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Abstract— Real-life optimization problems demand robust algorithms that perform efficient search in the environment without 
trapping in local optimal locations. Such algorithms are equipped with balanced exploration and exploitation capabilities. Cuckoo 
search (CS) algorithm is also one of these optimization algorithms, which is inspired by nature. Despite effective search strategies such 
as Lévy flights and solution switching approach, CS suffers from a lack of population diversity when implemented in hard 
optimization problems. In this paper, enhanced local and global search strategies have been proposed in the CS algorithm. The 
proposed CS variant uses personal best information in solution generation process, hence called Personal Best Cuckoo Search 
(pBestCS). Moreover, instead of constant value for switching parameter, pBestCS dynamically updates switching parameter. The 
prior approach enhances local search ability, whereas the later modification enforces effective global search in the algorithm. The 
experimental results on test suite with different dimensions validated the efficiency of the proposed modification on optimization 
problems. Based on statistical and convergence analysis, pBestCS outperformed standard CS algorithm, as well as, particle swarm 
optimization (PSO) and artificial bee colony (ABC). 
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I. INTRODUCTION 

Optimization is needed in business, engineering, and 
scientific fields to achieve the best results with minimum 
budget and resources. Finding optimum solutions is a 
difficult task; it requires plenty of resources and computation. 
Thanks to optimization algorithms including genetic 
algorithms (GA) [1], differential evolution (DE) [2], particle 
swarm optimization (PSO) [3], ant colony optimization 
(ACO) [4], artificial bee colony (ABC) [5], and cuckoo 
search (CS) [6] which have reduced computational cost and 
efficiently solved optimization problems. These powerful 
metaheuristic algorithms have been designed with the 
inspiration from intelligence found in nature.  

Cuckoo search (CS) is also one of the recently introduced 
popular metaheuristic algorithms, which are categorized as 
population-based algorithms, where a set of solutions are 
evaluated to find the best one. CS has been implemented on 
a wide variety of problems in the domains of medical, image 
processing, data mining, engineering, energy and economics, 
etc. [7].  According to Mareli and Twala [8], CS is an 
efficient algorithm for global optimization problems than 
other population-based metaheuristics. This has been 
evidenced in multiple studies where CS has outperformed 

the counterparts. For example, [9] solved a non-linear 
optimization problem of optimal power flow at the 
distribution system, using CS and PSO. The research 
concluded that CS produced efficient results compared to 
PSO due to strong search ability and fast convergence speed. 
In another experimental study, [10] efficiently achieved an 
optimal design of truss structures using CS algorithms. The 
results of experiments on design problems with a different 
number of decision variables and design complexities 
validated that CS is a better algorithm than other state-of-
the-art metaheuristics like PSO and GA. [11] employed CS 
on load frequency load problem for optimum tuning of PI 
controllers. In this study, a three-area power system was 
considered to evaluate the proposed model. In comparison 
with other famous counterparts GA and PSO, CS achieved 
optimum results. In a recent comparative experimental study, 
[12] found CS better than PSO solving the highly nonlinear 
problem of optimal power flow at distribution network. 

Apart from the applications of CS mentioned above, 
various modifications and hybrids of the algorithm are 
proposed in the literature. [13] proposed a PSO-inspired 
modification in CS to enhance its convergence rate. The 
modification is made in two components of CS: firstly, to 
enhance diversity in population, a new population was 
injected with neighborhood information; secondly, two new 
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search strategies were introduced in CS to balance 
exploration and exploitation. The CS variant outperformed 
classic and latest metaheuristic algorithms, including PSO, 
ABC, Bat Algorithm (BA), etc., on 30 benchmark test 
functions. In another work, [8] introduced the strategy of 
dynamically adjusting the switching parameter which is 
fixed to 25% in the standard CS algorithm. The research 
proposed three different variants based on this strategy: 
linearly increasing switching parameter value with some 
iterations, exponential increase in a parameter with the 
increase in iterations, and lastly, increasing parameter value 
to the power three as the iterations increase. The variants 
were tested on ten benchmark mathematical functions and 
compared with the standards CS and other variants. The 
researchers found that the strategy of increasing switching 
parameter value exponentially was more effective than 
others.  Another PSO-inspired modification in CS was 
proposed in [14]. The modified variant, the so-called 
Adaptive CS algorithm (ACSA), adopted search acceleration 
strategy in PSO which controls inertia weight. Same as PSO, 
ACSA also controlled step size parameter used in Lévy 
flight random walk. The policy of adapting step size was 
based on the higher survival rate of cuckoo eggs. Hence, the 
proposed CS variant was able to explore search space more 
rigorously for searching the suitable breeding place for 
cuckoos. The results of experiments on five benchmark test 
functions with different modalities and dimensions validated 
the effectiveness of the proposed ACSA in comparison with 
PSO, GA, DE, and other CS variants from literature. 

