

Vol.8 (2018) No. 6

ISSN: 2088-5334

On the Fly Access Request Authentication: Two-Layer Password-
Based Access Control Systems for Securing Information

Muhammed Jassem Al-Muhammed, Ahmad Daraiseh

Faculty of Information Technology, American University of Madaba, Madaba, Jordan
 E-mail: m.almuhammed@aum.edu.jo; a.daraiseh@aum.edu.jo

Abstract— In the digital era, most of our highly sensitive documents are stored in computers. These documents are in a great threat
unless protected using appropriate measures. Despite their several imperfections, passwords are becoming the de-facto mechanism
for securing documents stored in local directories or on the websites. In this scheme users protect their documents using passwords.
In order for such scheme to work, the passwords must be stored in the file system either in plain or hashed form so that they can be
used as references when information is requested. This paper proposes innovative password-based protection system. Although the
proposed system uses passwords for document protection, it proposes a completely different way of using and managing these
passwords. Our system protects a stored document in terms of both the document itself and the password. Both the document’s
content and the password are used along with random noises to generate security code that serves as a reference when the document
is requested. The security code is neither reversible nor reproducible without a full knowledge of the password and the content of the
document. The users of our system keep their passwords and provide them only when they first store the document and when they
later request document retrieval. The passwords are never stored neither in their plain nor hashed forms. Experiments with our
prototype implementation showed that our protection scheme is effective and passed important security tests.

Keywords— password-based security; information security; document protection; access control; security code; passcodes.

I. INTRODUCTION

Almost all of our sensitive documents are stored digitally
in computers or other storage devices. Securing this digital
information is a very challenging problem due to the ever-
advancing tools and techniques used by intruders to gain
access to the repositories of this information. Researchers
have proposed many ways to protect information from
unauthorized access [1]–[6]. Passwords are widely used
mechanisms to prevent unauthorized access to information
[7]–[12]. In such a scheme, users protect their sensitive
documents using passwords. These passwords are stored in
the system and used for permitting or denying access to the
password-protected information. To protect the passwords
themselves, current security systems store these passwords
in hashed forms rather than in plain forms. The security of
the password is therefore solely protected by the
irreversibility of these hash values. If intruders can reverse
the hash value, the original password is recovered and the
access to the information is gained.

This paper advocates using a new approach for protecting
passwords and controlling access to password-secured
information. We call this new approach on-the-fly password-
based authentication. This type of authentication in which
the system does not require the storage of user passwords

may be the best way to protect passwords. It goes a long way
toward allowing authenticating access requests without
requiring any password to be stored internally in any place in
the system. Such an authentication mechanism extremely
restricts, or even fully eliminates, the ability of intruders to
perform password-related penetration to the stored
information since these passwords, which are required for
accessing this information, simply do not exist in the system.
Unlike the current measures that keep passwords in the
system but protect them via some method (e.g. hashing,
salting), we believe that even if the original passwords are
protected by some method, their presence in the system is
likely to expose them, and consequently the information they
protect, to a great risk.

This paper proposes innovative password-based security
system for controlling access to the information stored in its
repository. Our system uses passwords to protect the
information in a very unique way. Rather than storing these
passwords internally in the security system in hashed or
plain forms, our system allows users to keep the passwords
in their favorite secure places. The fundamental part of our
security system is the security code generator, which is a
process that is composed of several operations: password
expansion operation, complex-irreversible mapping
operation, change amplification operation, and random noise

2598

salting operation. This security code generation process
utilizes user-provided passwords and documents to be
protected along with a source of random noise to produce
passcodes called security codes. These security codes are
used by our system to authenticate future access requests.

In addition, the paper offers a random generator, which is
the source for all the random noises that are required by the
operations of the security code generator to produce security
codes. The input of the random generator consists of the
passwords and documents and therefore its output varies as
these inputs change. Along with the input information, the
random generator state is continuously updated based on
feedbacks collected during the generation process.

The paper offers the following contributions. First, it
proposes innovative security system for controlling access to
stored information. Second, it proposes a security code
generator to produce security codes, which provide
mechanism for controlling access to protected information.
Third, it proposes an effective random number generator
whose input depends on user-provided passwords and the
information to be protected and whose state is continuously
updated using feedbacks collected during the generation
process. “Secure-by-elimination” approach

II. MATERIAL AND METHOD

This section introduces the fundamental parts of our
proposed system. It specifically presents the architecture of
the system and discusses in great details the functional
components of the system.

A. System Architecture

This paper proposes two-layer, password-based file
protection system. Fig. 1 the high-level components of our
proposed system. The first layer offers access control to the
second layer. This layer is responsible for authenticating and
permitting each access if it can be authorized. The second
layer provides access to the file system only if the access
control layer permits such an access.

The access control layer maintains light-yet-fundamental
up-to-date metadata about each file protected by our system.
Each protected file is represented by a record in the metadata.
The record consists of three pieces of information pertaining
to a file: (1) the file name, (2) a hash value for the content of
the file, and (3) a security code generated for this file. To
build a record, the security system uses the content of the file
as an input to some hash function (e.g. SHA-512) and
produces a hash value. The security code generator creates a
security code for a file using the hash value of the file and
the user-provided password. Both the hash value and the
security code are encrypted using any encryption method
such Advanced Encryption Standard [13], [14] or
κ−Lookback Text Encryption Technique [15].These three
pieces of information form a record for the file and are
stored in the metadata.

The security system uses its metadata for authenticating
access requests. When the security system receives a request
for accessing a specific file, it accesses the metadata and
retrieves the hash value corresponding to this file (if exists).
The hash value is decrypted and passed on as an input to
security code generator. The security code generator uses
both the user-provided password and the hash value to

compute, in way to be made clear later, the security code.
The computed security code and the stored one after being
decrypted are compared. If the provided password correct,
the generated security code will match the stored one and
consequently the access control layer permits the access to
the file system. If the access control layer does not permit
the access, the request is denied. Our system does not allow
users to store their passwords. Instead, the users provide
their passwords on the fly when they request an access to a
specific file. Keeping the passwords away from the security
system has many important security advantages. First, users
do not have to worry about the security of their passwords
since these passwords are under their control. Second, the
system is no longer a leaking point that can be hacked to
learn passwords. Third, users have full control over their
passwords.

Fig.1 The protection system architecture

B. Hash Value Generation

The system requires a hash value for each stored file.
There is a plethora of hash algorithms that can be used to
create hash values. The hashing algorithms SHA-x [16]–[19],
MD-5 [20], and SWIFFT [21] are just to name few. Our
system requires no specific hash function algorithm. The
only requirement is that the hash algorithm is highly
sensitive to its input. That is, a tiny change to the input must
cause drastic changes to the output. For the purpose of our
implementation, Secure Hash Algorithm (SHA-512) is used.
SHA-512 is novel hash function that uses in its computations
64-bit words. This algorithm processes a text of arbitrary
length and condenses it to 512-bit string called message
digest. SHA-512 has two stages of processing. The first
stage involves padding bits to the message so that it
becomes multiple of 512 bits. In the second stage, the SHA-
512 applies six logical functions each of which operates on
64-bit words and produces 64-bit word. (The logical
operations can be found elsewhere [19].)

