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Abstract— In the digital era, most of our highly sensitive documents are stored in computers. These documents are in a great threat 
unless protected using appropriate measures. Despite their several imperfections, passwords are becoming the de-facto mechanism 
for securing documents stored in local directories or on the websites. In this scheme users protect their documents using passwords. 
In order for such scheme to work, the passwords must be stored in the file system either in plain or hashed form so that they can be 
used as references when information is requested. This paper proposes innovative password-based protection system. Although the 
proposed system uses passwords for document protection, it proposes a completely different way of using and managing these 
passwords. Our system protects a stored document in terms of both the document itself and the password. Both the document’s 
content and the password are used along with random noises to generate security code that serves as a reference when the document 
is requested. The security code is neither reversible nor reproducible without a full knowledge of the password and the content of the 
document. The users of our system keep their passwords and provide them only when they first store the document and when they 
later request document retrieval. The passwords are never stored neither in their plain nor hashed forms. Experiments with our 
prototype implementation showed that our protection scheme is effective and passed important security tests. 
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I. INTRODUCTION 

Almost all of our sensitive documents are stored digitally 
in computers or other storage devices. Securing this digital 
information is a very challenging problem due to the ever-
advancing tools and techniques used by intruders to gain 
access to the repositories of this information. Researchers 
have proposed many ways to protect information from 
unauthorized access [1]–[6]. Passwords are widely used 
mechanisms to prevent unauthorized access to information 
[7]–[12]. In such a scheme, users protect their sensitive 
documents using passwords. These passwords are stored in 
the system and used for permitting or denying access to the 
password-protected information. To protect the passwords 
themselves, current security systems store these passwords 
in hashed forms rather than in plain forms. The security of 
the password is therefore solely protected by the 
irreversibility of these hash values. If intruders can reverse 
the hash value, the original password is recovered and the 
access to the information is gained. 

This paper advocates using a new approach for protecting 
passwords and controlling access to password-secured 
information. We call this new approach on-the-fly password-
based authentication. This type of authentication in which 
the system does not require the storage of user passwords 

may be the best way to protect passwords. It goes a long way 
toward allowing authenticating access requests without 
requiring any password to be stored internally in any place in 
the system. Such an authentication mechanism extremely 
restricts, or even fully eliminates, the ability of intruders to 
perform password-related penetration to the stored 
information since these passwords, which are required for 
accessing this information, simply do not exist in the system. 
Unlike the current measures that keep passwords in the 
system but protect them via  some method (e.g. hashing, 
salting), we believe that even if the original passwords are 
protected by some method, their presence in the system is 
likely to expose them, and consequently the information they 
protect, to a great risk. 

This paper proposes innovative password-based security 
system for controlling access to the information stored in its 
repository. Our system uses passwords to protect the 
information in a very unique way. Rather than storing these 
passwords internally in the security system in hashed or 
plain forms, our system allows users to keep the passwords 
in their favorite secure places. The fundamental part of our 
security system is the security code generator, which is a 
process that is composed of several operations: password 
expansion operation, complex-irreversible mapping 
operation, change amplification operation, and random noise 
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salting operation. This security code generation process 
utilizes user-provided passwords and documents to be 
protected along with a source of random noise to produce 
passcodes called security codes. These security codes are 
used by our system to authenticate future access requests.  

In addition, the paper offers a random generator, which is 
the source for all the random noises that are required by the 
operations of the security code generator to produce security 
codes. The input of the random generator consists of the 
passwords and documents and therefore its output varies as 
these inputs change. Along with the input information, the 
random generator state is continuously updated based on 
feedbacks collected during the generation process.  

The paper offers the following contributions. First, it 
proposes innovative security system for controlling access to 
stored information. Second, it proposes a security code 
generator to produce security codes, which provide 
mechanism for controlling access to protected information. 
Third, it proposes an effective random number generator 
whose input depends on user-provided passwords and the 
information to be protected and whose state is continuously 
updated using feedbacks collected during the generation 
process. “Secure-by-elimination” approach 

II. MATERIAL AND METHOD 

This section introduces the fundamental parts of our 
proposed system. It specifically presents the architecture of 
the system and discusses in great details the functional 
components of the system. 

A. System Architecture 

This paper proposes two-layer, password-based file 
protection system. Fig. 1 the high-level components of our 
proposed system. The first layer offers access control to the 
second layer. This layer is responsible for authenticating and 
permitting each access if it can be authorized. The second 
layer provides access to the file system only if the access 
control layer permits such an access. 

The access control layer maintains light-yet-fundamental 
up-to-date metadata about each file protected by our system. 
Each protected file is represented by a record in the metadata. 
The record consists of three pieces of information pertaining 
to a file: (1) the file name, (2) a hash value for the content of 
the file, and (3) a security code generated for this file. To 
build a record, the security system uses the content of the file 
as an input to some hash function (e.g. SHA-512) and 
produces a hash value. The security code generator creates a 
security code for a file using the hash value of the file and 
the user-provided password. Both the hash value and the 
security code are encrypted using any encryption method 
such Advanced Encryption Standard [13], [14] or 
κ−Lookback Text Encryption Technique [15].These three 
pieces of information form a record for the file and are 
stored in the metadata. 

The security system uses its metadata for authenticating 
access requests. When the security system receives a request 
for accessing a specific file, it accesses the metadata and 
retrieves the hash value corresponding to this file (if exists). 
The hash value is decrypted and passed on as an input to 
security code generator. The security code generator uses 
both the user-provided password and the hash value to 

compute, in way to be made clear later, the security code. 
The computed security code and the stored one after being 
decrypted are compared. If the provided password correct, 
the generated security code will match the stored one and 
consequently the access control layer permits the access to 
the file system. If the access control layer does not permit 
the access, the request is denied. Our system does not allow 
users to store their passwords. Instead, the users provide 
their passwords on the fly when they request an access to a 
specific file. Keeping the passwords away from the security 
system has many important security advantages. First, users 
do not have to worry about the security of their passwords 
since these passwords are under their control. Second, the 
system is no longer a leaking point that can be hacked to 
learn passwords. Third, users have full control over their 
passwords. 

 

 
Fig.1 The protection system architecture 

B. Hash Value Generation 

The system requires a hash value for each stored file. 
There is a plethora of hash algorithms that can be used to 
create hash values. The hashing algorithms SHA-x [16]–[19], 
MD-5 [20], and SWIFFT [21] are just to name few. Our 
system requires no specific hash function algorithm. The 
only requirement is that the hash algorithm is highly 
sensitive to its input. That is, a tiny change to the input must 
cause drastic changes to the output. For the purpose of our 
implementation, Secure Hash Algorithm (SHA-512) is used. 
SHA-512 is novel hash function that uses in its computations 
64-bit words. This algorithm processes a text of arbitrary 
length and condenses it to 512-bit string called message 
digest. SHA-512 has two stages of processing. The first 
stage involves padding  bits to the message so that it 
becomes multiple of 512 bits. In the second stage, the SHA-
512 applies six logical functions each of which operates on 
64-bit words and produces 64-bit word. (The logical 
operations can be found elsewhere [19].) 

