write the program solution before attending the lab
session

15.4 46.3 38.3

Q12 I always make sure that my program solution is error-free 5.6 24.7 69.7
Q13 I always make sure that the program solution successfully

produces the correct output
4.3 19.2 76.5

Q14 I am always able to solve all the questions during the lab
sessions

38.9 37.0 24.1

Q15 I should be given more time to answer the questions after the
lab session

1.2 14.8 84.0

Q16 The use of PC2 has motivated me to attend the lab session 7.4 29.0 63.6
Q17 How many questions do you think is appropriate for a lab

session?

1 6.2
2 56.2
3 30.9
4 4.3
5 2.5

Q18 I try to solve the questions from other groups as a form of self-
training

10.5 40.1 49.4

Fig. 6. Preparation before lab session

Q12, Q13, Q14, Q15, and Q16 refer to situations during
lab sessions. Students will submit their solution through PC2

during lab sessions, where more than half of the respondents
(69.7%) would ensure their program is free of errors before
their PC2 submission (Q12). Q13 asks respondents whether
or not they make sure their programs produce the correct
output before submission to PC2 to which 76.5% agreed.

For Q14, 38.9% of respondents were not always able to
solve all the questions, but about 24.1% respondents
admitted that they were always able to solve all the questions
during the lab sessions. This is because they are only given a

1916

limited time of two hours to prepare the solution ahead of
time.

Interestingly, almost all respondents (84%) agreed with
Q15, which states that the students should be given more
time to answer the questions before the lab sessions.
However, PC2 has also motivated students to attend the lab
sessions, as indicated by the responses to Q16.

Fig. 7. Situations during the lab session

Fig. 7 shows the result for Q12 to Q16 in the form of a bar

chart. The highest +ve response is Q15, where the majority
of students agreed that more time should be given to them to
solve the exercises before lab sessions. This is aligned with
the response in Q14 where only a handful of students agreed
that they could answer all questions during the lab session.

Fig. 8. The appropriate number of questions for a lab session

Q17 asks whether or not the number of problems solving

questions given is appropriate for a lab session. 30.9% rated
three as sufficient, while the majority (56.2%) rated two
questions as sufficient. Only 6.2% thought that one question
was appropriate for a lab session (Fig. 8).

Q18 refers to the situation post-lab session. The students
were asked if they attempted any self-training by solving
questions from other lab groups. 10.5% of the respondents
disagreed with the statement, while only 49.4% agreed.

1) Reflection

A final open-ended question (Q20) was given to the
student, where they must write their reflection regarding the
use of PC2 during lab sessions. The student responses were
then categorized into positive, negative, and neutral
categories. Only 11.1% of the students gave negative
remarks while the majority of students (75.3%) gave positive
remarks. The remaining percentage of respondents gave a
mix of positive and negative remarks, and a few even
suggested improvements to using PC2 in lab sessions.

TABLE IV
AN OPEN-ENDED QUESTION Q20

No Question Students’ Perception
-ve
(%)

Neutral
(%)

+ve
(%)

Q20 Personal opinion on the
use of PC2 during the lab
session

11.1 13.6 75.3

Some of the student responses to Q20 are listed in Table

V. The responses that are positive indicate the positive
perception of using PC2 in lab sessions, which have helped
the students to learn to programme. Students that gave
negative responses struggled with finding the right answer to
the problems. The students that gave a mixed positive and
negative answer acknowledged the positive impact of using
PC2 but still needed assistance determining the errors in their
programs.

TABLE V
STUDENT RESPONSES TO Q20

Response
category

Respondent
ID

Respondent’s response

+ve R88 The system helps us identify our
mistakes faster, and thus makes
the process of learning faster as
well

+ve R19 It is advantageous to use PC2
because it more efficiently and
accurately marks our program.

+ve R104 PC2 has boosted my confidence in
answering questions.

+ve R1 PC2 shows me how my coding is
judged in competitions and this
will help me in the future as I will
be accustomed to this sort of
judging.

+ve R50 Through PC2, our coding can be
corrected on the spot.