C. Security Code Generator

The security code generator is the most fundamental
component in our system. In particular, this component
creates the security code, which is the security piece that is
used by our security system for permitting or denying access
to a specific file. Fig. 2 shows the generator’s main
operations. In the following subsections, we discuss these
operations and then describe how these operations work
synergistically for generating the security code.

2599

Fig. 2 The structure of the security code generator.

1) Feedback-Base Random Generator: The random
generator plays very essential role in our security system. It
provides sequences of random numbers as an input for all
the operations of the security code generator. It particularly
provides input for the mesh-based mapping technique,
change amplifier operation, expansion operation, and the
noise insertion operation. In order for these operations to
function properly, the random generator must possess some
important properties. First, the random sequences must be
unpredictable. This ensures that the output of the operations
has no pattern that can be exploited by adversaries. Second,
it must have long period so that the generator can provide
sequences of random numbers with any arbitrary length.
Third, its input must depend on the user’s provided
credentials and the documents being secured. In addition, its
sequences must be reproducible given the appropriate
information.

Fig.3 the main components of the feedback based random generator

This paper proposes a feedback-back random generator.
Fig. 3 shows the components of the random generator. The
initial input to the random generator, pSeed, is a sequence of
n unicode symbols. Since the generator requires numerical
seeds, we create one from the input pSeed using the
following formula.

 (1)

Where val (si) is the integer index of si in the unicode

encoding system and si is the symbol with the index i in
pSeed. The input nSeed is passed to the shift and XOR
operation. This operation adds random noises to its input by
applying the logic in Fig. 4 [22].

Fig.4 Shift and XOR operations

The logic in Fig. 4 defines three operations that apply to

the integer input nSeed. These operations are XOR operation
“⊕”, left arithmetic bit shift “ ”, and right logic bit shift

“ ”. The operation “ ” left shifts the bits of nSeed a
number of positions equals to a in (1) and to c in (3) while
both preserving the sign bit of the number. The operation
“ ” right shifts the bits of nSeed by b positions without
preserving the sign bit. The shift amounts a, b, and c are
specified as described in [23].

The output of shift and XOR operations is the integer,

which is used to generate the random numberusing the

module operation % n (n is the maximum limit of the

random numbers range). The number is also used as a

feedback to the input of the generator. The feedback is
concatenated to the left of the previous seed to create a new
seed, which is used for generating the next random number.
Due to the continuous feedback, the pSeed keeps growing
and the formula (1) may result in an overflow. When the
overflow occurs, the random generator reduces the size of
the pSeed to the leftmost 64 symbols and uses these symbols
as a new seed. Unlike other random generators that use the
previously generated value as a seed for generating the next
random number, our generator creates each new random
number using a new seed. This has a very important impact
on the predictability. The current random number has no
relation to the next random numbers. More precisely, each
random number is independent of the other random numbers
in the sequence.

2) Change Amplifier: One of the most important security
requirements in our approach is that changes in passwords or
hash values irrespective of their magnitude (one bit or more)
must cause tremendous changes to the corresponding
security code. This high sensitivity to input’s changes makes
the relationship between the generated security code and
both the passwords and hash values from which the security
code is generated very complicated and untraceable. The
objective of our proposed change amplifier is to detect
changes in passwords and hash values, magnify these
changes, and propagate them to every symbol in the output.
Fig. 5 shows the three operations of the amplifier.

The amplifier executes first forward pass, which performs
XOR operation on its input symbols to propagate the change
left to right. The forward pass produces its output as follows.
The first symbol in the input is the first symbol in the output
without change. The rest of the output symbols are computed
by XORing the most recently computed symbol with the
current input symbol.

2600

Fig. 5 The three operations of the change amplifier

The amplifier executes next the symbol-wise scrambling
operation. This operation makes sharp changes to its input
symbols. It performs fine-grained scrambling to the bits of
each symbol, possibly yielding a new symbol. Specifically,
the scrambling operation performs different number of left
shifting to each symbol in the input. The number of shifts is
a positive random number that is less than the number of bits
that represent the symbol. The feedback random generator

provides the required random numbers for the functionality
of the scrambling function.

The amplifier finally executes the backward pass. This
operation has the same functionality as the forward pass
except that it starts from the end of the input. Therefore, the
last symbol in the input is copied to the last position in the
output with no change. The rest of the symbols are computed
by XORing the most recently computed symbol with the
current input symbol.

These three operations may be repeated k times for better
change propagation. Typically, k=3 is very adequate for
largely amplifying and propagating the changes so that every
symbol in the input is impacted.

The amplifier plays a very vital role in our system. In
order for the security code to disclose no information about
the password and the hash value that may help in predicting
them, it must be the case that tiny changes to the input
(passwords, hash values) necessarily cause drastic change to
the output (security code). Therefore, the main objective of
the amplifier is to ensure that changes to the inputs entail
large changes to the output.

Table I shows the response of the change amplifier to its
input’s changes. The first column shows a sample of
different inputs to the amplifier and the second column
shows its output (in hexadecimal). As the table shows, the
operation responded to changes in its input by producing
remarkably different output. Consider, for instance, the input
in the first and the second rows, which differ in only single
bit (the first “a” changed to “b”). It is clear that this tiny
change resulted in a totally different output. The position of
the change makes also significant difference. Consider, for
instance, the inputs in rows 2, 3, and 4, which all differ in
the position of the different single bit. It is clear that the
output greatly varies depending on the position of the bit
change. The rest of the rows lead to similar conclusions.

3) Expansion Operation

The expansion operation expands its input (especially
short passwords) to any desired length. Fig. 6 illustrates the
logic of our expansion operation. The expansion operation
includes a substitution operation and three structure
modification operations. These operations work
synergistically to introduce deep alterations to the input (Key)

and yield a larger version of the key. The substitution
operation replaces every symbol in the input Key with a new
symbol using the AES's substitution operation [13]. The
AES substitution operation is simply a table lookup
operation that utilizes 16×16 matrix of byte values called S-
Box. The S-BOX is composed of all the possible
combinations of 8 bits (28 = 16 × 16 = 256). Mapping each
symbol into a new one is performed as follows. The left half
bits of the input symbol is used to index a particular row of
the S-BOX and the right half bits to index a column. The
content of the corresponding cell is retrieved as the result of
the mapping. For instance, if the symbol is “a” (in binary
“01100001”), then the left half bits “0110” (“6” in decimal)
and the right half bits “0001” (“1” in decimal). The symbol
at the cell (6, 1) is retrieved as a replacement for “a”. The
result of the substitution operation for the input Key is the
string S whose length equals to the length of Key. Both S and
Key are concatenated to yield a larger key (Nkey).