C. Security Code Generator 

The security code generator is the most fundamental 
component in our system. In particular, this component 
creates the security code, which is the security piece that is 
used by our security system for permitting or denying access 
to a specific file. Fig. 2 shows the generator’s main 
operations. In the following subsections, we discuss these 
operations and then describe how these operations work 
synergistically for generating the security code. 
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Fig. 2 The structure of the security code generator. 

1) Feedback-Base Random Generator: The random 
generator plays very essential role in our security system. It 
provides sequences of random numbers as an input for all 
the operations of the security code generator. It particularly 
provides input for the mesh-based mapping technique, 
change amplifier operation, expansion operation, and the 
noise insertion operation. In order for these operations to 
function properly, the random generator must possess some 
important properties. First, the random sequences must be 
unpredictable. This ensures that the output of the operations 
has no pattern that can be exploited by adversaries. Second, 
it must have long period so that the generator can provide 
sequences of random numbers with any arbitrary length. 
Third, its input must depend on the user’s provided 
credentials and the documents being secured. In addition, its 
sequences must be reproducible given the appropriate 
information. 

  

 
Fig.3 the main components of the feedback based random generator 

This paper proposes a feedback-back random generator. 
Fig. 3 shows the components of the random generator. The 
initial input to the random generator, pSeed, is a sequence of 
n unicode symbols. Since the generator requires numerical 
seeds, we create one from the input pSeed using the 
following formula. 

 

                                  (1) 

 
Where val (si) is the integer index of si in the unicode 

encoding system and si is the symbol with the index i in 
pSeed. The input nSeed is passed to the shift and XOR 
operation. This operation adds random noises to its input by 
applying the logic in Fig. 4 [22].  

 

 
Fig.4 Shift and XOR operations 

 
The logic in Fig. 4 defines three operations that apply to 

the integer input nSeed. These operations are XOR operation 
“⊕”, left arithmetic bit shift “ ”, and right logic bit shift 

“ ”. The operation “ ” left shifts the bits of nSeed a 
number of positions equals to a in (1) and to c in (3) while 
both preserving the sign bit of the number. The operation 
“ ” right shifts the bits of nSeed by b positions without 
preserving the sign bit. The shift amounts a, b, and c are 
specified as described in [23]. 

The output of shift and XOR operations is the integer, 

which is used to generate the random numberusing the 

module operation  % n (n is the maximum limit of the 

random numbers range). The number  is also used as a 

feedback to the input of the generator. The feedback  is 
concatenated to the left of the previous seed to create a new 
seed, which is used for generating the next random number. 
Due to the continuous feedback, the pSeed keeps growing 
and the formula (1) may result in an overflow. When the 
overflow occurs, the random generator reduces the size of 
the pSeed to the leftmost 64 symbols and uses these symbols 
as a new seed. Unlike other random generators that use the 
previously generated value as a seed for generating the next 
random number, our generator creates each new random 
number using a new seed. This has a very important impact 
on the predictability. The current random number has no 
relation to the next random numbers. More precisely, each 
random number is independent of the other random numbers 
in the sequence. 

2) Change Amplifier: One of the most important security 
requirements in our approach is that changes in passwords or 
hash values irrespective of their magnitude (one bit or more) 
must cause tremendous changes to the corresponding 
security code. This high sensitivity to input’s changes makes 
the relationship between the generated security code and 
both the passwords and hash values from which the security 
code is generated very complicated and untraceable. The 
objective of our proposed change amplifier is to detect 
changes in passwords and hash values, magnify these 
changes, and propagate them to every symbol in the output. 
Fig. 5 shows the three operations of the amplifier.  

The amplifier executes first forward pass, which performs 
XOR operation on its input symbols to propagate the change 
left to right. The forward pass produces its output as follows. 
The first symbol in the input is the first symbol in the output 
without change. The rest of the output symbols are computed 
by XORing the most recently computed symbol with the 
current input symbol.  
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Fig. 5 The three operations of the change amplifier 

The amplifier executes next the symbol-wise scrambling 
operation. This operation makes sharp changes to its input 
symbols. It performs fine-grained scrambling to the bits of 
each symbol, possibly yielding a new symbol. Specifically, 
the scrambling operation performs different number of left 
shifting to each symbol in the input. The number of shifts is 
a positive random number that is less than the number of bits 
that represent the symbol. The feedback random generator 

provides the required random numbers for the functionality 
of the scrambling function.  

The amplifier finally executes the backward pass. This 
operation has the same functionality as the forward pass 
except that it starts from the end of the input. Therefore, the 
last symbol in the input is copied to the last position in the 
output with no change. The rest of the symbols are computed 
by XORing the most recently computed symbol with the 
current input symbol.  

These three operations may be repeated k times for better 
change propagation. Typically, k=3 is very adequate for 
largely amplifying and propagating the changes so that every 
symbol in the input is impacted. 

The amplifier plays a very vital role in our system. In 
order for the security code to disclose no information about 
the password and the hash value that may help in predicting 
them, it must be the case that tiny changes to the input 
(passwords, hash values) necessarily cause drastic change to 
the output (security code). Therefore, the main objective of 
the amplifier is to ensure that changes to the inputs entail 
large changes to the output. 

Table I shows the response of the change amplifier to its 
input’s changes. The first column shows a sample of 
different inputs to the amplifier and the second column 
shows its output (in hexadecimal). As the table shows, the 
operation responded to changes in its input by producing 
remarkably different output. Consider, for instance, the input 
in the first and the second rows, which differ in only single 
bit (the first “a” changed to “b”). It is clear that this tiny 
change resulted in a totally different output. The position of 
the change makes also significant difference. Consider, for 
instance, the inputs in rows 2, 3, and 4, which all differ in 
the position of the different single bit. It is clear that the 
output greatly varies depending on the position of the bit 
change. The rest of the rows lead to similar conclusions. 

