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Abstract— A description of the beta decay of the nucleus Dy

168
 is presented using the Gamow-Teller force in the frame of the proton-

neutron Quasiparticle Random Phase Approximation (pn-QRPA). The single-particle ground states are obtained self-consistently 

using the Fayans energy density functional in an HFB scheme, and the quasiparticle states are built on the single-particle ground 

states using the BCS approximation. The calculation gives two Gamow-Teller transitions as expected, a half-life about one third of the 

experimental value, and a decay energy close to the experimental value. 

 

Keywords— beta decay, Gamow-Teller force, proton-neutron Quasiparticle Random Phase  Approximation. 

 

I. INTRODUCTION 

Since its invention many years ago [1], the proton-neutron 

Quasiparticle Random Phase Approximation (pn-QRPA) has 

remained the only microscopic approach available for beta 

decay calculation in heavy nuclei; however, it suffers from 

poor accuracy. Thus, the extensive  work by Staudt et al. [2] 

using the so-called second-generation microscopic method has 

reproduced half-lives for about 96 % of all known neutron-

rich nuclei with half-lives  ≤ 60 s within a factor of 10, with 

an average half-life ratio 67.1=y ; however, their use of a 

simple separable Gamow-Teller  force is far from satisfactory 

from the theoretical point of view. Meanwhile the Hartree-

Fock-Bogoliubov (HFB) method is known until now as the 

most general apporach for the calculation of the nuclear 

ground state [3], and the first self-consistent ground state 

calculation of this type on deformed nuclei, using the so-

called Fayans energy density functional ([4],[5]) has been 

performed by Kroemer et al. [6]. The self-consistent nuclear 

ground states obtained by the HFB method using this 

functional have been  applied by Borzov et al. [7] as a basis 

for the calculation of beta decay half-lives in spherical nuclei 

using the self-consistent BCS+pn-QRPA method.  

This paper uses a similar approach as in [7], however the 

present model employs a different interaction to obtain the 

excited daughter state, and the subnucleonic excitation, which 

was taken into account in Ref. [7], is neglected since we deal 

with low energies in the order of 1 MeV.   The   present model 

has  been  developed  for  the  calculation  of beta decay of the  

 

Gamow-Teller mode in even-even nuclei. It is interesting to 

apply the use of a Gamow-Teller exciting force to the 

description of more complex beta decay containing not only 

Gamow-Teller transitions, and the 
−β  decay from Dy168 to 

Ho168 meets the criteria since it contains two Gamow-Teller 

transition plus a 
−+ →10  transition with an overall decay 

energy of 1.4 MeV, as can be seen from Figure 1 [8]. 

 

Fig. 1. Experimental 
−β  decay scheme in Dy168. The figures next to the 

intensities are the  ftlog values. 
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II. THEORY 

The Fayans energy density functional may be expressed as 

a functional of the particle normal density  ρ  and the 

anomalous density ),( +νν ,  
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where the terms in the integral are the kinetic, volume, surface, 

Coulomb, spin-orbit and pairing energy densities, respectively. 

The sum of all energy density terms except kinε  is called the 

interaction energy density.  The Fayans density functional  

contains Fermi parameters such as the particle density in 

symmetrical nuclear matter at equilibrium, 
02ρ , the Fermi 

momentum,  
0

Fp , the Fermi energy, 
0

Fε ,  the sum and the 

difference between the proton and neutron relative densities  
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where ±1h  and ±2h   are parameters of the functional. The 

single-particle potential and the strength of the two-nucleon p-

h interaction may be derived from the derivative of the 

interaction energy density with respect to particle density ρ , 

while the particle-particle (p-p) interaction may be derived 

from the derivative of  the pairing energy with respect to 

pairing (anomalous) densities ),( +νν . 

In HFB theory one looks for the most general product wave 

functions consisting of independently moving quasi-particles. 

Within this approximation, the Hamiltonian reduces to two 

average potentials, the self-consistent field Γ , which is 

already known from the Hartree-Fock theory, with matrix 

elements 
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and an additional pairing field,  ∆  known from the BCS 

theory with matrix elements 

∑=∆
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The field Γ , also called the normal pairing potential, 

contains all the long-range p-h correlations which eventually 

lead to a deformed ground state, whereas the field ∆ , also 

called the anomalous pairing (tensor) pairing potential, sums 

up the short-range pairing correlations that can lead to a phase 

transition and a superfluid state. The BCS quasi-particles is a 

special type of quasi-particle defined by a special Bogoliubov 

transformation. Even though Γ (and Γ+= th , with t  
kinetic energy) is not diagonal, it is convenient to define 

single-particle energies by 

kkk h
  

=ε .           (6) 

Analogously one may define single-particle energy gap 

parameters by 

 

kkk   
∆=∆ .           (7) 

It is convenient to define an average pairing gap in the 

neighborhood of the Fermi level by averaging the values of 

k∆  directly above and below the Fermi level, 

2
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The HFB ground state eigenfunctions are obtained by 

solving the HFB  equations 
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where λε −Γ+=h , ε  and λ  are respectively the single-

particle energy and the chemical potential (equal to the Fermi 

energy Fε ). The Ek  are now the HFB quasiparticle energies. 

The (sub)matrices   U and V determine uniquely the HFB 

quasiparticle operator. In the present work, the iterative 

procedure to obtain a self-consistent solution to the HFB 

equation (9) starts with the Saxon-Woods single-particle 

potential [9] as the initial approximation to )(n/p rV
r

, and is 

described in detail in Ref. [6]. 