TABLE I
THE IMPACT OF THE CHANGE AMPLIFIER TECHNIQUE ON THE INPUT’S CHANGES

Input Output (Hex)
aaaaaaaaaaaaaaaa D9 1C 08 B A8 F7 80 51 94 A1 6D 19 4C EF 5B 7C
baaaaaaaaaaaaaaa 6D 01 4F 83 70 C1 37 F8 57 5E 83 0B 61 34 70 86
aaaaaaaaaaaaaaab 49 64 6D EF A2 B 85 1C E6 7C 49 79 7F 32 13 52
aaaaabaaaaaaaaaa 5D B C2 2A 37 9D D3 91 01 DA FE DA 61 8A 46 C7
cccccccccccccccc 4E 9C 5F F5 05 5F D8 63 5F 50 7D D7 8D 5F E4 4E
ccccccccbbbbbbbb BE FA 07 06 87 2E 4D 65 B5 D0 B6 45 1C 29 AB 54
The apple on tree 8C 64 C0 53 44 8E 96 08 2B B0 31 83 23 BA 86 62
She apple on tree B4 BE EF 39 67 E7 15 BF 43 2B 2E 7D 77 A3 EE 82
Cat in the hat.! D0 85 D2 8F AF 08 51 DB 4C DE 19 FD 98 D1 28 F5
Cat in the hat.? B5 C8 53 94 60 E3 5E 5C 43 F0 45 4F 16 8D 06 96

2601

Fig. 6 The expansion operation main components

The new key (Nkey) is passed to the feedback random
generator as a seed and also to the structure modification
operations for further expansion. The random number
generator provides sequences of random numbers for the
structure modification operations. The structure modification
operations include bit mutation operation and two
permutation operations: coarse-grained and fine-grained
operations. These three operations operate on the input
(Nkey) in the order specified in Fig. 6. The coarse-grained
permutation splits the bit string representation of Nkey into
groups G1, G2, …, Gs each of which is four bits. These

groups are randomly reordered by swapping the group Gi
with the group , where the index ri is a random number
obtained from our feedback based random generator. The
permutated bit string is passed to the bit mutation operation,
which performs bit flipping with a probability of p. The bit
flipping is performed as follows. Let n be the length the bit
string. We obtain a sequence of n+1 random numbers from
our feedback generator. The sequence of random numbers is
confined to the interval [0, 1] by dividing each random by
the maximum random number generated by our generator.
The probability p is the first random number in the confined
sequence. The rest of n random numbers in the sequence are
used for flipping bits. Each bit in the string is flipped only if
the value of the corresponding random number is less than or
equal to p. For instance, if p =0.25 and the bit string is
“011001” and the random sequence is “0.98, 0.24, 0.6, 0.01,
0.7, 0.5”, the 2nd and 4th bits are flipped to yield the new bit
string “001101”. Finally, the fine-grained permutation
operation performs exactly the same functionality as the
coarse-grained, but with groups of two bits (rather than of
four bits). The output of the expansion method is a string w,
which is a deeply manipulated version of Nkey. The string w
is concatenated with the original Nkey to create a larger Nkey.
If the desired length of Nkey has not yet been reached, the
expansion process is repeated. The Nkey’s symbols are
mapped to new ones using the substitution operation. The
resulting new string Skey is passed to the structure alteration
operations for further processing. The resulting string w is
concatenated with the original Nkey. Table 2 shows a sample
of keys and their 32-symbol expanded version (Nkey).

4) Two-Dimensional Mesh Based Mapping: This section
introduces our proposed mesh-based mapping. We introduce
the mesh concept in the mesh operations, and define the
mapping using the mesh.

• Two-Dimensional Mesh. The two-dimensional mesh
is conceptually an N × N array. Fig. 7 shows an
example of a mesh. We designate the two dimensions
as the horizontal and vertical dimensions. We list N
unicode symbols in each dimension. The indexes of
the symbols in each dimension are non-negative
integers 0, 1 ... N−1. For instance, the position of b in
the horizontal dimension is 4 and the position of t in
the vertical dimension is 6. Each cell in the mesh is a
point (x, y), where x and y are the vertical and
horizontal positions of a symbol respectively. The
move from point Pi to point Pj has a horizontal or
vertical distance depending on whether the direction
of the move is along the horizontal or vertical

dimension. Regardless of the direction of the move,
we can calculate the distance between two points Pi
and Pj as the absolute value of the difference between
their indexes. Therefore, the horizontal distance
between Pi and Pj is the difference between their
indexes on the horizontal dimension. For instance, the
horizontal distance between Q2 (0, 7) and P3 (0, 4) is
abs (7 − 4) = 3. Similarly, the vertical distance from
Pi to Pj is the absolute value of the difference between
their vertical indexes. Each move within the mesh
starts from a point and ends at another. We therefore
capture this piece of information by the move
direction. We annotate the direction of a move with
respect to a point Pk by the flag “−” if the move is to a
point with a lower index, and by the flag “+” if the
move is to a point with a higher index regardless
whether the move is along the horizontal or vertical
dimension. For example, the move from Q2 to P3 is

TABLE II
EXAMPLE OF THE OUTPUT (NKEY) OF OUR METHOD

Key 32-symbol Nkey (in Hex)
jHYP_56 77,0,1f,ed,8a,90,6b,f5,63,c0,55,7e,60,7f,88,75,1d,45,7b,4,b2,53,41,f3,5f,4c,48,d,5a,ed,25,93
2A^s7W 26,ec,6a,73,b8,39,f7,ce,2,8f,6c,12,25,c1,cc,11,2c,1,a8,95,9d,de,ab,f8,db,8d,92,1b,43,7,eb,a7
H@m 63,7c,e9,fb,10,1e,90,d1,1a,3,d8,ee,e4,a1,c4,84,e,fe,e8,9b,8,a8,41,80,c5,d8,c6,aa,1b,3c,d8,5a

c@wmrt5 f,1,e6,eb,9,4f,90,76,7c,8e,e9,1,84,60,55,9,a,fe,c3,46,2a,96,54,b4,ba,71,8b,b2,5d,3c,b7,e7
>y_se$8 37,4e,8a,73,e3,5,c5,9a,2f,7e,8f,11,6b,a6,9b,e1,b5,2c,7b,53,9d,d3,b6,f2,8c,6c,4d,a6,5c,11,c5,7a

2602

annotated by “−” and from Q2 to P4 is annotated by
“+”.

Fig. 7 An example of a mesh.

After introducing the distance and the move direction,
we can now define a directive as follows. If the
distance of the move from P to Q is d along the
vertical or horizontal dimension, we annotate this by
“−d” or “+d” depending on the position of Q with
respect to P. We call “ ” a directive.

• Mesh Operations. We associate two operations with
the mesh. The first operation is called shuffle (R),
which randomly reorders the symbols of each
dimension using a sequence of random numbers R.
The second operation is the mapping operation map (t,
r), which maps a symbol t to the mesh using the

random number r and produces a directive “” as a
result of this mapping. The shuffle (R) operation
randomly changes the orders of the symbols in a
specific dimension. To reorder the symbols, the
shuffling operation places the symbols of each
dimension in an L×M array and makes use of a
sequence of random numbers R (provided by our
random generator) to shift the rows and the columns
of this array. Each row i is left shifted some positions
equal to the random number Ri ∈ R. Likewise, each
column j is down shifted some positions equal to the
random number CJ∈ R. After the shuffling is
performed, the symbols are read row-wise and placed
in the dimension of the mesh. Since the symbols of
each dimension are reordered using a different
sequence of random numbers, the order of the symbols
on the horizontal dimension is necessarily different
from the order of the symbols on the vertical
dimension. Fig. 8 illustrates the reordering operation
for the dimension symbols
“ABCDEFGHIJKLMNOP.” The mapping operation
map (t, r) takes a symbol t and a random number r as
an input and returns a directive as an output. The
random number r has dual objectives. First, the
mapping operation uses r to select the mapping
dimension for mapping the input symbol t. For this
paper, the map operation selects the vertical
dimension if the random number r is even and selects
the horizontal dimension otherwise. Second, the
mapping operation XORes the random number r with

the resulting distance d to generate the distance part of
the directive.