3) Expansion Operation 

The expansion operation expands its input (especially 
short passwords) to any desired length. Fig. 6 illustrates the 
logic of our expansion operation. The expansion operation 
includes a substitution operation and three structure 
modification operations. These operations work 
synergistically to introduce deep alterations to the input (Key) 

and yield a larger version of the key.  The substitution 
operation replaces every symbol in the input Key with a new 
symbol using the AES's substitution operation [13]. The 
AES substitution operation is simply a table lookup 
operation that utilizes 16×16 matrix of byte values called S-
Box. The S-BOX is composed of all the possible 
combinations of 8 bits (28 = 16 × 16 = 256). Mapping each 
symbol into a new one is performed as follows. The left half 
bits of the input symbol is used to index a particular row of 
the S-BOX and the right half bits to index a column. The 
content of the corresponding cell is retrieved as the result of 
the mapping. For instance, if the symbol is “a” (in binary 
“01100001”), then the left half bits “0110” (“6” in decimal) 
and the right half bits “0001” (“1” in decimal). The symbol 
at the cell (6, 1) is retrieved as a replacement for “a”. The 
result of the substitution operation for the input Key is the 
string S whose length equals to the length of Key. Both S and 
Key are concatenated to yield a larger key (Nkey). 

 

TABLE I  
THE IMPACT OF THE CHANGE AMPLIFIER TECHNIQUE ON THE INPUT’S CHANGES 

Input Output (Hex) 
aaaaaaaaaaaaaaaa D9 1C 08 B A8 F7 80 51 94 A1 6D 19 4C EF 5B 7C 
baaaaaaaaaaaaaaa 6D 01 4F 83 70 C1 37 F8 57 5E 83 0B 61 34 70 86 
aaaaaaaaaaaaaaab 49 64 6D EF A2 B 85 1C E6 7C 49 79 7F 32 13 52 
aaaaabaaaaaaaaaa 5D B C2 2A 37 9D D3 91 01 DA FE DA 61 8A 46 C7 
cccccccccccccccc 4E 9C 5F F5 05 5F D8 63 5F 50 7D D7 8D 5F E4 4E 
ccccccccbbbbbbbb BE FA 07 06 87 2E 4D 65 B5 D0 B6 45 1C 29 AB 54 
The apple on tree 8C 64 C0 53 44 8E 96 08 2B B0 31 83 23 BA 86 62 
She apple on tree B4 BE EF 39 67 E7 15 BF 43 2B 2E 7D 77 A3 EE 82 
Cat in the hat.! D0 85 D2 8F AF 08 51 DB 4C DE 19 FD 98 D1 28 F5 
Cat in the hat.? B5 C8 53 94 60 E3 5E 5C 43 F0 45 4F 16 8D 06 96 
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Fig. 6 The expansion operation main components 

The new key (Nkey) is passed to the feedback random 
generator as a seed and also to the structure modification 
operations for further expansion. The random number 
generator provides sequences of random numbers for the 
structure modification operations. The structure modification 
operations include bit mutation operation and two 
permutation operations: coarse-grained and fine-grained 
operations. These three operations operate on the input 
(Nkey) in the order specified in Fig. 6. The coarse-grained 
permutation splits the bit string representation of Nkey into 
groups G1, G2, …, Gs each of which is four bits. These 

groups are randomly reordered by swapping the group Gi 
with the group , where the index ri is a random number 
obtained from our feedback based random generator. The 
permutated bit string is passed to the bit mutation operation, 
which performs bit flipping with a probability of p. The bit 
flipping is performed as follows. Let n be the length the bit 
string. We obtain a sequence of n+1 random numbers from 
our feedback generator. The sequence of random numbers is 
confined to the interval [0, 1] by dividing each random by 
the maximum random number generated by our generator. 
The probability p is the first random number in the confined 
sequence. The rest of n random numbers in the sequence are 
used for flipping bits. Each bit in the string is flipped only if 
the value of the corresponding random number is less than or 
equal to p. For instance, if p =0.25 and the bit string is 
“011001” and the random sequence is “0.98, 0.24, 0.6, 0.01, 
0.7, 0.5”, the 2nd and 4th bits are flipped to yield the new bit 
string “001101”. Finally, the fine-grained permutation 
operation performs exactly the same functionality as the 
coarse-grained, but with groups of two bits (rather than of 
four bits). The output of the expansion method is a string w, 
which is a deeply manipulated version of Nkey. The string w 
is concatenated with the original Nkey to create a larger Nkey. 
If the desired length of Nkey has not yet been reached, the 
expansion process is repeated. The Nkey’s symbols are 
mapped to new ones using the substitution operation. The 
resulting new string Skey is passed to the structure alteration 
operations for further processing. The resulting string w is 
concatenated with the original Nkey. Table 2 shows a sample 
of keys and their 32-symbol expanded version (Nkey). 

 

4) Two-Dimensional Mesh Based Mapping: This section 
introduces our proposed mesh-based mapping. We introduce 
the mesh concept in the mesh operations, and define the 
mapping using the mesh. 

•  Two-Dimensional Mesh. The two-dimensional mesh 
is conceptually an N × N array. Fig. 7 shows an 
example of a mesh. We designate the two dimensions 
as the horizontal and vertical dimensions. We list N 
unicode symbols in each dimension. The indexes of 
the symbols in each dimension are non-negative 
integers 0, 1 ... N−1. For instance, the position of b in 
the horizontal dimension is 4 and the position of t in 
the vertical dimension is 6. Each cell in the mesh is a 
point (x, y), where x and y are the vertical and 
horizontal positions of a symbol respectively. The 
move from point Pi to point Pj has a horizontal or 
vertical distance depending on whether the direction 
of the move is along the horizontal or vertical 

dimension. Regardless of the direction of the move, 
we can calculate the distance between two points Pi 
and Pj as the absolute value of the difference between 
their indexes. Therefore, the horizontal distance 
between Pi and Pj is the difference between their 
indexes on the horizontal dimension. For instance, the 
horizontal distance between Q2 (0, 7) and P3 (0, 4) is 
abs (7 − 4) = 3. Similarly, the vertical distance from 
Pi to Pj is the absolute value of the difference between 
their vertical indexes. Each move within the mesh 
starts from a point and ends at another. We therefore 
capture this piece of information by the move 
direction. We annotate the direction of a move with 
respect to a point Pk by the flag “−” if the move is to a 
point with a lower index, and by the flag “+” if the 
move is to a point with a higher index regardless 
whether the move is along the horizontal or vertical 
dimension. For example, the move from Q2 to P3 is 

TABLE  II 
EXAMPLE OF THE OUTPUT (NKEY) OF OUR METHOD 

Key 32-symbol Nkey (in Hex) 
jHYP_56 77,0,1f,ed,8a,90,6b,f5,63,c0,55,7e,60,7f,88,75,1d,45,7b,4,b2,53,41,f3,5f,4c,48,d,5a,ed,25,93 
2A^s7W 26,ec,6a,73,b8,39,f7,ce,2,8f,6c,12,25,c1,cc,11,2c,1,a8,95,9d,de,ab,f8,db,8d,92,1b,43,7,eb,a7 
H@m 63,7c,e9,fb,10,1e,90,d1,1a,3,d8,ee,e4,a1,c4,84,e,fe,e8,9b,8,a8,41,80,c5,d8,c6,aa,1b,3c,d8,5a 

c@wmrt5 f,1,e6,eb,9,4f,90,76,7c,8e,e9,1,84,60,55,9,a,fe,c3,46,2a,96,54,b4,ba,71,8b,b2,5d,3c,b7,e7 
>y_se$8 37,4e,8a,73,e3,5,c5,9a,2f,7e,8f,11,6b,a6,9b,e1,b5,2c,7b,53,9d,d3,b6,f2,8c,6c,4d,a6,5c,11,c5,7a 
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annotated by “−” and from Q2 to P4 is annotated by 
“+”.  

