

Vol.8 (2018) No. 4-2

ISSN: 2088-5334

An Educational System Design to Support Learning Transfer from
Block-based Programming Language to Text-based Programming

Language
Soyul Yi#1, Youngjun Lee#2

#Dept. of Computer Education, Korea National University of Education,
250 Taeseongtapyeon-ro, Cheongju-si, 28173, South Korea

 E-mail: 1soyulyi@knue.ac.kr, 2yjlee@knue.ac.kr

Abstract— In programming education, novices normally learn block-based programming languages first, then move on to text-based
programming languages. The effects of learning transfer on learning two or more languages in programming education has had
positive results. However, block-based and text-based programming languages have different figurations and methods, which can
occur cognitive confusion or increase cognitive overload for learners. Thus, it is necessary to develop an educational system that
supports learning transfer. We suggest using the following design principles: utilization of advanced organizers, problem-solving-
based learning content, and simple and intuitive user interface and screen layout. Two types of screen composition modes are
presented: training mode and practice mode. Future research must implement and apply this design in the educational field to verify
its effectiveness.

Keywords— Scratch 2.0; python; block-based programming language; text-based programming language; educational program
system; learning transfer.

I. INTRODUCTION

As computational thinking is increasingly emphasized in
education, South Korea and many other countries around the
world are providing programming and coding education in
computing-related subjects, such as computing and
informatics, to improve students' computational thinking.
Various methods have been implemented in computing-
related subjects, such as unplugged activity, block-based and
text-based programming language education, and physical
computing education [1].

In programming education, novices are usually taught
block-based programming languages like Scratch 2.0, Entry,
and Kodu before moving on to text-based programming
languages like C, C++, Java, and Python. Although there is
some variation, it is usually recommended that unplugged
activities and block-based programming languages be taught
to elementary school students. Middle school students are
generally introduced to block-based programming languages
and physical computing education, and text-based
programming languages are reserved for high school
students [2].

Block-based and text-based programming languages
include the same basic logic, but like all other programming

languages, there are some differences. Although block-based
programming languages have more limitations than text-
based programming languages, they are used to teach
novices because they present several advantages, such as
being very intuitive and having no syntax error.

Therefore, it is necessary to develop an educational
system that allows students to form a cognitive scheme as
novices by learning to the programme through block-based
programming languages before proceeding to text-based
programming languages.

II. MATERIAL AND METHOD

A. Related Works

1) Learning Transfer: The transfer of learning, which is
the effect of prior learning or experience on new learning or
performance [3], was initially introduced as the transfer of
practice by E. Thorndike and R. S. Woodworth [4]. Learning
transfer is the effect of prior learning on performance or new
learning.

There are three kinds of learning transfer: special, general,
and mixed (see Table 1). Particular transfer refers to a
process that helps students better accomplish a specific task

1571

whereas general transfer refers to an experience that helps
students complete different types of tasks. Mixed transfer,
which involves applying concepts of a general principle to
different tasks, is broader than specific transfer and narrower
than general transfer [5]. Generally, when one is taught a
block-based language before learning a different
programming language, mixed transfer of learning takes
place.

TABLE I
THREE KINDS OF LEARNING TRANSFER [5]

2) Educational Programming Language: The two types
of educational programming languages are visual-based and
text-based. Visual-based programming languages (VPLs)
allow students to program by manipulating elements visually
rather than by specifying them textually. There are several
VPLs, one of which is a block-based programming language
[6].

Fig. 1 Kodu (Visual Programming Language)

3) Block-based Programming Language: Block-based
programming languages provide an easy-to-use interface and
intuitive commands. This relieves the learner's cognitive
overload in the programming process. Also, there are no
grammatical errors due to text input because it is based on a
coding scheme that frames building blocks. Therefore, it is
easy for novices to make a program using this language.

Because of these advantages, education often includes
block-based programming languages, and research on the
effect of an educational programming language is ongoing
[7]. Examples of a block-based programming language are

Entry and Scratch 2.0, the most widely used programming
language in the world.

Fig. 2 Scratch 2.0 (Block-based Programming Language)

4) Text-based Programming Language: Text-based
programming languages require entering the command
syntax necessary for programming. Although understanding
language structure and learning to use the correct syntax are
lengthy processes, text-based languages present fewer
restrictions on complicated programming [8]. As
programming skills improve, the time spent programming
can be decreased. Programming processes, including
debugging, can improve logical and analytical thinking [9],
[10].