CS is also hybridized with other heuristic and 
metaheuristic algorithms to benefit from one or the other 
technique. [15] hybridized CS with hill climbing algorithm 
in a way that CS started the global search. After finding 
potential neighborhoods, the search was handed over to hill 
climbing algorithm for accelerated convergence to optimum 
solutions. The proposed variant overcame a slow 
convergence issue in standard CS. The search evaluated the 
so-called CS Algorithm with Hill Climbing (CSAHC) on 
global optimization tasks and found CSAHC effective 
modification. Another hybrid variant of CS was proposed in 
[16] where CS was hybridized with PSO for solving 
continuous optimization and engineering design problems.  
The research proposed a modification in population 
initialization, adaptively adjusting control parameters and 
the incorporation of PSO. The primary purpose of 
hybridizing PSO with CS was to increase population 
diversity and increase convergence speed. In this research, 
the PSO update equation was embedded into CS following 
the cuckoo position update equation. The proposed CSPSO 
outperformed PSO, CS, BA, and different other 
metaheuristic algorithms from literature while solving 
benchmark numerical optimization problems. In [17], CS 
was hybridized with the GA algorithm to propose two hybrid 
schemes. In this research, CS or GA was first employed on 
an exploration of the search environment, and the other 
algorithm to get rid of local minima problem improved later 
global search. The experimental results on benchmark test 
functions proved the efficiency of the proposed hybrid 
strategy. 

Despite multiple modifications and hybrids proposed by 
researchers in literature, the room of improvement in CS 

algorithm is still significant. Mostly, the hybrids and 
modifications often make the algorithm more complicated 
and challenging to implement. To address this, the current 
paper proposes a simple modification in CS inspired by PSO, 
using personal best information in position update equation. 
The proposed CS variant also adaptively adjusts switching 
parameter as the iterations proceed. For the validation of the 
effectiveness of the suggested changes in CS, numerical 
optimization problems have been solved in this experimental 
study. The results are then compared with PSO, ABC, and 
standard CS. The paper is organized as follows. The 
subsequent section presents materials and methods. The 
fundamental knowledge of CS algorithm is given, followed 
by the proposed modification. The results are presented and 
discussed in Section III along with the detail of the 
experimental environment. The study is duly concluded in 
Section IV. 

II. MATERIALS AND METHODS 

Deb and Yang [6] developed a Cuckoo Search (CS) 
algorithm in 2009. CS is inspired by the aggressive breeding 
behavior of the beautiful sound-making cuckoo bird. Cuckoo 
birds do not build their nests. Hence, they lay eggs in the 
nests of other host birds – with similar matching eggs. On 
the occasion when the host bird detects cuckoo eggs, it either 
destroys the cuckoo eggs or abandon the nest. It is, therefore, 
a cuckoo bird is always in search of the host nests where its 
eggs are highly likely to hatch. Once found unsuitable host 
nests, a cuckoo will search any other destination to lay more 
eggs. 

The most popular CS algorithm employs a Lévy flight 
random walk [6], [18] which effectively enhances search 
efficiency. 

A. Lévy Flights 

Different types of random walks can be used to enforce 
diversity in search mechanism of any metaheuristic 
algorithm. Lévy flights are also random walks based on step 
size derived from Lévy distribution. The Lévy flights 
effectively represent random moves performed by animals 
and insects, as compared to other random distribution 
methods. 