 
Fig. 7 An example of a mesh. 

After introducing the distance and the move direction, 
we can now define a directive as follows. If the 
distance of the move from P to Q is d along the 
vertical or horizontal dimension, we annotate this by 
“−d” or “+d” depending on the position of Q with 
respect to P. We call “ ” a directive. 

• Mesh Operations. We associate two operations with 
the mesh. The first operation is called shuffle (R), 
which randomly reorders the symbols of each 
dimension using a sequence of random numbers R. 
The second operation is the mapping operation map (t, 
r), which maps a symbol t to the mesh using the 

random number r and produces a directive “” as a 
result of this mapping. The shuffle (R) operation 
randomly changes the orders of the symbols in a 
specific dimension. To reorder the symbols, the 
shuffling operation places the symbols of each 
dimension in an L×M array and makes use of a 
sequence of random numbers R (provided by our 
random generator) to shift the rows and the columns 
of this array. Each row i is left shifted some positions 
equal to the random number Ri ∈ R. Likewise, each 
column j is down shifted some positions equal to the 
random number CJ∈ R. After the shuffling is 
performed, the symbols are read row-wise and placed 
in the dimension of the mesh. Since the symbols of 
each dimension are reordered using a different 
sequence of random numbers, the order of the symbols 
on the horizontal dimension is necessarily different 
from the order of the symbols on the vertical 
dimension. Fig. 8 illustrates the reordering operation 
for the dimension symbols 
“ABCDEFGHIJKLMNOP.” The mapping operation 
map (t, r) takes a symbol t and a random number r as 
an input and returns a directive as an output. The 
random number r has dual objectives. First, the 
mapping operation uses r to select the mapping 
dimension for mapping the input symbol t. For this 
paper, the map operation selects the vertical 
dimension if the random number r is even and selects 
the horizontal dimension otherwise. Second, the 
mapping operation XORes the random number r with 

the resulting distance d to generate the distance part of 
the directive. 

 
Fig. 8 An example of random reordering of the dimension symbols 

• Mesh-Based Symbol Mapping. Based on the 
definition of the directive and the associated 
operations, we define mapping a symbol t to the 
directive “±d” as follows. The mapping operation map 
(t, r) begins from some starting point (x, y) within the 
mesh’s boundaries and uses the random number r to 
determine the mapping dimension. After determining 
the mapping dimension, the mapping operation moves 
along this dimension to the position of the symbol t. 
Let us suppose that the amount of the move is v. The 
distance of the move d is the result of XORing v with 
the random number r (that is, d=v ⊕ r). The distance 
of the move and its direction (“±”) concerning the 
starting point are compiled into a directive “±d” for 
that symbol. For instance, if the amount of the move is 
10, the direction of the move is to the lower indexes 
(flag “−”), and the current random number is 45, the 
mapping outputs the directive “−39” (39 = 10 ⊕ 45). 

5) Tuple Mapping: We utilize the mesh mapping to map 
an n-place tuple of symbols to a single directive. Let 

 be n-place tuples. First, the tuple mapping 
operation obtains a random point (h, v) within the boundary 
of the mesh using our random generator. The mapping 
operation reads the first symbol of the first tuple and 
maps it to mesh starting from the random point (h, v), 
yielding a directive . The starting point is updated based 
on the position of the recently mapped symbol in the mesh. 
Likewise, the second symbol of the tuple is mapped starting 
from the recently updated starting point to yield the 
directive . Mapping all the symbols of the tuple yields a 

sequence of n directives, say, , . For any 

subsequent tuple , the mapping operation maps the 
symbols of the tuple starting from the most recently updated 
starting point.  

The final result of mapping a tuple is computed as 

follows. The distances of the directives  

 are all XORed to produce the value S. The 
flags that represent the directions (“+” or “−”) are multiplied, 
and the outcome of the multiplication is the sign for the final 
directive. For instance, assume that mapping a 3-place tuple 
produced the directives +10, −6, +30. The final result of the 
mapping for this tuple would be − (10 ⊕ 6 ⊕ 30 = 18) = −18. 

Fig. 9 shows an example of mapping the tuple <e, a> to 
the mesh. We assume that the mesh has only a few symbols 
to simplify the example. Assuming the random numbers are 
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17, 32. First, the tuple mapping considers the first symbol 
“e” in the tuple. It starts with the randomly selected starting 
point, says (3, 5). Since the random number 17 is odd, the 
mapping selects the horizontal dimension as a mapping 
dimension and moves to the position of “e” in this 
dimension. The distance of the move is three cells to the 
lower index, and therefore the mapping produces the 
directive “−18” as the result of the mapping “e.” The starting 
point is now updated to (3, 2). The next symbol in the tuple 
is “a,” and the next random number is 32. Since the random 
number 32 is even, the mapping selects the vertical 
dimension as a mapping direction. It moves to the position 
of “a” in the vertical dimension. The distance of the move is 
two cells to the higher index. Therefore it produces the 
directive “+34” as the result of mapping the symbol “a” to 
the mesh.  The final result of mapping the tuple to the mesh 
is the result of XORing the two distances “18” and “34” and 
multiplying the two signs “−” and “+.”  The result is −48 (18 
⊕ 34 = 48, and “−” × “+” = “ −”).  

 
Fig. 9 A tuple mapping example. 

6) Security Code Generation: After describing all the 
operations of the security code generator in Fig. 2, we 
propose our technique for generating the security code. The 
security code generation creates a security code of m 
directives from a document and a user-provided password 
PW. Each directive is created by mapping an n-place tuple to 
the mesh. The generation process proceeds as follows (see 
Fig. 2). First, the system extends the user-provided password 
PW to k symbols using the expansion operation (Subsection 
4.3). In our approach, we put no restriction on the length of 
the user-provided password. That is, the users can provide 
passwords of any length (one symbol or more). We should 
emphasize, however, that although our system is capable of 

expanding the user-provided password to any arbitrary 
length, users must be aware that short passwords certainly 
involve high-security risk.  