-ve R55 I find the system difficult because
it demands accurate answers.

-ve R70 The system could sometimes be
buggy. It could still state that my
answer is wrong even when I am
sure it is correct. Besides that,
more input and output should be
given so we can practice and test
our code in unexpected
conditions.

-ve R139 I think there should not be as
many questions.

Both R108 PC2 gives me fast feedback, but
I’m not sure about my mistakes
when I receive an error message.

Both R51 Comments should be given if a
wrong answer is made, which
would make it much clearer.

Both R134 PC2 has proven very helpful but
the lab is used by other courses as
well, and so is not always open.
This makes it difficult for us to
practice using the system.

The results show that PC2 is indeed invaluable in

reassuring the students of their learning progress, where 90%

1917

of the respondents agreed that PC2 had enabled them to get
prompt feedback, whether their answer was correct or not.
“Runtime Error” was the least understood feedback for
incorrect answers; it was also not meaningful or helpful.
Most of the time, the runtime error happens because the
respondents did not test the program using the same type of
input or same input data set that the judges used to check the
respondents’ answer. On another note, the scoreboard
proved to be a hit with the respondents, as most agreed they
had benefited from the ranking it displayed, motivating them
to keep on trying and competing with their friends.

More than half of the respondents stated that they would
discuss the possible solutions and read the questions before
lab sessions, but they were not able to solve the questions on
time due to failing to write down the program solution
beforehand. Most of the students asked for more time to
answer the question before the lab’s two-hour session ended,
and only 24.1% of the respondents were able to solve all
problems correctly within that time. Additionally, 76.5% of
the respondents said that they would always make sure that
the program solutions successfully produced the correct
outputs while 69.7% of the respondents said that they always
made sure they submitted error-free solutions, proving that
PC2 has successfully pushed students always to output their
best and most correct solution. This is because the students
must strive for the Accepted (‘Yes’) feedback from PC2 but
until then must repeatedly correct and submit their solutions.

IV. CONCLUSION

This paper presents a model for a Programming course
that was designed using the integrated course design
approach. Using the approach, it was shown that we could
systematically consider the important and pertinent factors
that must be incorporated into a first-year Programming
course. In the case of the Faculty of Information Science and
Technology, UKM, due to the identified situational factors,
the course was designed such that it allows immediate
feedback, presents a competitive atmosphere, and also
allows adequate opportunities for students to prepare for
their lab sessions. The immediate feedback element was
addressed via the utilization of PC2, which also provided the
competitive atmosphere required. The three-tier structure, a
hierarchical structure of lectures, and tutorials and lab
sessions provided the necessary structure that enables
students to follow through the content in a structured
manner; thus, providing them with an adequate amount of
time for discussions and self-study. The results from the
evaluation in this study indicate that these design objectives
were satisfactorily achieved.

ACKNOWLEDGMENT

We would like to thank the Ministry of Higher Learning,
Malaysia, for supporting this work through its research grant
fund FRGS/1/2016/ICT01/UKM/02/3.

REFERENCES
[1] Yang, T.-C., Hwang, G.-J., Yang, S. J. H., & Hwang, G.-H. (2015).

“A Two-Tier Test-based Approach to Improving Students’
Computer- Programming Skills in a Web-Based Learning
Environment,” Educational Technology & Society, 18(1), pp. 198–
210.

[2] Brame CJ and Biel R (2015). “Test-enhanced learning: The potential
for testing to promote greater learning in undergraduate science
courses,” CBE—Life Sciences Education 14, pp. 1-12.

[3] Kani, U. M., Sa’ad, T. U. (2015), “Drill as a Process of Education,”
European Journal of Business and Management, Vol.7 (21), pp. 175-
178.