Fig. 8 An example of random reordering of the dimension symbols

• Mesh-Based Symbol Mapping. Based on the
definition of the directive and the associated
operations, we define mapping a symbol t to the
directive “±d” as follows. The mapping operation map
(t, r) begins from some starting point (x, y) within the
mesh’s boundaries and uses the random number r to
determine the mapping dimension. After determining
the mapping dimension, the mapping operation moves
along this dimension to the position of the symbol t.
Let us suppose that the amount of the move is v. The
distance of the move d is the result of XORing v with
the random number r (that is, d=v ⊕ r). The distance
of the move and its direction (“±”) concerning the
starting point are compiled into a directive “±d” for
that symbol. For instance, if the amount of the move is
10, the direction of the move is to the lower indexes
(flag “−”), and the current random number is 45, the
mapping outputs the directive “−39” (39 = 10 ⊕ 45).

5) Tuple Mapping: We utilize the mesh mapping to map
an n-place tuple of symbols to a single directive. Let

 be n-place tuples. First, the tuple mapping
operation obtains a random point (h, v) within the boundary
of the mesh using our random generator. The mapping
operation reads the first symbol of the first tuple and
maps it to mesh starting from the random point (h, v),
yielding a directive . The starting point is updated based
on the position of the recently mapped symbol in the mesh.
Likewise, the second symbol of the tuple is mapped starting
from the recently updated starting point to yield the
directive . Mapping all the symbols of the tuple yields a

sequence of n directives, say, , . For any

subsequent tuple , the mapping operation maps the
symbols of the tuple starting from the most recently updated
starting point.

The final result of mapping a tuple is computed as

follows. The distances of the directives

 are all XORed to produce the value S. The
flags that represent the directions (“+” or “−”) are multiplied,
and the outcome of the multiplication is the sign for the final
directive. For instance, assume that mapping a 3-place tuple
produced the directives +10, −6, +30. The final result of the
mapping for this tuple would be − (10 ⊕ 6 ⊕ 30 = 18) = −18.

Fig. 9 shows an example of mapping the tuple <e, a> to
the mesh. We assume that the mesh has only a few symbols
to simplify the example. Assuming the random numbers are

2603

17, 32. First, the tuple mapping considers the first symbol
“e” in the tuple. It starts with the randomly selected starting
point, says (3, 5). Since the random number 17 is odd, the
mapping selects the horizontal dimension as a mapping
dimension and moves to the position of “e” in this
dimension. The distance of the move is three cells to the
lower index, and therefore the mapping produces the
directive “−18” as the result of the mapping “e.” The starting
point is now updated to (3, 2). The next symbol in the tuple
is “a,” and the next random number is 32. Since the random
number 32 is even, the mapping selects the vertical
dimension as a mapping direction. It moves to the position
of “a” in the vertical dimension. The distance of the move is
two cells to the higher index. Therefore it produces the
directive “+34” as the result of mapping the symbol “a” to
the mesh. The final result of mapping the tuple to the mesh
is the result of XORing the two distances “18” and “34” and
multiplying the two signs “−” and “+.” The result is −48 (18
⊕ 34 = 48, and “−” × “+” = “ −”).

Fig. 9 A tuple mapping example.

6) Security Code Generation: After describing all the
operations of the security code generator in Fig. 2, we
propose our technique for generating the security code. The
security code generation creates a security code of m
directives from a document and a user-provided password
PW. Each directive is created by mapping an n-place tuple to
the mesh. The generation process proceeds as follows (see
Fig. 2). First, the system extends the user-provided password
PW to k symbols using the expansion operation (Subsection
4.3). In our approach, we put no restriction on the length of
the user-provided password. That is, the users can provide
passwords of any length (one symbol or more). We should
emphasize, however, that although our system is capable of

expanding the user-provided password to any arbitrary
length, users must be aware that short passwords certainly
involve high-security risk.

Next, the system hashes the content of the document
using any appropriate hash algorithm and produces the hash
value . (We used SHA-512 in our proof of concept

prototype.) The security code generation operation expands
the hash value into multiple of n using our expansion

operation. Namely, the generation process expands the hash
value into m * n symbols. The hash value expansion has

dual goals. First, large hash values allow for using tuples
with a large size, which causes the results of the tuple
mapping to highly diverse. Second, the resulting hash value
depends not only on the document’s content but also on the
effective expansion operation. In this case, the content of the
document is more effectively hidden. The expanded hash
value is passed into the change amplifier so that any change
in the hash value propagates to every symbol in the
expanded hash value. The output of the change amplification
operation is the hash value .

The system then splits into n-place

tuples . The tuple is a subsequence of

that consists of the symbols from index 1 to index n;
tuple consists of the symbols from n+1 to 2n, and so on.
These tuples are mapped to the mesh as discussed in
subsection E. The resulting sequence of m directives is
further secured by salting its directives with random noise
that comes from the random generator. To maximize the
confusion, the random noise is generated and added to each
directive as follows. First, the system prepares an additional
instance of our feedback-based random generator by seeding
this instance with the original hash value. We confine the

output of the additional instance of the random generator to
be within the interval [0, 1] so that we can use its output as
probability values and use it as a selector. Specifically, for
each random number ri generated by the expanded
password-seeded random generator, we generate a random
number qi from the hash-value-seeded random generator and
select ri only if qi is less than a pre-specified value p. The
selected random number ri is XORed with the distance value
of the current input directive. The value p is specified
randomly by taking the first non-zero random number
generated by the hash-value-seeded generator.

2604

Table III shows the result of three runs of our method.

The table shows the expanded key and three hash values
along with their plain and encrypted security codes. The
hash values differ in only one bit. It is important to note how
our method highly magnifies this minor change in the hash
values and propagates it to all of the symbols of the security
code. Consider row 2 and row 3 for instance. The hash
values differ in only one bit (7 changed to 8). The different
symbol is underlined and boldfaced. With a simple
comparison, it is clear that the generated security codes
(whether plain or encrypted) are largely different. The same
conclusion can be drawn by comparing rows 2 and 4 or rows
3 and 4.

III. RESULTS AND DISCUSSION

We evaluate our proposed security system in this section.
We analyze the performance of both the random generator
and the security code generator as the two fundamental
components on which all our system is built. For the random
generator, we analyse the randomness properties of the
output sequences and the correlation between the output
sequences that are created using different initial inputs. For
the security code generator, we analyse the impact of the
changes to passwords and hash values on the security code.
Effective security code generator should respond to the
changes regardless of their magnitude or position in the
input by making drastic changes to the output.

A. Random Generator Performance Analysis

We tested the performance of our random generator using
two tests: randomness test and correlation test. The
randomness test is used to check whether (1) the output of
the generator deviates from randomness and (2) whether

different inputs affect the randomness properties of the
output. The correlation test checks if different inputs to the
generator would ever produce sequences that are correlated.