Next, the system hashes the content of the document  
using any appropriate hash algorithm and produces the hash 
value . (We used SHA-512 in our proof of concept 

prototype.) The security code generation operation expands 
the hash value  into multiple of n using our expansion 

operation. Namely, the generation process expands the hash 
value  into m * n symbols. The hash value expansion has 

dual goals. First, large hash values allow for using tuples 
with a large size, which causes the results of the tuple 
mapping to highly diverse. Second, the resulting hash value 
depends not only on the document’s content but also on the 
effective expansion operation. In this case, the content of the 
document is more effectively hidden. The expanded hash 
value is passed into the change amplifier so that any change 
in the hash value propagates to every symbol in the 
expanded hash value. The output of the change amplification 
operation is the hash value .  

The system then splits  into n-place 

tuples . The tuple is a subsequence of  

that consists of the symbols from index 1 to index n; 
tuple consists of the symbols from n+1 to 2n, and so on. 
These tuples are mapped to the mesh as discussed in 
subsection E. The resulting sequence of m directives is 
further secured by salting its directives with random noise 
that comes from the random generator. To maximize the 
confusion, the random noise is generated and added to each 
directive as follows. First, the system prepares an additional 
instance of our feedback-based random generator by seeding 
this instance with the original hash value. We confine the 

output of the additional instance of the random generator to 
be within the interval [0, 1] so that we can use its output as 
probability values and use it as a selector. Specifically, for 
each random number ri generated by the expanded 
password-seeded random generator, we generate a random 
number qi from the hash-value-seeded random generator and 
select ri only if qi is less than a pre-specified value p. The 
selected random number ri is XORed with the distance value 
of the current input directive. The value p is specified 
randomly by taking the first non-zero random number 
generated by the hash-value-seeded generator. 
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Table III shows the result of three runs of our method. 

The table shows the expanded key and three hash values 
along with their plain and encrypted security codes. The 
hash values differ in only one bit. It is important to note how 
our method highly magnifies this minor change in the hash 
values and propagates it to all of the symbols of the security 
code. Consider row 2 and row 3 for instance. The hash 
values differ in only one bit (7 changed to 8). The different 
symbol is underlined and boldfaced. With a simple 
comparison, it is clear that the generated security codes 
(whether plain or encrypted) are largely different. The same 
conclusion can be drawn by comparing rows 2 and 4 or rows 
3 and 4. 

III.   RESULTS AND DISCUSSION  

We evaluate our proposed security system in this section. 
We analyze the performance of both the random generator 
and the security code generator as the two fundamental 
components on which all our system is built. For the random 
generator, we analyse the randomness properties of the 
output sequences and the correlation between the output 
sequences that are created using different initial inputs. For 
the security code generator, we analyse the impact of the 
changes to passwords and hash values on the security code. 
Effective security code generator should respond to the 
changes regardless of their magnitude or position in the 
input by making drastic changes to the output. 

A. Random Generator Performance Analysis 

We tested the performance of our random generator using 
two tests: randomness test and correlation test. The 
randomness test is used to check whether (1) the output of 
the generator deviates from randomness and (2) whether 

different inputs affect the randomness properties of the 
output. The correlation test checks if different inputs to the 
generator would ever produce sequences that are correlated. 

Because all the inputs to the random generator are 
passwords and hash values (Unicode strings), the input 
strings to the generator will be logically Unicode strings. To 
simulate the different password lengths that may be provided 
users, we used input strings with 3, 5, 6, and 8 Unicode 
symbols. The input strings are prepared using three sources. 
The first set of inputs are created using a password generator 
(online tool [24]). The second set consists of inputs with 
different lengths obtained from users (our students). The 
third set is created from the strings of the previous two sets 
by making a minor modification to randomly selected 
symbols of their strings. For each randomly selected string, 
we randomly selected one, two, and three symbols of the 
string and randomly changed a bit in the selected symbols. 
Therefore each string in the previous two sets produces three 
more mutated strings, and these three mutated strings differ 
slightly from the original one (in one, two, and three bits). 
The total number of strings in the three sets is 6,604.  

We expanded each string in the three sets to 32 symbols 
using our expansion operation. We then fed this expanded 
string as an input to the random generator, which produced a 
sequence of length 25,000 numbers. (25,000 random 
numbers are far more that we need in our system). All the 
numbers in the sequences are integers from 0 to 255. We 
then subjected these sequences to two important statistical 
tests: randomness test and correlation test. 

1) Randomness Test: Randomness test checks if the 
generated sequences deviate from randomness. We used 
three tests from the battery of randomness tests 
recommended by the National Institute for Standards and 

TABLE  III 
A SAMPLE OF THE SECURITY CODE GENERATOR OUTPUT 

Password (expanded): e3fab9b8b2921443d118665be1836b66b05d9f95a1976d2f7126dc74a2a343 

Hash Value 
457C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A013E16 

Security 
Code 

+132-162+206+115-232-27-134+41+143+252-235-33+217-90+229+211+187-94+80+241-80-
126-160+171-156-108+79+71+6+18+61-186 

Encrypted 
Security 
Code 

AC621A4D852D03C65E7E8AB31C491F9E6C73FEE6E47DD10618FA56E14E28F9347A7101
D3F8CDAC127D94FA8E6F34476F77AF8656E41AEBE61059B40083387F76A6B6A224E974
2E94EF18C9007419A85F0C550D588F4017C5FF6601546D46D344C1F1C14A3A95975836E4
0B5C84F814924605002A37C16EA0D8C8B1BBD6358B81 

Hash Value 
458C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A013E16 

Security 
Code 

+122-212+67-247+175+80+198+222+148-55+123+173+129+143-190+166-49+43+141-
31+22+9-203+20+182+164+50-138-10+1-157-45 

Encrypted 
Security 
Code 

B635850083EE9366182E07674900F47F8BB7924B30BA919341061FA3F64033FA95C3F3B68
F98FFC93D1D4CC3C1BC1DAE8D3C9183691F69BF65CCB8A96F96C4F88F6A75B565D536
412028F6E2940F1E66A238C1A8B87062A2293FD3A8AA0313C987C7B340C1B6C6B789031
92E5D8C9B8D2E725A7D3EA67314878357F51FC331BC 

Hash Value 
457C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A113E16 

Security 
Code 

+86+253-224+154+103+59-59+124-247-0-100-65+190+226+206+144+208+92-32+93-84-212-
222-31-148+93+97+92-214-209-212-156 

Encrypted 
Security 
Code 

2BEDC3EE5ADB97138B1A995C0EEAEF2B197A4BC15DFD3E6FA73814B148C28B520169
5C5A8290CADEB27CAADDB6E46C0D5786B549821A717625309B7055626754C009559AE
DB6C0EB26520965070AE92B8BC4F9593020FBC99D42BBFB010383D4C42A48D057878E
D9D5F53646A98FAF42474E19FC7DDFB5E2BC5B90644D2D752506 

 

2605



Technology (NIST) [25][26]. These tests are Runs Test, 
Frequency Test (Monobit), and Discrete Fourier Test 
(Spectral). These three tests require their input to be in 
binary rather than decimal numbers. We, therefore, 
transformed the sequences to binary representation. Since 
every number in the sequence is between 0 and 255, the 
binary representation of each random number is 8 bits. These 
8 bits are obtained by finding the binary equivalent of the 

number and padding zeroes to the most significant part of 
the binary representation if it is fewer than 8 bits. For 
instance, if the number is "12", its binary representation is 
"00001100". We applied these three tests to sequences of 
different lengths. The shorter sequences are prefixes of the 
larger sequence 25,000. (E.g. we selected the first 1,000 
random numbers to form a subsequence of 1,000). 