      The selection rules for a  Gamow-Teller transition are 

that the magnitude of the change in spin and isospin must 

equal 0 or 1 (not 0 → 0), and that the nuclear parity must be 

conserved. The matrix elements of the nuclear Gamow-Teller 

transitions for a 
−β  decay from an initial nuclear state 

 | 〉iN to the final state 〉fN|  may be expressed as 
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Using the spherical coordinate representation, the Gamow-

Teller matrix elements may be decomposed into some 

geometric factor and  a reduced matrix [10] 
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where the axial vector renormalization constant 26.1A =c  

[11], and the parent nuclear spin Ji = 0 in this investigation. 

The reduced transition probability GTB  is defined as 
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The total half-life 21 /T  may be obtained by summing over 

all energetically allowed transitions  
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where 76.6146 ±=D s [12]. 

   In the pn-QRPA model, the excitation from the parent 

nucleus into the daughter nucleus is mediated through the 

creation of pn-QRPA phonons [13]  

( )np
pn

np
pn

pn

αααα ωµωµϖ YXA −∑= +++
,      (14) 

where X  and  Y are called forward (p-h) and backward (h-p) 

amplitudes, respectively, with ω being the phonon energy and 
µ the phonon multipolarity, which in the Gamow-Teller case 
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is equal to 1+. In a self-consistent HFB+pn-QRPA model, the 

QRPA ground state should be approximated by the HFB 

ground state; in the present work, however, the self-consistent 

HFB single-particle ground states are used to calculate the 

simpler BCS quasi-particle states, and in this BCS+pn-QRPA 

model the QRPA matrix equation of the following form is 

obtained  
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where νω  is the ν-th eigenvalue of the excitation energy, and 
the matrix elements of the matrices A and B depend on the p-h 

force obtained from the Migdal-Larkin force [14]  
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where 'g  is the Gamow-Teller parameter, and 0C  a force 

constant. The parameters f and f’ are density-dependent, while 

g and g’ are density-independent parameters. The value 

2/17.00 =ρ  has been used in this work. In eq. (13), nf  are 

the corrected Fermi integrals for vector transition in the nth 

nuclear Gamow-Teller transition, which may be obtained from 

the value of log Af  [15] and the relativistic correction factor 

[16]. 

From the solutions of the QRPA matrix equation (15), 

excitation energy eigenvalues ω(i) and Gamow-Teller 

transition amplitudes are obtained. The decay energy for each 

transition, )(iQβ  is calculated using  

)()( nHpn imiQ ωλλβ −∆+−= ,      (17) 

where  0.782nH =∆m  MeV, and 
pn λλ −  is the difference of 

chemical potentials of neutrons and protons. 

Except for the determination of the proton-proton and the 

neutron-neutron  p-p pairing force parameters,  the numerical 

procedure for the ground state is identical with that in Ref. [6], 

using the so-called DF3 Fayans energy density functional 

parameter set. The proton-proton ( pf ) and the neutron-

neutron ( nf ) p-p pairing force parameters appearing in the 

ground state calculation are chosen as to produce the average 

pairing gap near the Fermi level (eq. 8) equal to the Lipkin-

Nogami gap parameter ([17]-[19]),  

675.0  ,727.0 −=−= np ff . To handle the large matrices 

involved in the QRPA calculation, one is forced to perform 

truncation of the configuration space. The matrix element 

selection has been carried out carefully in the present work in 

order to reproduce the theoretical Ikeda Gamow-Teller sum 

rule [20] as close as possible. Using 
3/1

0 41 −= Aωh , the 

selection of the configuration space was performed using the 

following rules. (a) The first step is, all matrix elements whose 

pair components have single-particle energies within  are 

included, and (b) all of the remaining matrix elements are 

ordered according to their magnitudes, and only the largest 

matrix elements are included so the total number of included 

matrix elements reach  900.  

 

III. RESULTS AND DISCUSSION 

The reference Lipkin-Nogami gap parameters in Dy168 for 

proton and neutron are 1.05 and 0.84, respectively, and these 

are reproduced exactly in the ground state calculation. The 

calculated binding energy is 1364 MeV, reproducing well the 

experimental value of 1363 MeV [21], giving a deviation of  

0.07 per cent. Figure 2 shows the calculated and experimental 

reduced transition probabilities, GTB , as a function of 

excitation energy in daughter nucleus relative to the 1+ state. 

Our result reproduces exactly two Gamow-Teller transitions 

as expected having the correct relative magnitudes of the 

reduced transition probabilities. The calculated energy 

difference of both Gamow-Teller transisions and their reduced 

transition probabilities are smaller by a factor of about two 

compared to experimental data. As shown in Table 1, the 

calculated total half-life is about one third of the experimental 

value, which is not satisfactory, while the calculated decay 

energy of 1.63 MeV is close to the experimental 1.4 MeV. 
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Fig. 2.  The calculated and experimental reduced transition probabilities, 

GTB  as a function of excitation energy of daughter nucleus. 

 

TABLE 1. CALCULATED  HALF-LIFE  AND  DECAY  ENERGY  COMPARED  

WITH  EXPERIMENTAL VALUES. 

Half-life (min) Decay energy (MeV) 

Calc. Exp. Calc. Exp. 

3.01 8.8(3) 1.63 1.4 

 

IV. CONCLUSIONS 

In summary, the complex 
−β decay in the nucleus Dy168 

has been described using the proton-neutron Quasiparticle 

Random Phase Approximation (pn-QRPA) on a BCS quasi-

particle basis, taking into account the Gamow-Teller 

transitions only. In view of the rather crude approximation 

made and the lack of accuracy in most previous microscopic 

beta decay calculations, the results are encouraging and 

motivate more extensive calculations to include other complex 

nuclear beta decays.  
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