Python, Processing, RUR-PLE, LOGO, C, Visual Basic,
and others are text-based programming languages that can
be used in education. The Computer Science Teachers
Association (CSTA) in the United States recommends using
Python as a text-based programming language in education.

Fig. 3 Python (Text-based Programming Language)

B. Effects of Two or More Languages in Programming
Education on Learning Transfer

Because young novices often learn basic programming
logic through block-based languages before proceeding to
text-based languages [1], [2], it is important to examine the
effects of using two or more languages on learning transfer
in programming education. Choi, Kim, and Cho (2016)

Type of
Transfer

Description Example

Specific
Transfer

Specific behaviors (or
procedures or facts) in A
are like those required in
B.

Latin has some similar
words and verb conjugations
as Spanish, so learning Latin
will help you learn Spanish.

General
Transfer

There is nothing in
common between A and
B, learning A is a mind-
enriching experience.

Latin improves the mind so
learning Latin should help
you solve logic problems.

Mixed
Transfer

The same general
principle or strategy is
required in A and B.

Learning how to pronounce
printed words helps you
pronounce words in Latin
and Spanish.

1572

found that those learning Processing after learning Scratch
2.0 demonstrated higher interest, lower cognitive overload,
higher immersion, and more confidence than the control
group [11]. Similarly, Park and Cho (2012) found that
students in an introductory programming course who learned
Scratch 2.0 showed significantly more improvement
regarding problem-solving ability, programming ability, and
instructional satisfaction than those the control group [12].
In a recent study, So and Kim (2016) demonstrated effective
learning transfer in students learning Python after learning
Scratch 2.0.

TABLE II
CORRELATION BETWEEN PROGRAMMING EVALUATION FACTORS

 Learning
achievement
of block-
based
language

Project
achievement
of block-
based
language

Learning
achievement
of text-based
language

Learning
achievement of
block-based
language

.598*

Project
achievement of
block-based
language

.597* .572*

Learning
achievement of
text-based
language

.681** .662** .635*

** p < .01, *p < .05

Based on researches, we conclude that block-based

programming facilitates positive learning transfer to text-
based programming learning. It is commonly thought that
when learning two or more programming languages,
learning block-based programming languages before
learning text-based languages results in high interest, low
cognitive overload, and positive learning transfer effect.

III. RESULTS AND DISCUSSION

When someone who learned a block-based programming
language begins learning a text-based programming
language, they already have a basic programming logic.
They can maximize learning transfer, naturally shifting from
block-based programming without learning the basic logic or
skills of text-based programming. Several strategies are
needed to develop and implement an educational system that
cultivates effective learning transfer from block-based to a
text-based programming language.

A. Differences between Block-based Programming
Languages and Text-based Programming Languages

The main differences between block-based and text-based
programming languages are found in figurations and
methods, which are further explained in the figures below.

1) Difference in Figurations

Fig. 4 If~Else statement algorithms

Fig. 5 If~Else statement, Scratch 2.0 code

Fig. 6 If~Else statement, Python code

Figure 5 is coded with Scratch 2.0 and Figure 6 is coded

with Python, both of which implement the algorithms of
Figure 4 about the conditional statement If~Else. The two
codes have the same logic and solution, but they have
different figurations.

The Scratch 2.0 code puts condition blocks and combines
execution blocks on the If~Else block. It is very intuitive to
write a program, and it is very clear where to place the
command blocks to do the programming. Python code,
unlike the Scratch code, needs to declare variables, and all
typing in text also requires indentation and use of colons.
Students who learn programming only with Scratch will be
confused by these differences in figuration when they do
program in Python.

1573

2) Difference in Methods

Fig. 7 Nested If statement algorithms

Fig. 8 Nested If~Else statement Scratch 2.0 code

Fig. 9 Nested If~Else statement Python code

The difference in methods can create cognitive confusion

between block-based and text-based programming languages.
Figure 7 shows nested If statement algorithms. It can be
coded like Figure 8 in Scratch or Figure 9 in Python.

As shown in Figure 5, a new If~Else block is placed in the
Else part of the If~Else block. Similarly, in the Python code
of Figure 6, the new If~Else statement is written in the Else
section of the If~Else statement.