B. Cuckoo Search Algorithm 

CS is one of the popular nature-inspired metaheuristic 
algorithms, which is developed on the reproduction system 
of the cuckoo bird. In CS, each cuckoo lays one egg in a nest 
at a time, and the egg represents solution vector. The basic 
principles behind the design of the CS algorithm are as 
following: 

• The number of cuckoo eggs and host nests is equal, 
• Each cuckoo lays one egg at a time in a randomly 

selected host nest, 
• The eggs with a high probability of survival are 

carried to next generations, 
• The host bird can discover the cuckoo bird’s egg with 

probability pa ϵ [0,1]. 
The last rule implements exploration in CS as a certain 

percentage of solutions are abandoned, and new random 
solutions are generated to endorse population diversity. The 
quality of the solution is represented by the fitness value of 
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the objective function, whereas a solution in CS is a cuckoo 
egg, nest, or cuckoo itself. Last rule aims to replace a bad 
cuckoo egg, nest, or cuckoo with new and better one. 

CS implements a balance between exploration and 
exploitation with the help of local random walk and the 
global random search with the help of Lévy flights. This 
balance is achieved through switching parameter, as 
mentioned in the last rule discussed above. This strategy 
makes the algorithm efficient than other famous counterparts. 
The step-by-step procedure of CS is explained below in 
Algorithm 1: 

ALGORITHM I 
CS PROCEDURE 

 

Set parameters Pa, a, λ 
Initialize N nests 
Repeat 
 1. Get a cuckoo (say i) by Lévy flights (a) and evaluate 

fitness Fi 
 2. Choose a nest among N (say b) randomly 
 3. IF Fi is better than Fj THEN replace Fj with Fi 
 4. Pa nests are abandoned and replaced with new ones 
 5. Rank the nests and find the current best nest (global 

best solution) 
Until  maximum iterations; 
Return best solution found. 
 
As mentioned in Algorithm 1, CS commences search by 

initializing a population of host nests. However, before this, 
control parameters: switching parameter Pa, step size a, and 
Lévy flights step length λ is set. The population initialization 
is performed as follows: 

 

 ( )   i i i i ix lb Rand ub lb= + −  (1) 
 

Where xi, lbi, ubi, and Randi are solution representing cuckoo 
egg in host’s nest, lower and upper bounds of the problem 
domain, and a random variable is drawn from the uniform 
distribution within the interval [0, 1], respectively. 
Iteratively, CS covers two steps: first, generating new 
solutions using Lévy flights and replacing randomly chosen 
solutions with new ones if better in quality (fitness value), 
and second, abandoning a portion of old solutions to replace 
with new randomly generated ones; in other words, 
switching nests. The solutions are ranked based on fitness 
value, and only the top N solutions are carried to next 
generation until a stopping criterion is met. 

When generating a solution for next-generation t+1, in the 
first step, CS performs Lévy flight as (2): 

 

 1   ( )t
i iX x a Lévyλ+ = + ⊕  (2) 

 

Where a > 0 is step size and xi is existing search location. 
The value for step size parameter is set carefully according 
to problem landscape. The product-wise multiplication ⨁ is 
same as PSO. The Lévy flight is a random walk while the 
step length is drawn from Lévy distribution as (3): 

 

 
1

( )sin( / 2) 1
( )Le vy

S λ
λ λ πλλ

π +

Γ′ =  (3) 

 

Where Г is a Gamma function representing random step 
length and s is step size. λ is random step length. The 

solution generation using Lévy flight is explained in detail 
via (4): 

1

1

2

( ).
0.01. .( )i i gbest

Le vy Rand
StepSize x X

Rand

λλ′
= −

 
 
 

, 

  3.new i ix x StepSize Rand= +  (4) 
 

where StepSizei is calculated using Lévy flight and current 
global best solution Xgbest. xi is ith solution. Rand1, Rand2, 
and Rand3 are three different random variables generated 
using Gaussian distribution. xnew is the new solution 
generated which is then evaluated with the existing solution. 
If the fitness value of the new solution is better than the 
existing one then it is replaced with the new one; otherwise, 
it remains as is. 