Because all the inputs to the random generator are
passwords and hash values (Unicode strings), the input
strings to the generator will be logically Unicode strings. To
simulate the different password lengths that may be provided
users, we used input strings with 3, 5, 6, and 8 Unicode
symbols. The input strings are prepared using three sources.
The first set of inputs are created using a password generator
(online tool [24]). The second set consists of inputs with
different lengths obtained from users (our students). The
third set is created from the strings of the previous two sets
by making a minor modification to randomly selected
symbols of their strings. For each randomly selected string,
we randomly selected one, two, and three symbols of the
string and randomly changed a bit in the selected symbols.
Therefore each string in the previous two sets produces three
more mutated strings, and these three mutated strings differ
slightly from the original one (in one, two, and three bits).
The total number of strings in the three sets is 6,604.

We expanded each string in the three sets to 32 symbols
using our expansion operation. We then fed this expanded
string as an input to the random generator, which produced a
sequence of length 25,000 numbers. (25,000 random
numbers are far more that we need in our system). All the
numbers in the sequences are integers from 0 to 255. We
then subjected these sequences to two important statistical
tests: randomness test and correlation test.

1) Randomness Test: Randomness test checks if the
generated sequences deviate from randomness. We used
three tests from the battery of randomness tests
recommended by the National Institute for Standards and

TABLE III
A SAMPLE OF THE SECURITY CODE GENERATOR OUTPUT

Password (expanded): e3fab9b8b2921443d118665be1836b66b05d9f95a1976d2f7126dc74a2a343

Hash Value
457C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A013E16

Security
Code

+132-162+206+115-232-27-134+41+143+252-235-33+217-90+229+211+187-94+80+241-80-
126-160+171-156-108+79+71+6+18+61-186

Encrypted
Security
Code

AC621A4D852D03C65E7E8AB31C491F9E6C73FEE6E47DD10618FA56E14E28F9347A7101
D3F8CDAC127D94FA8E6F34476F77AF8656E41AEBE61059B40083387F76A6B6A224E974
2E94EF18C9007419A85F0C550D588F4017C5FF6601546D46D344C1F1C14A3A95975836E4
0B5C84F814924605002A37C16EA0D8C8B1BBD6358B81

Hash Value
458C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A013E16

Security
Code

+122-212+67-247+175+80+198+222+148-55+123+173+129+143-190+166-49+43+141-
31+22+9-203+20+182+164+50-138-10+1-157-45

Encrypted
Security
Code

B635850083EE9366182E07674900F47F8BB7924B30BA919341061FA3F64033FA95C3F3B68
F98FFC93D1D4CC3C1BC1DAE8D3C9183691F69BF65CCB8A96F96C4F88F6A75B565D536
412028F6E2940F1E66A238C1A8B87062A2293FD3A8AA0313C987C7B340C1B6C6B789031
92E5D8C9B8D2E725A7D3EA67314878357F51FC331BC

Hash Value
457C3D142EDA5EC307435C1BB569D253716D4EC2F74CDA00F265DE5F1A01EC45276BD
8DC5F75703A053EDECCB4756DA4A0DBF38190AEBDB86B50F0DF2A113E16

Security
Code

+86+253-224+154+103+59-59+124-247-0-100-65+190+226+206+144+208+92-32+93-84-212-
222-31-148+93+97+92-214-209-212-156

Encrypted
Security
Code

2BEDC3EE5ADB97138B1A995C0EEAEF2B197A4BC15DFD3E6FA73814B148C28B520169
5C5A8290CADEB27CAADDB6E46C0D5786B549821A717625309B7055626754C009559AE
DB6C0EB26520965070AE92B8BC4F9593020FBC99D42BBFB010383D4C42A48D057878E
D9D5F53646A98FAF42474E19FC7DDFB5E2BC5B90644D2D752506

2605

Technology (NIST) [25][26]. These tests are Runs Test,
Frequency Test (Monobit), and Discrete Fourier Test
(Spectral). These three tests require their input to be in
binary rather than decimal numbers. We, therefore,
transformed the sequences to binary representation. Since
every number in the sequence is between 0 and 255, the
binary representation of each random number is 8 bits. These
8 bits are obtained by finding the binary equivalent of the

number and padding zeroes to the most significant part of
the binary representation if it is fewer than 8 bits. For
instance, if the number is "12", its binary representation is
"00001100". We applied these three tests to sequences of
different lengths. The shorter sequences are prefixes of the
larger sequence 25,000. (E.g. we selected the first 1,000
random numbers to form a subsequence of 1,000).

Table IV shows the results of the randomness tests. The

leftmost column represents the size of the sequence (how
many numbers). All the sequences with sizes of fewer than
25,000 are prefixes of the large sequence (25,000). The
boldfaced p-values mean that the corresponding test is
significant (the sequence is not random). As Table IV shows,
all of the sequences passed the Runs and the Monobit
randomness tests since the corresponding p-values
(minimum, average) are greater than our threshold 0.05. All
the sequences of length10,000 or longer passed the Spectral
test. Table IV shows that some sequences did not pass the
Spectral test. 23 (out of 6,604) sequences of size 5,000
numbers did not pass Spectral test. Furthermore, 1,503
sequences of size 1,000 did not also pass Spectral test.

We did not observe significant differences in the
randomness between the sequences generated using long
input strings (6, 8 symbols) and those generated using

shorter strings (5, 3 symbols). We should emphasize,
however, that although the length of the string does not
affect the randomness properties of the sequences, from
security standpoint short strings, if used as passwords,
involve high-security risks.

2) Correlation Test: The correlation test examines the
impact of changing input strings on the relationship between
random sequences. In particular, we want to test if changes
to the input strings (major or minor) create a correlation
between the number sequences. We used the sequences
generated in the previous subsection (A.1) to study the
correlation. The sizes of the sequences are 5,000, 10,000,
20,000, and 25,000. We computed the Pearson correlation
between pairs of sequences with the same size and their
corresponding p-values using MINITAB statistical software
package [27].

Table V shows the average value of the correlation, the
standard deviation, the minimum, and maximum. The same
table also shows the average, minimum, and maximum p-
values. All the correlations values are close to zero. All of
the p-values are greater than the specified significance level
(0.05). According to the p-values, the correlation values are
not statistically different from zero. That is, according to the

tested sequences, changing the input strings does not create a
correlation between the sequences. This result is very
significant because it supports the randomness of the output
of our random generator regardless of the input string. It
also means that neither the length of the input string nor its
difference from others results in correlation among the
sequences (the outputs of the random generator).

TABLE IV
RANDOMNESS TEST RESULTS

Sequence Length
Runs Test Monobit Test Spectral Test

Min p-val. Aver.
p-val.

Max
p-val.

Min
p-val.

Aver.
p-val.

Max
p-val.

Min
p-val.

Aver.
p-val.

Max
p-val.