Fig. 10 If~Elif~Else Python code

However, Python code could express an If~Elif~Else
statement as seen in Figure 7, which is coded in a way that
makes use of the Elif statement to check conditions
sequentially in parallel. Students who learn only block-based
programming languages like Scratch could experience
cognitive confusions or cognitive overload when
encountering the methods of text-based programming
languages like Python, seen in Figure 7. They might not
even infer this method because there are no Elif blocks in
Scratch.

It might also be difficult for students to adapt to text-
based programming language later if they do not understand
these differences in method early on. Ironically, although the
block-based programming language was developed and
designed for programming education, these differences in
methods may inhibit transferring experience from block-
based languages to text-based language for learners.

B. Directions for the Designing Principle

1) Utilization of Advanced Organizers: According to
Ausubel (1976), for learning to be meaningful, the teacher
should provide a base that the learner can associate with the
learning task, which is referred to as the advanced organizer.
It is an organizer that plays an intermediary role in
connecting content from one learning content to the next. It
is sufficient for learning because it increases the motivation
of learners, an internal variable of the learner, which could
sustain interest [14]. By appropriately applying advanced
organizers, students can more easily understand concepts
and principles through the natural connection between prior
knowledge of Scratch 2.0 and the new concepts of Python.

2) Problem Solving-based Learning Contents: Learning
content should be focused on problem-solving. Various
examples should be presented using simple grammar to
compare how to solve problems in both languages [15].
Therefore, learning content should be related to the
similarities of both Scratch 2.0 and Python. Likewise, it
needs to consider the Game-based Bayesian Intelligent
Tutoring System in the introductory course of training mode,
because it could help the problem of learner losing
motivation and enthusiasm when not being taught or
interacted in a timely and can provide learners with a
learning environment tailored to their individual needs [16].

3) Simple and Intuitive User Interface and Screen Layout:
According to Kim’s research (2013), the user interface (UI)
should be visible and directly manipulatable, and graphic
design should be of high quality [17]. Considering that most
users who use this educational program are young novices,
the UI should be intuitive and straightforward. Park and
Kim’s research suggests developing three steps of micro-
learning contents: Intro (uploading video), Learning (adding
interaction), and Organizing (organizing and summary).
Although these steps are designed for micro-learning content,
it also includes learning content [18]. This means that the
learning content should be interactive and include various
types of multimedia to maintain the learner’s interest.

1574

C. Design Proposal of the Screen Composition

Based on the above discussion, we propose screen
compositions for two types of modes as follows. This is the
core of the educational system.

1) Training Mode: The training mode should present a
simple problem that can be implemented with Scratch. It
should be structured in parts that can be practiced with
Scratch and implemented in the same way with Python.
Although not shown in Figure 8, a hint should appear when
a mouse cursor hovers over the Scratch blocks that discusses
the Python code to help the learner understand each function.

Fig. 11 Design proposal of the screen composition: Training mode

2) Practice Mode: In the practice mode, the learner can
freely write a program with Scratch and Python, compare
each, and practice the same result. The practice mode should
provide a save function as well.

Fig. 12 Design proposal of the screen composition: Practice mode

IV. CONCLUSIONS

In this study, we designed and proposed an educational
system that allows mixed learning transfer from block-based
programming languages to text-based programming
languages. We focused on Scratch 2.0 and Python.

Based on the literature, we found differences in
figurations and methods between block-based programming
languages and text-based programming languages that can
result in cognitive confusions or cognitive overload for
learners. Thus, we suggested a direction of designing
principle: Utilization of advanced organizers, problem-
solving based learning content, and simple and intuitive user
interface and screen layout. Using this design, we developed
and proposed two types of modes for the core of an
educational system.

In future studies, it is necessary to implement this design
and apply it in the educational field to verify its
effectiveness. One of many things to consider when
implementing this educational system is that it should be
available online. Care should be taken when applying it to
the education field as it should be suitable for all ages from
elementary through secondary education. Additionally, its
effectiveness should be demonstrated with statistically
significant results.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIP) (No. 2016R1A2B4010522).