In the second step, a portion of solutions is abandoned 
with the new ones generated using (5): 

 

1 2( ) ( )new i a j kx x Rand H p Rand x x= + ⊕ − ⊕ −  (5) 
 

Where xi is a current solution, xj and xk are two different 
solutions chosen randomly, H(u) is the Heaviside function, 
Rand1 and Rand2 are two different random numbers 
generated with uniform distribution, and lastly, Pa is the 
probability of abandoning the solution. After this step, all the 
solutions are ranked to find the global best solution. This 
global best solution is then used in the first step as shown in 
(4). Fig. 1 illustrates the step-by-step procedure of the CS 
algorithm. 
 

 
 

Fig. 1  CS step by step procedure 
 

Initialize control parameters Pa, a, λ. 
Cuckoos lay eggs in N random nests. 

Get a cuckoo (say i) by Lévy flights and 
evaluate fitness Fi; 

Pa nests are abandoned to replace with 
randomly generated new solutions 

Termination criteria 
satisfied? 

Stop search and return the solution found 

No 

Yes 

Select nest among N randomly (say j) 

Replace Fi with Fj if the latter is better 
solution. 

Rank population and find the best solution 
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Despite wider range of applications, CS algorithm still 
needs improvement in search strategy as it suffers from 
imbalanced exploration and exploitation when the problem 
becomes complex [19]. This also causes unstable 
convergence. To address this, various modifications and 
hybrids have been proposed, as discussed in the previous 
section. However, it is often observed that these 
modifications increase the complexity of the algorithm. 
Keeping this in view, the current study proposes a simple 
modification, yet the search efficiency is improved. The next 
subsection discusses the proposed modification in the CS 
algorithm. 

C. Proposed Personal Best Cuckoo Search Algorithm 

The standard CS algorithm utilizes the global best 
solution, which is carried to the next generation. This is 
similar to PSO, which maintains social memory. However, 
unlike PSO, CS does not maintain the personal memory of a 
population individual. CS replaces the current solution if the 
new solution is better than the existing solution, which 
means there is no personal memory of an individual. While 
creating a new solution, both in Lévy flights step (4) and 
solution-switching step (5), CS generates new solutions from 
the information of existing solutions with some 
randomization methods. This may result in a lack of 
diversity due to limited information about the search space 
visited so far. Moreover, switching parameter Pa is fixed in 
existing CS, which means a fixed number of unpromising 
solutions to be abandoned. This parameter is crucial for 
dynamically adjusting convergence rate as the iterations 
proceed. 

The drawbacks of the existing CS algorithm discussed 
above are addressed in the proposed modification in this 
section. To deal with lack of information about the search 
environment, the modified CS algorithm maintains the 
personal best memory of a population individual. This 
information is then utilized to generate new solutions both 
the solution generation steps in CS algorithm. Because the 
proposed modified variant utilizes personal best information, 
hence it is named as Personal Best Cuckoo Search (pBestCS) 
algorithm. The proposed variations in equations (4) and (5) 
are mathematically expressed as (6) and (7): 

1

1

2

( ).
0.01. .(( )

( ))

i i gbest

i i

Le vy Rand
StepSize x X

Rand

pBest x

λλ′
= − +

−

 
 
   (6) 

 

( )new i i ix x pBest x= + − +  

              1 2( ) ( )a i kRand H p Rand p x⊕ − ⊕ −  (7) 

 
where pBesti is the personal best memory of a population 
individual i. 

Apart from injecting personal best information in solution 
generation equations of CS, the proposed pBestCS also 
dynamically adjusts abandon rate or switching parameter Pa 
along with iterations, as inspired from inertia weight 
adjustment in PSO [20]. The switching parameter is high in 
initial iterations, and as the iterations proceed, it linearly 
reduces to minimum abandonment rate (8). Therefore, 

pBestCS introduces additional parameters (maxPa and 
minPa). 

 

max

max min
max a a

a a

p p
p p

its
k

−
= − ×   (8) 

where maxpa and minpa are maximum and minimum 
abandon rates respectively. itermax and k are maximum 
iterations and current iteration number respectively. The 
personal best information is embedded in the proposed CS 
variant to endorse exploitation, whereas the dynamically 
updating switching parameter is for exploration purpose. 
These two features help pBestCS maintain balance between 
exploration and exploitation, which is crucial to any efficient 
optimization algorithm. 