1,000 0.50 0.67 0.91 0.33 0.39 0.44 1E−−−−12* 0.0057* 0.28
5,000 0.23 0.58 0.81 0.41 0.53 0.64 4.1E−−−−6* 0.081 0.14
10,000 0.66 0.82 0.88 0.18 0.41 0.63 0.08 0.19 0.45
15,000 0.70 0.92 0.99 0.51 0.57 0.62 0.11 0.22 0.35
20,000 0.69 0.83 0.89 0.41 0.71 0.84 0.21 0.36 0.49
25,000 0.58 0.88 0.96 0.48 0.69 0.77 0.32 0.508 0.79
* Means the corresponding test is significant; that is the corresponding sequences deviate from randomness

TABLE V
RESULTS OF THE CORRELATION TEST

Sequence
Correlation P-value

Average St.Dev Min Max Min Average Max

5000 0.01060 0.00723 0.002 0.021 0.124 0.702 0.886
10000 0.00177 0.007001 −0.0016 0.0452 0.178 0.591 0.803
20000 0.000456 0.005889 −0.016 0.01300 0.0630 0.6879 0.989
25000 −0.00225 0.00681 −0.017 0.00700 0.092 0.5922 0.989

2606

B. Security Code Generator Performance

We evaluate in this section the performance of the
security code generator. We measure the performance
regarding the sensitivity of the security code generator to the
input's change. To be effective, changes to the generator's
input must cause large changes to its output regardless of the
input change's magnitude (single bit or more). This aspect is
called the avalanche effect. If the avalanche effect is poor
(changing bits in the input does not entail significant
changes to the output), the intruders may make predictions
about the input (especially passwords). The performance
evaluation involves three important experiments that give
clear indications about the performance. These experiments
include.

• Measuring the impact of changing the passwords on the
performance while neutralizing the effect of the file
content.

• Measuring the impact of changing the file content on
the performance while neutralizing the effect of the
password.

• Measuring the impact of freely changing the file
content and the passwords on the performance.

 These experiments aim at covering all the possible
scenarios that affect the generated security code. That is
because the only two inputs that can vary and affect the

security generation process is the password and file content.
Therefore, our experiments vary the values of passwords and
file contents and measure the impact of this variation on the
performance.

1) Password Change Impact: This section discusses the
impact of changing passwords on the produced security code.
For this purpose, we fix the file's content and change only
the passwords. To reasonably cover the possible scenarios,
we prepared the passwords as follows. We asked our
colleagues and students at the university to provide us with
passwords of length 3, 5, 6, 8 symbols. We received a total
of 280 passwords. The second group consists of 10,000
passwords, which are obtained from an online password
generator. The third group is created by making random
changes to some bits of the passwords in the previous two
groups. We used the computer built-in random generator to
select bits from a password and flip them randomly. These
random changes affect one bit, two bits, three bits, four bits,
five bits, six bits, ten bits, twenty bits, and thirty bits.
Observe by making a minor bit change; we measure the
sensitivity of the security code generator to these minor
changes. The effective generator would translate these minor
changes in the input into a remarkably large change to the
output. The total of all passwords is 15,230 different
passwords.

Table VI shows an example of a password (row 1) and the

same password after changing one or more bits. Observe that
changing a bit or more resulted in remarkable changes to the
corresponding security code. For instance, a security code
that generated from the original password (row 1) is totally
different from that generated from the original password
with one bit changed (row 2). Additionally, the position of
the change plays a significant role. Compare the security
codes in rows 2 and 3. Both of them generated from
passwords that differ from the original password (row 1) by
only one bit. The only difference is the position of the
changed bit.

We used these passwords and the hash value generated for
the file's content as an input to our security code generator.
(The file content is just some text copied from Wikipedia.)
The generator produced one security code for each password.
The length of each security code is 32 directives. These
security codes are then pair-wise compared (directive
comparison) and count the number of differences. We

consider two directives and in two

security codes and different if they differ in either
the distance part or the flag (the sign + or−). For instance,
the two directives +10, +31 are different because their
distances are different and the two directives +22 and −22
are different because they differ in the flag.

TABLE VI
PASSWORD VARIATIONS AND THEIR CORRESPONDING SECURITY CODES

Changes Passwords The corresponding security code

0 bit f5}<t@J]
+132-162+206+115-232-27-134+41+143+252-235-33+217-90+229+211+187
-94 +80+241-80-126-160+171-156-108+79+71+6+18+61-186

1 bit f5}<t@I] -150+157+224+136+27+143+44-227-247+43-143-218-240-55+128+29+86 +123
+222+218-218-48+42+155-161+177-171-131+24+99-128-49

1 bit g5}<t@J]
-192-160+108+181-250-201+124+0+69+235+210+111-144+7+72-218+79

-220-86-220+216-171-174-5+141-237+58-27-227-15-12-192

2 bits g5}<s@J]
-51-90-143-95+72-228-148+131+129+169-123-37-33+194+11-30-152+129
+57+52-19-88 +237-198+199+53+94-115-26-9-214-209

3 bits g5}<s@K] -233+46+132+50-135+25-198-125+85-95+138+36-82-182+224-33+92-86 +190-
163-121 +131-206+222-231-210+225+189+240+171-133-83

4 bits g6}<s@K]
-45+220-12-32-75+253+16-128+34-12-8+108+113+247-20-169-45+160-244-6
+26+96-38-20-57-76+146-211-69-213+52+156

All bits mB&j4n +28-71-187+91-240+95-183-166-39-180-225+205-86-39+150+235-120+49
-109+159+239+137+187+229-120-5+146+27-201+33+64-21

2607

Table VII shows the results of the comparison. We adopt

a very rigorous definition of the difference between security
codes: two security codes are different if they differ in at
least 30 directives out of the 32 directives that constitute
each security code. Accordingly, none of the security codes
are identical (i.e., all different) as the rightmost column in
Table VII shows.

2) File Content Change Impact: This section analyses
the impact of the file's content variation on the generated
security code. For this objective, we fix the password (used
only one user-provided password of length 8) and vary the
content of the file. We prepared three groups of files whose
sizes range from 1,000 to 20,000 symbols. The first group
contains files whose content is copied from web sources
(Wikipedia). The second group contains files whose content
is randomly generated. The third group consists of files that
obtained from the first group after making random changes

to symbols of the files. Random changes are made by
randomly selecting symbols from a file and changes one of
its bits. (The random selection is done using the computer
built-in random generator.) The random changes affect one
symbol, two symbols, three symbols, and up to one hundred
symbols. The random changes are significant because they
cause minor differences between the original file content and
it has mutated one and thus help measure the sensitivity of
the security code generator to the inputs' changes. Effective
security code generator must respond to these changes
regardless of their magnitude by causing drastic changes to
the output. The total number of files is 10,122. We applied
the security code generator to these files while using only
one password for all of them. In this way, we neutralize the
effect of password variations and only focus on the impact of
the file content variations.

Table VIII shows the result of the pairwise comparison
between the different security codes. We use the same
rigorous definition of the difference between security codes.
Considering the numbers in Table VIII, although there are
very few identical directives in some security code pairs, all
the security codes are different for all the groups. That, each
pair of security codes differs by at least 30 directives (out of
32).

3) Password-File Change Impact: This section
discusses the impact file and password change on the
performance of the security code generator. To do this, we
prepared 1000 different files and 1000 different passwords
(all the passwords are generated using an online password
generator). We used the security code generator to produce a
security code for each file-password. The generated 1000
security codes are pairwise compared. All the 1000 security
codes passed our definition of the difference between the
security codes. That is, the generator produced different
security codes for different files. These experiments indicate
that our security code generator is highly sensitive to its
input changes. This is evident in the experimental results in
the subsections B.1, B.2, and B.3. These test cases indicate

that our security code generator has a high avalanche effect.
We attribute this high avalanche effect to many effective
operations that constitute our security code generator.
Specifically, we mention the change amplification operation,
expansion operation, the random generator, and effective
mapping.