REFERENCES

[1] Yi, S.Y., Lee, Y.J.: The Development of Teachers’ Training Course
about Educational Programming Language to Enhance Informatics
Teaching Efficacy for Elementary School Teachers. The Journal of
the Korean Association of Computer Education, vol. 20(5), pp. 35-47.
Seoul (2017)

[2] Shin, S.K., Bae, Y.K.: A Study on the Hierarchical Instructional
System Design of Software Education by School System. Journal of
The Korean Association of Information Education, vol. 19(4), pp.
533-544. Seoul (2015)

[3] Mayer, R. E.: Applying the science of learning. Pearson/Allyn &
Bacon. Boston (2011)

[4] Thorndike, E. L., Woodworth, R. S.: The influence of improvement
in one mental function upon the efficiency of other functions.
Psychological Review, vol. 8(3) (1901)

[5] Mayer, Richard E., ed.: The Cambridge handbook of multimedia
learning. Cambridge university press (2005)

[6] Seo, S.W., Nam, D.S., Lee, D.W.: The Effect of Computational
Thinking Ability Using Text-based vs Visual-based Programming
Language On Robot Programming Learning. Proceedings of the
Korean Society of Computer Information Conference, vol. 18(2), pp.
457-462. Seoul (2010)

[7] An S.J., Seo, Y.M., Lee, Y.J.: A Review and Synthesis of Research
in Educational Programming Language. Proceedings of the Korean
Society of Computer Information Conference, vol. 20(1), pp. 139-
142. Seoul (2012)

[8] Jeon, H.S., Jeong, J.K., Kim, S.S.: Problem Design & the
Application of online judge to Basic C programming language
Learning. Proceedings of the Korean Association of Computer
Education Conference, vol. 18(1), pp. 291-294. Seoul (2014)

[9] Kwon, D.Y., Gil, H.M., Yeum, Y.C., Yoo, S.W., Kanemune, S.,
Kuno, Y., Lee, W.G.: Application and Evaluation of Object-Oriented
Educational Programming Language "Dolittle" for Computer Science
Education in Secondary Education. The Journal of Korean
association of computer education, vol. 7(6), pp. 1-12. Seoul (2004).

1575

[10] Heo, M.S., Kim, J.H., Lee, W.G.: Comparative Analysis of
Programming Learning between Textual EPL and Visual EPL.
Proceedings of the Korean Association of Computer Education
Conference, vol. 13(1), pp. 123-127. Seoul (2009)

[11] Choi, Y.M., Kim, Y.C., Cho, S.H.: The Changing of Beginners
Perception of the Programming after using Educational Programming
Languages. Proceedings of the Korean Association of Computer
Education Conference, vol. 20(2), pp.7-10. Seoul (2016)

[12] Park, J.S., Cho, S.B. The Effect of teaching Scratch in an
introductory programming course. Journal of Digital Convergence,
vol. 10(9), pp. 449-456. Seoul (2012)

[13] So, M.H., Kim, J.M.: Transference from learning block type
programming to learning text type programming. The Journal of
Korean association of computer education, vol. 19(6), pp. 55-68.
Seoul (2016)

[14] Ausubel, D.P.: The psychology of meaningful verbal learning. Grune
and Stratton, New York (1968)

[15] Park, M.S., Kim, J.H., Kim, T.Y.: Design of Multi-learning System
of Programming Language-based Learning Transfer Theory.
Proceedings of the Korean Association of Computer Education
Conference, vol. 14(1). Pp. 211-216. Seoul (2010)

[16] Hooshyar, D., Ahmad, R.B., Wang, M., Yousefi, M., Fathi, M., Lim,
H.: Development and Evaluation of a Game-Based Bayesian
Intelligent Tutoring System for Teaching Programming. Journal of
Educational Computing Research, 0735633117731872. (2017)

[17] Kim, H.J.: Development of Design Strategy of Content & User
Interface for Digital textbook to achieve Smart Education: Through
Comparative Analysis of Content & User Interface Design of e-
textbook & Apple Digital textbook. Journal of Digital Design, vol.
13(1), pp. 161-171. Seoul (2013)

[18] Y. Park and Y. Kim, A design and Development of micro-Learning
Content in e-Learning System. International Journal on Advanced
Science Engineering Information Technology, vol. 8(1), pp. 56-61,
2018.

[19] Papert, S.: Mindstorms: children, computers, and powerful idea.
Basic Books, New York (1980)

[20] Kim, J.H., Choe, H.J., Kim, T.Y.: The Effects of the Advance
Organizer on Elementary School Students' Logical Thinking Ability
and Self-Efficacy in Programming Class. JOURNAL OF The Korean
Association of information Education, vol. 15(2), pp. 189-199. Seoul
(2011)

1576