[4] H. Mohamad Judi, S. Mohd Salleh, N. Hussin, S. Idris (2010), “The
Use of Assignment Programming Activity Log to Study Novice
Programmers’ Behavior Between Non-Plagiarized and Plagiarized
Groups,” Journal Information Technology, 9(1), pp. 98-106.
DOI: 10.3923/itj.2010.98.106

[5] N. F. A. Zainal, S. Shahrani, N. F. M. Yatim, R. A. Rahman, M.
Rahmat, and R. Latih (2012), “Students’ Perception and Motivation
towards Programming,” Procedia - Soc. Behav. Sci., vol. 59, pp. 277-
286. https://doi.org/10.1016/j.sbspro.2012.09.276

[6] Sun, W. and Sun, X. (2011). “Teaching Computer Programming
Skills To Engineering And Technology Students With A Modular
Programming Strategy.” Technical Report (AC 2011-308), Oregon
Institute of Technology.

[7] Krpan, D., Mladenović, S. and Rosić, M. (2015). “Undergraduate
Programming Courses, Students’ Perception and Success”, Procedia
- Social and Behavioral Sciences, vol. 174(2015), pp. 3868 – 3872.

[8] Fink, L. D. (2007). “The Power of Course Design to Increase Student
Engagement and Learning.” Peer Review, Winter 200, pp. 13–18.

[9] M. Mukhtar, Y. Yahya, S. Abdullah, A. R. Hamdan, N. Jailani, & Z.
Abdullah (2009). “Employability and service science: Facing the
challenges via curriculum design and restructuring,” Proceedings of
the 2009 International Conference on Electrical Engineering and
Informatics (ICEEI 2009), pp. 357-361. DOI:
10.1109/ICEEI.2009.5254712

[10] Kleinschmidt, M. (2015). “Generation Z characteristics: 5
infographics on the Gen Z lifestyle”, [Online]. Available:
https://www.visioncritical.com/generation-z-infographics/.

[11] Mohr, Kathleen A. J., and Mohr, Eric S. (2017). “Understanding
Generation Z Students to Promote a Contemporary Learning
Environment.” Journal on Empowering Teaching Excellence: vol.
1(1), Article 9. http://doi.org/10.15142/T3M05T

[12] Singh A. (2014), “Challenges and issues of Generation Z,” IOSR
Journal of Business and Management, vol. 6(7), pp. 59-63.

[13] (2016) Gen Z in the Classroom: Creating the Future. [Online].
Available: http://www.adobeeducate.com/genz/adobe-education-
genz.

[14] Gupta, S. and Gupta, A. (2018). “E-Assessment Tools for
Programming Languages: A Review.” Proceedings of the First
International Conference on Information Technology and Knowledge
Management, vol. 14, pp. 65-70. DOI: 10.15439/2018KM31.

[15] White, G. and Kiegaldie, D. (2011). “Gen Y Learners: Just How
Concerned Should We Be?,” Clin. Teach., vol. 8(4), pp. 263–266.

[16] M. Rahmat, S. Shahrani, R. Latih, N. F. M. Yatim, N. F. A. Zainal,
and R. A. Rahman, (2012). “Major Problems in Basic Programming
that Influence Student Performance,” Procedia - Soc. Behav. Sci.,
vol. 59, pp. 287–296. https://doi.org/10.1016/j.sbspro.2012.09.277

[17] S.A. Sukiman, H. Yusop, R. Mokhtar, and N.H. Jaafar (2016).
“Competition-Based Learning: Determining the Strongest Skill that
Can Be Achieved Among Higher Education Learners,” Regional
Conference on Science, Technology, and Social Sciences: Business
and Social Sciences, pp. 505-516.

[18] I. Supriana, RD. Agustin, M. A. Bakar, & N.A.M. Zin, (2017).
“Serious games for effective learning,” 6th International Conference
on Electrical Engineering and Informatics (ICEEI’2017).

[19] (2017) “Welcome to the PC2 Home Page”. [Online]. Available:
https://pc2.ecs.csus.edu/

[20] Keuning, H., Jeuring, J., & Heeren, B. (2016). “Towards a
Systematic Review of Automated Feedback Generation for
Programming Exercises.” Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education
(ITiCSE’16), pp. 41–46. http://doi.org/10.1145/2899415.2899422

1918