C. Performance Analytical View

As discussed throughout the paper, our security code
generator uses complicated computations to produce the
security code. The computations include non-linear
substitutions, complex mapping, structural modifications,
hashing, change amplifications, and random noise insertions.
These operations highly weaken or even cut any relationship
between the generated security code and both the original
passwords and the hash values. Reversing the operations and
obtaining the passwords or the hash values from the security
code is infeasible without knowing the password and hash
values. That is because the operations used to create the
security code remove any trace of the input from the output
(the security code).

TABLE VII
RESULT OF PAIRWISE SECURITY CODES COMPARISON (DIFFERENT PASSWORDS, SAME FILE CONTENT)

Group Number of
security codes

Total number of
directives

Total of identical
directives (pairwise)

Identical security
codes

User provided 280 8960 0 0
Generated from
Online Tool

10,000 320,000 3 0

Bit Modified 4,950 158,400 0 0

TABLE VIII
RESULT OF PAIRWISE SECURITY CODES COMPARISON (SAME PASSWORD, DIFFERENT FILES)

Group Number of
security codes

Total number
of directives

Total of identical
directives (pairwise)

Identical security
codes

Plain Files 3,905 124,960 6 0
Random Files 5,000 160,000 21 0
Modified files 1,217 38, 944 2 0

2608

The input used for producing the security code comes
from the passwords, documents to be protected, and from the
random generator whose input depends not only on the
password and document but also on the ongoing updates to
its state. These updates to the state result from continuous
feedback obtained from the generator’s output during
generating each random number. This means that the
security of the documents is not merely maintained by the
password, but also by the document itself and other
information that involve both passwords and documents.

The security code generator has a high avalanche effect
(as shown in subsection B). Learning passwords from the
security code generator is therefore very unlikely from
security standing point. Moreover, the passwords are never
stored in the system neither in plain nor in hashed form. The
system thus cannot be a leaking point for these passwords.
Finally, security codes and hash values are all encrypted
using the expanded user password as an encryption key. This
adds further protection to the stored information in our
system.

Before we leave this section, we make some points. The
used benchmarks to test our system are reasonably large.
The content of the documents are either random or copied
from web resources or created by making micro changes to
the documents’ contents. The benchmark (passwords,
documents) provide reasonable coverage for possible
situations. The passwords are selected from different sources:
actual users and online password generation tools. Also, to
these two sets of passwords, a third one is obtained by
making fine-grained random modifications to password in
the two sets. The fine-grained random modification
guarantees minor differences between passwords of the third
set from one side and the original passwords from the other
side. As our experiments showed, the security generator
maintained a high avalanche effect despite the changes to the
passwords, files’ content, or both. This promising conclusion
gives indications that the high performance of the security
code generator does not change with the changes of the input.

D. Related Work

To the best of our knowledge, our protection system is
unique. The closest systems to ours are those that use
passwords to protect their stored information [1]–[3]. In
these systems, users are asked to provide passwords to
prevent unauthorized access. The provided passwords are
typically stored in their plain or hashed form in a particular
file and are used later to gain access to the corresponding
document. Current systems never store passwords in
understandable form since this would expose these
passwords to a great risk of being accessed and used.
Current systems instead hash the passwords and store the
hashed values as references to use when access to the
document is requested. In this way, even if adversaries
access the passwords file, they cannot open the documents
since these passwords will be rehashed and the result will
not match the stored password. It is clear if the adversaries
can predict a password from its hash value, they can access
the document. The security in these systems hence is solely
ensured by the reliability of the hashing algorithm. However,
this is not the only possible attack [28]. Aadversaries may
use techniques to find a string (not necessarily the same as

the user-provided password) that produces the same hash
value for some user-password. In this case, the security of
the document is greatly jeopardized. Additionally, [29]
proposed an effective technique for guessing passwords. As
reported in [29], most of the passwords that are stored in
password managers can be guessed with a high probability.

Unlike these systems, our system protection works
differently. The security code, which is stored with the
protected information, depends not only on the password per
se, but also on the information to be protected. In this way,
rather than having one piece of information (the password),
our system ensures the security of information using both the
password and document content. Furthermore, our system
stores password neither in their plain nor in their hashed
form. The only stored piece is the security code, which is
produced through a process whose inputs are the password,
the document to be protected by this password, and the
random noise that is generated using the former two inputs.
That is, our system ensures the security of the password by
eliminating this password rather than ensuring its privacy
using hashing mechanisms.

Other systems [7]–[9] use a slightly similar protection
mechanism to ours. The authors [8] proposed a method
called PwdHash that produces different password using the
user password and website information. In such a
mechanism, users passwords are protected because even if
the hackers were able to receive the user password on a
different website, this password would not be useful.
Although this idea seems attractive, authors [7] showed that
PwdHash is susceptible to the different type of attacks.
Authors [9] reported several password managers that are
used for user authentications. They suggested some
enhancements to the security of these managers such as
requiring users’ actions when they type in their passwords or
using some sort of secure filling.

Although there is a superficial similarity to our systems,
our system differs in two ways. First, our system uses the
document content to consolidate the passwords rather than
using website information, which can be cloned. Second, our
system adds randomness noises that further diverges the
security code from the content of the document and the
password.

Password security managers (vaults) have some
similarities to our system. Authors in [30] propped an
effective method for securing passwords by encrypting the
vault using some master key. To protect against the offline
hacking, the author suggested the creation of many decoy
vaults associated with the real vault. In this case, even if
hackers were able to decrypt the vault, they never know
whether the vault is the real one or not — authors in [31]
proposed honey encryption mechanism to protect password
vaults. In such an approach, when hackers attempt to decrypt
that vault using the wrong password, the result is plausible-
looking decoy plaintexts (passwords) called honey messages.
Therefore, hackers have no clue whether they obtained real
passwords or faked ones. The proposed vault security
approach in [32] follows the same line of protection as in [30]
and [31], but intelligently produces a plausible-looking
passwords vault for each master password tried to decrypt
the vault.

2609

Although these approaches provide a high protection
mechanism, authors [29], [33] proposed ways to attack and
guess the right password with high probability. In particular,
authors [29] showed that even though these approaches
purport high protection for password vaults, they have
significant weaknesses that can be exploited and
consequently recover the correct passwords. In contrast to
these approaches, our approach works in a really different
way. It uses an “eliminate-to-protect” approach to secure
passwords. Therefore, if the passwords are not stored, there
is nothing for hackers to recover.

IV. CONCLUSIONS

We proposed on the fly authentication scheme for
controlling access requests. Although our scheme uses
passwords to protect information from unauthorized access,
the passwords are kept with the users and are never stored in
the system. Rather than directly using passwords for
permitting access requests, our system uses the security code
as a reference and prompts the users to provide their
passwords when they request access to some information. In
this case, passwords are highly protected because (1) they
are not stored in the system and (2) there is no way for
predicting passwords from the security code.