III.  RESULTS AND DISCUSSION 

A. Experimental Settings 

In order to validate the proposed modification in CS, 
pBestCS is tested on a suite of benchmark test functions, 
which comprises of unimodal and multimodal functions. The 
unimodal functions have one global optimum with no or one 
local optimal location, whereas multimodal functions 
maintain single global optimum solution hidden among 
several local or suboptimum solutions. The unimodal 
functions are employed in experiments to test exploitation 
capability, whereas exploration capability of the algorithm is 
verified using multimodal functions. Table 1 lists six 
benchmark test functions used in this research. The range of 
the search environment and theoretical optimum solutions 
are also presented. From F1 to F3 are unimodal functions, 
whereas from F4 to F6 are multimodal functions. 

Dimension size is crucial to metaheuristic performance, as 
the curse of dimensionality is often a challenge for the 
optimization algorithms. The size of search-space is directly 
proportional to the dimension size of the optimization 
problem at hand. For practical evaluation, all the test 
functions were solved with a variety of dimensions: 10, 30, 
and 50 dimensions. The experiments were run 30 times and 
the results are averaged to present fair comparison. Apart 
from mean, best, worst, and standard deviation of objective 
functions values achieved over 30 runs are presented in 
results and discussion subsection. For all the algorithms, the 
maximum number of iterations was 1500. The experimental 
settings including test functions, number of dimensions, and 
the number of experimental runs are taken from the 
commonly used settings suggested in [21]. 

We used the Friedman test to determine if the proposed 
pBestCS performed significantly different from the 
counterparts. A null hypothesis suggests that the two 
algorithms performed almost similar; otherwise, the 
hypothesis is rejected. We used significance level 0.95 
(a=0.05) for the Friedman test. 

The parameters settings of each algorithm are presented in 
Table 2. In all cases, the population size for CS, pBCS, and 
PSO were 25, except for ABC with 50 as total neighborhood 
solutions. The initial population in every run was generated 
using uniformly distributed random initialization within the 
search range specified in Table 1.  
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TABLE I 

BENCHMARK TEST FUNCTIONS USED IN EXPERIMENTS 
 

Function Formula Search Range Theoretical Optimum 

Sphere 
2

1
1

( )
D

i
i

F x x
=

=  [-100, 100]D 0 

Quartic 
4

2
1

( )
D

i
i

F x ix
=

=  [-1.28, 1.28]D 0 

Schwefel 2.22 3
1 1

( )
D D

i i
i i

F x x x
= =

= +   [-10, 10]D 0 

Ackley 

2
4

1

20exp
1

( ) 0.2
D

i
i

F x x
D =

= − −
 

−  
 


 

1

exp
1

cos( ) exp(1)
D

i
i

cx a
D =

 + + 
 
  

[-32, 32]D 0 

Rastrigin ( )2
5

1

( ) x 10cos(2 ) 10
D

i i
i

F x xπ
=

= − +  [-5.12, 5.12]D 0 

Griewank 
2

6
1 1

1

4000
( ) cos 1

DD
i

i
i i

F
x

x x
i= =

=
 − + 
 

 ∏  
[-600, 600]D 0 

    
 

TABLE II 
ALGORITHM-SPECIFIC PARAMETER SETTINGS 

 

Algorithm Parameters 

CS 

N = 25 (Number of nests) 
Pa = 0.25 (Switching parameter) 

a = 0.01 (Lévy flights step length) 

PSO 

N = 25 (Number of particles) 
C1 = 2 (Cognitive factor) 

C2 = 2 (Social factor) 
Wmax = 0.9 (Maximum inertia weight) 
Wmin = 0.4 (Minimum inertia weight) 

ABC 
N = 25 (Number of bees) 

Limit = D X N (Bee switching parameter) 

pBestCS 

N = 25 (Number of nests) 
a = 0.01 (Lévy flights step length) 

maxPa = 0.4 (Maximum switching rate) 
minPa = 0.1 (Minimum switching rate) 

 
The results of the experiments are then compared with 

standard CS, PSO, and ABC. 
 