 

 
Table IV shows the results of the randomness tests. The 

leftmost column represents the size of the sequence (how 
many numbers). All the sequences with sizes of fewer than 
25,000 are prefixes of the large sequence (25,000). The 
boldfaced p-values mean that the corresponding test is 
significant (the sequence is not random).  As Table IV shows, 
all of the sequences passed the Runs and the Monobit  
randomness tests since the corresponding p-values 
(minimum, average) are greater than our threshold 0.05. All 
the sequences of length10,000 or longer passed the Spectral 
test.  Table IV shows that some sequences did not pass the 
Spectral test. 23 (out of 6,604) sequences of size 5,000 
numbers did not pass Spectral test. Furthermore, 1,503 
sequences of size 1,000 did not also pass Spectral test.   

We did not observe significant differences in the 
randomness between the sequences generated using long 
input strings (6, 8 symbols) and those generated using 

shorter strings (5, 3 symbols). We should emphasize, 
however, that although the length of the string does not 
affect the randomness properties of the sequences, from 
security standpoint short strings, if used as passwords, 
involve high-security risks.  

2) Correlation Test: The correlation test examines the 
impact of changing input strings on the relationship between 
random sequences.  In particular, we want to test if changes 
to the input strings (major or minor) create a correlation 
between the number sequences. We used the sequences 
generated in the previous subsection (A.1) to study the 
correlation. The sizes of the sequences are 5,000, 10,000, 
20,000, and 25,000. We computed the Pearson correlation 
between pairs of sequences with the same size and their 
corresponding p-values using MINITAB statistical software 
package [27].  

 

Table V shows the average value of the correlation, the 
standard deviation, the minimum, and maximum. The same 
table also shows the average, minimum, and maximum p-
values. All the correlations values are close to zero. All of 
the p-values are greater than the specified significance level 
(0.05). According to the p-values, the correlation values are 
not statistically different from zero. That is, according to the 

tested sequences, changing the input strings does not create a 
correlation between the sequences. This result is very 
significant because it supports the randomness of the output 
of our random generator regardless of the input string.  It 
also means that neither the length of the input string nor its 
difference from others results in correlation among the 
sequences (the outputs of the random generator). 

TABLE  IV   
RANDOMNESS TEST RESULTS 

Sequence Length 
Runs Test Monobit Test Spectral Test 

Min p-val. Aver. 
p-val. 

Max 
p-val. 

Min 
p-val. 

Aver. 
p-val. 

Max 
p-val. 

Min 
p-val. 

Aver. 
p-val. 

Max 
p-val. 

1,000 0.50 0.67 0.91 0.33 0.39 0.44 1E−−−−12* 0.0057* 0.28 
5,000 0.23 0.58 0.81 0.41 0.53 0.64 4.1E−−−−6* 0.081 0.14 
10,000 0.66 0.82 0.88 0.18 0.41 0.63 0.08 0.19 0.45 
15,000 0.70 0.92 0.99 0.51 0.57 0.62 0.11 0.22 0.35 
20,000 0.69 0.83 0.89 0.41 0.71 0.84 0.21 0.36 0.49 
25,000 0.58 0.88 0.96 0.48 0.69 0.77 0.32 0.508 0.79 
* Means the corresponding test is significant; that is the corresponding sequences deviate from randomness 

 

TABLE  V  
RESULTS OF THE CORRELATION TEST 

Sequence 
Correlation P-value 

Average St.Dev Min Max Min Average Max 

5000 0.01060 0.00723 0.002 0.021 0.124 0.702 0.886 
10000 0.00177 0.007001 −0.0016 0.0452 0.178 0.591 0.803 
20000 0.000456 0.005889 −0.016 0.01300 0.0630 0.6879 0.989 
25000 −0.00225 0.00681 −0.017 0.00700 0.092 0.5922 0.989 
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B. Security Code Generator Performance  

We evaluate in this section the performance of the 
security code generator. We measure the performance 
regarding the sensitivity of the security code generator to the 
input's change. To be effective, changes to the generator's 
input must cause large changes to its output regardless of the 
input change's magnitude (single bit or more). This aspect is 
called the avalanche effect. If the avalanche effect is poor 
(changing bits in the input does not entail significant 
changes to the output), the intruders may make predictions 
about the input (especially passwords). The performance 
evaluation involves three important experiments that give 
clear indications about the performance. These experiments 
include. 

• Measuring the impact of changing the passwords on the 
performance while neutralizing the effect of the file 
content. 

• Measuring the impact of changing the file content on 
the performance while neutralizing the effect of the 
password. 

• Measuring the impact of freely changing the file 
content and the passwords on the performance. 

 These experiments aim at covering all the possible 
scenarios that affect the generated security code. That is 
because the only two inputs that can vary and affect the 

security generation process is the password and file content. 
Therefore, our experiments vary the values of passwords and 
file contents and measure the impact of this variation on the 
performance. 

1) Password Change Impact: This section discusses the 
impact of changing passwords on the produced security code. 
For this purpose, we fix the file's content and change only 
the passwords. To reasonably cover the possible scenarios, 
we prepared the passwords as follows. We asked our 
colleagues and students at the university to provide us with 
passwords of length 3, 5, 6, 8 symbols. We received a total 
of 280 passwords. The second group consists of 10,000 
passwords, which are obtained from an online password 
generator. The third group is created by making random 
changes to some bits of the passwords in the previous two 
groups. We used the computer built-in random generator to 
select bits from a password and flip them randomly. These 
random changes affect one bit, two bits, three bits, four bits, 
five bits, six bits, ten bits, twenty bits, and thirty bits. 
Observe by making a minor bit change; we measure the 
sensitivity of the security code generator to these minor 
changes. The effective generator would translate these minor 
changes in the input into a remarkably large change to the 
output. The total of all passwords is 15,230 different 
passwords.  