We conducted many experiments to evaluate our
approach. We analyzed the performance of the random
generator and the security code generator as the two
fundamental components in our system. The random
generator output (sequences of numbers) passed several
important randomness tests recommended by NIST. This
output also passed the correlation tests between the sequence
pairs. The output of the random generator is unpredictable
and depends on the information to be secured (passwords
and the data itself). The security code generator has a very
high avalanche effect. As we discussed in the performance
section, even tiny changes to the input of the security code
generator cause tremendous changes to the output. The
unpredictability of the random generator and the high
avalanche of the security code generator ensure high
protection for both the passwords and the documents.

Although our testing benchmarks provide reasonable
coverage for all possible scenarios, more comprehensive
testing is required. As future work, we will conduct more
experiments to estimate our system’s performance better.

REFERENCES
[1] D. Silver, S. Jana, and D. Boneh, E. Chen and C. Jackson, Password

Managers: Attacks and Defenses, In Proceedings of the 23rd
USENIX Security Symposium (San Diego, CA) August 20–22, 2014.

[2] S-N Hsu and Y-C Hou, A Document Protection Scheme using
Innocuous Messages as Camouflage, WSEAS TRANSACTIONS on
Information Science and Applications, No. 4, Vol. 6, pp. 694−703,
April 2009

[3] C.H. Lin and T.C. Lee, A Confused Document Encrypting Scheme
and Its Implementation, Computers & Security Journal, Vol.17, No.6,
pp.543−551, 1998

[4] A. Greenberg. Password Manager LastPass Got Breached Hard, June
2015. https://www.wired.com/2015/06/hack-brief-password-
manager-lastpass-got-breached-hard.

[5] J. Alex Halderman , Brent Waters , Edward W. Felten, A convenient
method for securely managing passwords, Proceedings of the 14th
international conference on World Wide Web, May, 2005, Chiba,
Japan doi:10.1145/1060745.1060815

[6] J. Bonneau. Guessing Human-Chosen Secrets. PhD dissertation,
University of Cambridge, 2012

[7] D. Llewellyn-Jone and G. Ryme, Cracking PwdHash: A Brute-force
Attack on Client-side Password Hashing, Proceeding of 11th
International Conference on Passwords (Passwords16 Bochum),
December, 2016

[8] B. Ross, C. Jackson, N. Miyake, D. Boneh, J. C. Mitchell, Stronger
Password Authentication Using Browser Extensions. In 14th
USENIX Security Symposium, 2005.
http://crypto.stanford.edu/PwdHash/

[9] D. Silver, S. Jana, D. Boneh, E. Chen, C. Jackson, Password
Managers: Attacks and Defenses, pp. 449−464. USENIX Association,
2014. https://www.usenix.org/ node/184476

[10] E. Stobert, R. Biddle, Expert Password Management, pp. 3–20.
Springer International Publishing, Cham, 2016.
http://dx.doi.org/10.1007/ 978-3-319-29938-9_1

[11] B. Ur, F. Alfieri, M Aung, L. Bauer, N. Christin, J. Colnago, L. Faith
Cranor, H. Dixon, P. E. Naeini, H. Habib, N. Johnson, W. Melicher,
Design and Evaluation of a Data-Driven Password Meter,
Proceedings of the 2017 SIGCHI Conference on Human Factors in
Computing Systems (CHI '17), May 2017.

[12] K-P. Yee and K. Sitake. Passpet: Convenient Password Management
and Phishing Protection. In Proceedings of the second symposium on
Usable privacy and security (SOUPS'06). ACM, New York, NY, pp.
32−43, 2006. DOI=http://dx.doi.org/10.1145/1143120.1143126

[13] J. Daemen and V. Rijmen. Advanced Encryption Standard (AES),
2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf/,
November 2001.

[14] W. Stallings, Cryptography and Network Security: Principles and
Practice, 7th edition, Pearson publishers, 2016.

[15] M. J. Al-Muhammed, Zitar, R.A., κ–Lookback Random-Based Text
Encryption Technique, Journal of King Saud University-Computer
and Information Sciences, 2017. doi:
https://doi.org/10.1016/j.jksuci.2017.10.002

[16] S. Gueron, S. Johnson, and J. Walker, SHA-512/256, In: Latifi, S.
(ed.) Information Technology: New Generations–ITNG 2011. pp.
354–358. IEEE Computer Society, 2011.

[17] Computer Security Resource Center
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-
08-01/documents/fips180-2.pdf

[18] Different versions of SHA-x, https://csrc.nist.gov.
[19] C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of SHA-

512/224 and SHA-512/256. In International Conference on the
Theory and Application of Cryptology and Information Security, pp.
612–630, Springer, 2014.

[20] R. Rivest, The MD5 Message Digest Algorithm, IETF RFC 1321,
1992

[21] V. Lyubashevsky, D. Micciancio, C, Peikert, and A. Rosen, SWIFFT:
A Modest Proposal for FFT Hashing, 2008

[22] Pierre LEcuyer. Random Number Generation. In James E. Gentle
Wolf-gang Karl Hrdle Yuichi Mori, editor, Handbook of
Computational Statistics, Springer Handbooks, chapter 3, pages
35−71. Springer Berlin Heidel-berg, 2012.

[23] G. Marsaglia, Xorshift RNGs, Journal of Statistical Software, 2003
[24] https://passwordsgenerator.net/, accessed March, 17-31, 2018
[25] J. Nechvatal A. Rukhin, J. Soto and et al. A Statistical Test Suite for

Random and Pseudorandom Number Generators for Cryptographic
Applications. Special publication 800-22, National Institute of
Standards and Technology (NIST), 2010

[26] M. Sýs and Z. Rïha. Faster Randomness Testing with the NIST
Statistical Test Suite. In Schaumont P. (eds) Chakraborty R.S.,
Matyas V., editor, Security, Privacy, and Applied Cryptography
Engineering, volume 8804 of Lecture Notes in Computer Science,
pages 272−284. Springer, Cham, 2014.

[27] Minitab 17 Statistical Software. Website, 2016. www.minitab.com.
[28] R. Hranický, P. Matoušek, O. Ryšavý, and V. Veselý. Experimental

Evaluation of Password Recovery in Encrypted Documents. In:
Proceedings of ICISSP 2016. Roma: SciTePress - Science and
Technology Publications, pp. 299−306, 2016.

[29] M. Golla, B. Beuscher, and M. Dürmut, On the Security of Cracking-
Resistant Password Vaults. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security (CCS '16). ACM, New York, NY, USA, 1230−1241. 2016.
DOI: https://doi.org/10.1145/2976749.2978416

2610

[30] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh. Kamouflage:
Loss-resistant Password Management. In European Conference on
Research in Computer Security, pp. 286–302. Springer, 2010.

[31] A. Juels and T. Ristenpart. Honey Encryption: Security Beyond the
Brute-Force Bound. In Advances in Cryptology−EUROCRYPT, pp.
293–310. Springer, 2014.

[32] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart. Cracking-
Resistant Password Vaults using Natural Language Encoders. In

IEEE Security and Privacy, pp. 481–498, 2015. Available at (April
2018) https://eprint.iacr.org/2015/788, as of August 16, 2016.

[33] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A.
Chaabane. OMEN: Faster Password Guessing Using an Ordered
Markov Enumerator. In International Symposium on Engineering
Secure Software and Systems, pp. 119–132. Springer, 2015.

2611