B. Experimental Results 

In the experiments mentioned above, the proposed 
pBestCS algorithm was evaluated. The experimental results 
are reported and compared to standard CS, PSO, and ABC. 
The statistical results in the form of mean, best, worst, and 
standard deviation of the objective function values obtained 
over 30 independent runs are presented in Tables 3 and 4 for 
dimensions 10, 30, and 50. In these tables, the best results 
are bold-faced. The performances of the metaheuristic 
algorithms have been ranked in Table 5 for comparison 
purpose. These performances are reported dimension-wise 
while the overall performance rank is also given to 
summarize the results. Apart from experimental results, 
some statistical analysis has also been performed via 

Friedman tests with 5% significance level (or a=0.05), to 
determine the performance of the proposed pBestCS. The p-
values of the t-tests on results are reported in Table 6. 

From Table 3 and Table 4, averagely pBestCS 
outperformed PSO, ABC, and standard CS in most of the 
problems; only exceptions are F1, F3, and F4 with 10 
dimensions where PSO achieved best results. This is 
consistent with typical findings in the literature that PSO is 
good on low dimensional problems. According to Table 3, 
pBestCS yielded significantly better results on F1 and F3 (30 
and 50 dimensions). Table 4 also suggests that, except for F4 
(10 dimensions), pBestCS achieved far better objective 
function values on multimodal test functions with 10, 30, 
and 50 dimensions. The dimension-wise performance 
ranking is summarized in Table 5 where the performance of 
pBestCS, CS, PSO, and ABC are ranked on mean objective 
function values obtained over 30 independent runs. From 
Table 5, we can say that pBestCS generally achieved top 
position in the experiments. 

To better validate the results of pBestCS, Table 6 
provides statistical evidence regarding p-value obtained from 
a t-test of Friedman test against the counterpart algorithms. 
According to the p-value, in Table 6, we can conclude that 
pBestCS has a significant difference from ABC on 
optimization problems with 10 dimensions, whereas it is 
contrary in case of CS and PSO. However, on rest of the 
cases, the performance of pBestCS is significantly different 
from CS, PSO, and ABC. 

To summarize the results discussed above, it can be 
contended that the proposed pBestCS algorithm is suitable 
for high dimensional problems, which indicates its ability of 
finding global optimum solution in large and complex 
optimization problems. This is further evident in Fig. 2, Fig. 
3, and Fig. 4 that pBestCS maintains better convergence 
ability then the counterparts. Especially, in case of F1 (30 
and 50 dimensions), F2 and F3 (50 dimensions), F4 (30 and 
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50 dimensions), F5 and F6 (10, 30, and 50 dimensions), 
pBestCS scaped local optimal locations and converged to 
global optimum points quickly after few initial iterations. 

Hence, we can say that pBestCS has strong exploration 
ability and is robust algorithm on large and complex 
optimization problems.   

 

TABLE III 
PERFORMANCE COMPARISON OF METAHEURISTIC ALGORITHMS ON UNIMODAL FUNCTIONS 

 

Function Dimensions Algorithms Best Worst Mean Std. Dev. 