 
Table VI shows an example of a password (row 1) and the 

same password after changing one or more bits. Observe that 
changing a bit or more resulted in remarkable changes to the 
corresponding security code. For instance, a security code 
that generated from the original password (row 1) is totally 
different from that generated from the original password 
with one bit changed (row 2). Additionally, the position of 
the change plays a significant role. Compare the security 
codes in rows 2 and 3. Both of them generated from 
passwords that differ from the original password (row 1) by 
only one bit. The only difference is the position of the 
changed bit.  

We used these passwords and the hash value generated for 
the file's content as an input to our security code generator. 
(The file content is just some text copied from Wikipedia.) 
The generator produced one security code for each password. 
The length of each security code is 32 directives. These 
security codes are then pair-wise compared (directive 
comparison) and count the number of differences. We 

consider two directives  and  in two 

security codes  and different if they differ in either 
the distance part or the flag (the sign + or−). For instance, 
the two directives +10, +31 are different because their 
distances are different and the two directives +22 and −22 
are different because they differ in the flag.  

 
 

TABLE VI   
PASSWORD VARIATIONS AND THEIR CORRESPONDING SECURITY CODES 

Changes Passwords The corresponding security code 

0 bit f5}<t@J] 
+132-162+206+115-232-27-134+41+143+252-235-33+217-90+229+211+187 
-94 +80+241-80-126-160+171-156-108+79+71+6+18+61-186 

1 bit f5}<t@I] -150+157+224+136+27+143+44-227-247+43-143-218-240-55+128+29+86 +123 
+222+218-218-48+42+155-161+177-171-131+24+99-128-49 

1 bit g5}<t@J] 
-192-160+108+181-250-201+124+0+69+235+210+111-144+7+72-218+79 

-220-86-220+216-171-174-5+141-237+58-27-227-15-12-192 

2 bits g5}<s@J] 
-51-90-143-95+72-228-148+131+129+169-123-37-33+194+11-30-152+129 
+57+52-19-88 +237-198+199+53+94-115-26-9-214-209 

3 bits g5}<s@K] -233+46+132+50-135+25-198-125+85-95+138+36-82-182+224-33+92-86 +190-
163-121 +131-206+222-231-210+225+189+240+171-133-83 

4 bits g6}<s@K] 
-45+220-12-32-75+253+16-128+34-12-8+108+113+247-20-169-45+160-244-6 
+26+96-38-20-57-76+146-211-69-213+52+156 

All bits mB&j4n +28-71-187+91-240+95-183-166-39-180-225+205-86-39+150+235-120+49 
-109+159+239+137+187+229-120-5+146+27-201+33+64-21 

 

2607



 

 
Table VII shows the results of the comparison. We adopt 

a very rigorous definition of the difference between security 
codes: two security codes are different if they differ in at 
least 30 directives out of the 32 directives that constitute 
each security code. Accordingly, none of the security codes 
are identical (i.e., all different) as the rightmost column in 
Table VII shows.   

2) File Content Change Impact: This section analyses 
the impact of the file's content variation on the generated 
security code. For this objective, we fix the password (used 
only one user-provided password of length 8) and vary the 
content of the file. We prepared three groups of files whose 
sizes range from 1,000 to 20,000 symbols. The first group 
contains files whose content is copied from web sources 
(Wikipedia). The second group contains files whose content 
is randomly generated. The third group consists of files that 
obtained from the first group after making random changes 

to symbols of the files. Random changes are made by 
randomly selecting symbols from a file and changes one of 
its bits. (The random selection is done using the computer 
built-in random generator.) The random changes affect one 
symbol, two symbols, three symbols, and up to one hundred 
symbols. The random changes are significant because they 
cause minor differences between the original file content and 
it has mutated one and thus help measure the sensitivity of 
the security code generator to the inputs' changes. Effective 
security code generator must respond to these changes 
regardless of their magnitude by causing drastic changes to 
the output. The total number of files is 10,122. We applied 
the security code generator to these files while using only 
one password for all of them. In this way, we neutralize the 
effect of password variations and only focus on the impact of 
the file content variations.  

 

Table VIII shows the result of the pairwise comparison 
between the different security codes. We use the same 
rigorous definition of the difference between security codes. 
Considering the numbers in Table VIII, although there are 
very few identical directives in some security code pairs, all 
the security codes are different for all the groups. That, each 
pair of security codes differs by at least 30 directives (out of 
32). 

3) Password-File Change Impact: This section 
discusses the impact file and password change on the 
performance of the security code generator. To do this, we 
prepared 1000 different files and 1000 different passwords 
(all the passwords are generated using an online password 
generator). We used the security code generator to produce a 
security code for each file-password. The generated 1000 
security codes are pairwise compared. All the 1000 security 
codes passed our definition of the difference between the 
security codes. That is, the generator produced different 
security codes for different files. These experiments indicate 
that our security code generator is highly sensitive to its 
input changes. This is evident in the experimental results in 
the subsections B.1, B.2, and B.3.  These test cases indicate 

that our security code generator has a high avalanche effect. 
We attribute this high avalanche effect to many effective 
operations that constitute our security code generator. 
Specifically, we mention the change amplification operation, 
expansion operation, the random generator, and effective 
mapping. 

C. Performance Analytical View 

As discussed throughout the paper, our security code 
generator uses complicated computations to produce the 
security code. The computations include non-linear 
substitutions, complex mapping, structural modifications, 
hashing, change amplifications, and random noise insertions. 
These operations highly weaken or even cut any relationship 
between the generated security code and both the original 
passwords and the hash values. Reversing the operations and 
obtaining the passwords or the hash values from the security 
code is infeasible without knowing the password and hash 
values. That is because the operations used to create the 
security code remove any trace of the input from the output 
(the security code).  

TABLE VII   
RESULT OF PAIRWISE SECURITY CODES COMPARISON (DIFFERENT PASSWORDS, SAME FILE CONTENT) 

Group Number of 
security codes 

Total number of 
directives 

Total of identical 
directives (pairwise) 

Identical security 
codes 

User provided 280 8960 0 0 
Generated from 
Online Tool 

10,000 320,000 3 0 

Bit Modified 4,950 158,400 0 0 

 

TABLE VIII   
RESULT OF PAIRWISE SECURITY CODES COMPARISON (SAME PASSWORD, DIFFERENT FILES) 

Group Number of 
security codes 

Total number 
of directives 

Total of identical 
directives (pairwise) 

Identical security 
codes 

Plain Files 3,905 124,960 6 0 
Random Files 5,000 160,000 21 0 
Modified files 1,217 38, 944 2 0 
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The input used for producing the security code comes 
from the passwords, documents to be protected, and from the 
random generator whose input depends not only on the 
password and document but also on the ongoing updates to 
its state. These updates to the state result from continuous 
feedback obtained from the generator’s output during 
generating each random number. This means that the 
security of the documents is not merely maintained by the 
password, but also by the document itself and other 
information that involve both passwords and documents.  