F1 

10 

CS 6.94E-27 4.14E-25 1.87E-26 1.65E-26 
PSO 2.79E-37 2.90E-36 2.18E-36 1.41E-36 
ABC 2.37E-08 9.12E-07 1.25E-07 4.31E-08 

pBestCS 1.10E-30 6.27E-25 5.61E-25 1.24E-22 

30 

CS 6.82E-09 5.96E-08 2.31E-08 8.09E-09 
PSO 6.85E-08 1.48E-06 5.55E-07 1.51E-07 
ABC 8.53E-07 1.03E-06 9.83E-07 7.49E-08 

pBestCS 9.47E-31 1.01E-16 2.48E-18 1.74E-18 

50 

CS 1.32E-04 2.37E-04 1.68E-04 4.28E-05 
PSO 1.23E-02 1.00E+02 6.58E+01 4.75E+01 
ABC 7.97E-05 2.40E-04 1.23E-04 6.22E-05 

pBestCS 3.72E-15 5.39E-12 1.19E-12 2.47E-13 

F2 

10 

CS 1.83E-03 6.17E-03 4.64E-03 1.88E-03 
PSO 2.09E-03 4.12E-03 2.46E-03 8.98E-04 
ABC 9.42E-03 1.10E-02 1.04E-02 8.60E-04 

pBestCS 5.38E-04 1.06E-03 8.32E-04 2.17E-04 

30 

CS 3.32E-02 7.72E-02 6.31E-02 2.99E-02 
PSO 2.09E-03 4.12E-03 2.68E-03 5.98E-04 
ABC 5.07E-02 7.15E-02 6.02E-02 6.87E-03 

pBestCS 9.33E-04 4.41E-03 2.14E-03 1.61E-03 

50 

CS 2.39E-01 3.04E-01 3.79E-01 9.88E-02 
PSO 3.09E-01 1.34E+02 4.34E+01 3.32E+01 
ABC 2.10E-01 2.61E-01 2.47E-01 1.33E-02 

pBestCS 5.43E-04 1.01E-02 2.93E-03 2.20E-03 

F3 

10 

CS 2.09E-12 9.34E-12 5.00E-12 3.09E-12 
PSO 5.23E-20 3.86E-21 1.92E-20 1.31E-20 
ABC 2.38E-05 3.21E-05 2.18E-05 3.46E-06 

pBestCS 5.44E-19 8.24E-12 2.71E-14 3.88E-12 

30 

CS 3.13E-04 5.28E-04 3.92E-04 9.55E-05 
PSO 3.47E-05 1.00E+01 6.66E+00 5.78E+00 
ABC 5.28E-05 1.35E-04 2.89E-05 1.37E-05 

pBestCS 1.53E-13 1.77E-11 2.96E-12 2.11E-12 

50 

CS 1.10E-02 2.87E-02 1.96E-02 7.23E-03 
PSO 3.00E+01 6.50E+01 4.34E+01 1.55E+01 
ABC 8.00E-03 2.15E-02 1.93E-02 5.86E-03 

pBestCS 1.42E-08 1.36E-05 5.66E-06 3.75E-06 

TABLE IV 
PERFORMANCE COMPARISON OF METAHEURISTIC ALGORITHMS ON MULTIMODAL FUNCTIONS 

 

Function Dimensions Algorithms  Best Worst Mean Std. Dev. 