The security code generator has a high avalanche effect 
(as shown in subsection B). Learning passwords from the 
security code generator is therefore very unlikely from 
security standing point. Moreover, the passwords are never 
stored in the system neither in plain nor in hashed form. The 
system thus cannot be a leaking point for these passwords. 
Finally, security codes and hash values are all encrypted 
using the expanded user password as an encryption key. This 
adds further protection to the stored information in our 
system. 

Before we leave this section, we make some points. The 
used benchmarks to test our system are reasonably large. 
The content of the documents are either random or copied 
from web resources or created by making micro changes to 
the documents’ contents. The benchmark (passwords, 
documents) provide reasonable coverage for possible 
situations. The passwords are selected from different sources: 
actual users and online password generation tools. Also, to 
these two sets of passwords, a third one is obtained by 
making fine-grained random modifications to password in 
the two sets. The fine-grained random modification 
guarantees minor differences between passwords of the third 
set from one side and the original passwords from the other 
side.  As our experiments showed, the security generator 
maintained a high avalanche effect despite the changes to the 
passwords, files’ content, or both. This promising conclusion 
gives indications that the high performance of the security 
code generator does not change with the changes of the input.   

D.  Related Work 

To the best of our knowledge, our protection system is 
unique. The closest systems to ours are those that use 
passwords to protect their stored information [1]–[3]. In 
these systems, users are asked to provide passwords to 
prevent unauthorized access. The provided passwords are 
typically stored in their plain or hashed form in a particular 
file and are used later to gain access to the corresponding 
document. Current systems never store passwords in 
understandable form since this would expose these 
passwords to a great risk of being accessed and used. 
Current systems instead hash the passwords and store the 
hashed values as references to use when access to the 
document is requested. In this way, even if adversaries 
access the passwords file, they cannot open the documents 
since these passwords will be rehashed and the result will 
not match the stored password. It is clear if the adversaries 
can predict a password from its hash value, they can access 
the document. The security in these systems hence is solely 
ensured by the reliability of the hashing algorithm. However, 
this is not the only possible attack [28]. Aadversaries may 
use techniques to find a string (not necessarily the same as 

the user-provided password) that produces the same hash 
value for some user-password. In this case, the security of 
the document is greatly jeopardized. Additionally, [29] 
proposed an effective technique for guessing passwords. As 
reported in [29], most of the passwords that are stored in 
password managers can be guessed with a high probability.  

Unlike these systems, our system protection works 
differently. The security code, which is stored with the 
protected information, depends not only on the password per 
se, but also on the information to be protected. In this way, 
rather than having one piece of information (the password), 
our system ensures the security of information using both the 
password and document content.  Furthermore, our system 
stores password neither in their plain nor in their hashed 
form. The only stored piece is the security code, which is 
produced through a process whose inputs are the password, 
the document to be protected by this password, and the 
random noise that is generated using the former two inputs. 
That is, our system ensures the security of the password by 
eliminating this password rather than ensuring its privacy 
using hashing mechanisms. 

Other systems [7]–[9] use a slightly similar protection 
mechanism to ours. The authors [8] proposed a method 
called PwdHash that produces different password using the 
user password and website information. In such a 
mechanism, users passwords are protected because even if 
the hackers were able to receive the user password on a 
different website, this password would not be useful. 
Although this idea seems attractive, authors [7] showed that 
PwdHash is susceptible to the different type of attacks. 
Authors [9] reported several password managers that are 
used for user authentications. They suggested some 
enhancements to the security of these managers such as 
requiring users’ actions when they type in their passwords or 
using some sort of secure filling. 

Although there is a superficial similarity to our systems, 
our system differs in two ways. First, our system uses the 
document content to consolidate the passwords rather than 
using website information, which can be cloned. Second, our 
system adds randomness noises that further diverges the 
security code from the content of the document and the 
password. 

Password security managers (vaults) have some 
similarities to our system. Authors in [30] propped an 
effective method for securing passwords by encrypting the 
vault using some master key. To protect against the offline 
hacking, the author suggested the creation of many decoy 
vaults associated with the real vault. In this case, even if 
hackers were able to decrypt the vault, they never know 
whether the vault is the real one or not — authors in [31] 
proposed honey encryption mechanism to protect password 
vaults. In such an approach, when hackers attempt to decrypt 
that vault using the wrong password, the result is plausible-
looking decoy plaintexts (passwords) called honey messages. 
Therefore, hackers have no clue whether they obtained real 
passwords or faked ones. The proposed vault security 
approach in [32] follows the same line of protection as in [30] 
and [31], but intelligently produces a plausible-looking 
passwords vault for each master password tried to decrypt 
the vault.  
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Although these approaches provide a high protection 
mechanism, authors [29], [33] proposed ways to attack and 
guess the right password with high probability. In particular, 
authors [29] showed that even though these approaches 
purport high protection for password vaults, they have 
significant weaknesses that can be exploited and 
consequently recover the correct passwords. In contrast to 
these approaches, our approach works in a really different 
way. It uses an “eliminate-to-protect” approach to secure 
passwords. Therefore, if the passwords are not stored, there 
is nothing for hackers to recover.  

IV.  CONCLUSIONS  

We proposed on the fly authentication scheme for 
controlling access requests. Although our scheme uses 
passwords to protect information from unauthorized access, 
the passwords are kept with the users and are never stored in 
the system. Rather than directly using passwords for 
permitting access requests, our system uses the security code 
as a reference and prompts the users to provide their 
passwords when they request access to some information. In 
this case, passwords are highly protected because (1) they 
are not stored in the system and (2) there is no way for 
predicting passwords from the security code. 

We conducted many experiments to evaluate our 
approach. We analyzed the performance of the random 
generator and the security code generator as the two 
fundamental components in our system. The random 
generator output (sequences of numbers) passed several 
important randomness tests recommended by NIST. This 
output also passed the correlation tests between the sequence 
pairs. The output of the random generator is unpredictable 
and depends on the information to be secured (passwords 
and the data itself). The security code generator has a very 
high avalanche effect. As we discussed in the performance 
section, even tiny changes to the input of the security code 
generator cause tremendous changes to the output. The 
unpredictability of the random generator and the high 
avalanche of the security code generator ensure high 
protection for both the passwords and the documents.  

Although our testing benchmarks provide reasonable 
coverage for all possible scenarios, more comprehensive 
testing is required. As future work, we will conduct more 
experiments to estimate our system’s performance better.  
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