F4 

10 

CS 5.19E-12 9.42E-12 6.93E-12 1.86E-12 
PSO 2.66E-15 6.22E-15 3.58E-15 1.69E-15 
ABC 3.90E-04 7.30E-04 1.95E-04 1.38E-04 

pBestCS 9.77E-15 1.02E-13 4.16E-14 1.26E-14 

30 

CS 2.17E-04 6.74E-04 4.57E-04 1.13E-04 
PSO 8.01E-05 2.24E-03 2.56E-04 9.69E-04 
ABC 1.13E-03 2.13E-03 1.25E-03 5.27E-04 

pBestCS 3.20E-11 8.25E-11 6.29E-11 2.21E-11 

50 

CS 9.12E-01 1.61E+00 1.39E+00 3.11E-01 
PSO 5.85E+00 8.79E+00 6.70E+00 2.31E+00 
ABC 1.26E-02 1.98E-02 1.56E-02 3.04E-03 

pBestCS 5.27E-11 1.58E-08 1.18E-09 6.44E-09 

F5 10 

CS 2.88E+00 6.06E+00 3.65E+00 1.36E+00 
PSO 3.98E+00 4.97E+00 4.52E+00 4.69E-01 
ABC 2.25E+01 2.41E+01 2.31E+01 6.53E-01 

pBestCS 0.00E+00 5.08E-07 1.67E-07 2.36E-07 

1214



30 

CS 4.66E+01 9.30E+01 6.26E+01 1.16E+01 
PSO 6.51E+01 8.15E+01 6.54E+01 8.75E+00 
ABC 1.83E+02 1.90E+02 1.95E+02 1.24E+01 

pBestCS 0.00E+00 6.05E-04 1.24E-06 1.81E-03 

50 

CS 1.32E+02 1.47E+02 1.38E+02 2.88E+00 
PSO 2.90E+02 4.49E+02 3.96E+02 7.37E+01 
ABC 4.17E+02 4.43E+02 4.41E+02 1.17E+01 

pBestCS 0.00E+00 1.58E-12 1.95E-12 1.69E-12 

F6 

10 

CS 2.01E-02 5.78E-02 4.32E-02 1.53E-02 
PSO 7.87E-02 1.61E-01 1.30E-01 3.41E-02 
ABC 2.52E-01 2.88E-01 1.61E-01 1.55E-02 

pBestCS 8.77E-08 2.65E-05 1.16E-06 8.22E-05 

30 

CS 6.28E-04 1.27E-02 8.84E-03 5.09E-03 
PSO 7.40E-03 1.12E-02 1.52E-02 3.53E-03 
ABC 1.10E-02 6.12E-02 3.08E-02 2.06E-02 

pBestCS 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

50 

CS 1.42E-02 5.50E-02 5.40E-02 1.92E-02 
PSO 1.81E+02 2.71E+02 2.70E+02 4.24E+01 
ABC 1.09E-01 2.49E-01 1.62E-01 6.29E-02 

pBestCS 0.00E+00 2.53E-08 1.01E-09 1.19E-08 
       

 
 

TABLE V 
PERFORMANCE RANK OF METAHEURISTICS ON TEST FUNCTIONS 

Functio
n Dimension CS PSO ABC pBestCS 

F1 

10 

3 1 4 2 
F2 4 3 2 1 
F3 2 4 3 1 
F4 3 1 4 2 
F5 3 4 2 1 
F6 2 3 4 1 

Mean Rank 2.83 2.67 3.17 1.33 
F1 

30 

3 2 4 1 
F2 3 4 2 1 
F3 3 4 2 1 
F4 3 4 2 1 
F5 2 3 4 1 
F6 3 4 2 1 

Mean Rank 2.83 3.50 2.67 1.00 
F1 

50 

3 4 2 1 
F2 3 4 2 1 
F3 3 4 2 1 
F4 3 4 2 1 
F5 2 3 4 1 
F6 3 4 2 1 

Mean Rank 2.83 3.83 2.33 1.00 
Overall Rank 2.83 3.33 2.72 1.11 

 
TABLE VI 

P-VALUES AT Α = 0.05 BY FRIEDMAN TEST ON TEST FUNCTIONS 

Dimensio
ns 

pBestCS vs 
CS 

pBestCS vs 
PSO pBestCS vs ABC 

10 0.3545 0.7576 0.0308 
30 0.0308 0.0136 0.0308 
50 0.0136 0.0051 0.0136 

 

 

 

 

           Fig. 2  Convergence comparison of CS, PSO, ABC, and pBestCS on 10 dimensional problems 

1215



 

 
IV.  CONCLUSIONS 

CS algorithm is a recent addition to nature-inspired 
population-based metaheuristic algorithms, which have 
performed well in hard optimization problems. However, 
similar to other metaheuristic algorithms, CS also encounters 
performance drawbacks when it is implemented in large and 
complex optimization problems. Various modifications have 
been introduced in literature, but mostly such modifications 
are proposed by compromising algorithm complexity. In this 
paper, the simple and effective modification has been 
proposed in CS to solve unbalanced exploration and 
exploitation problem. The improved variant, so-called 

pBestCS algorithm employs personal best information – 
inspired from PSO – in the process of generating new 
neighborhood solutions. The personal best memory or 
information is embedded in both in 
Lévy flights and solution switching steps of the CS 
algorithm. This modification enforces effective local search 
ability. On the other hand, the proposed pBestCS also 
employs the strategy of dynamically adjusting switching 
parameter to endorse high exploration in the beginning, 
which is linearly reduced towards the end of search process. 
The proposed modification resolves the problem of lack of 
population diversity in CS algorithm. 

 

 

Fig. 3  Convergence comparison of CS, PSO, ABC, and pBestCS on 30 dimensional problems 

 

 

Fig. 4  Convergence comparison of CS, PSO, ABC, and pBestCS on 50 dimensional problems 
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The comprehensive analysis of experimental results on 
both unimodal and multimodal test function with a variety of 
dimensionality validate the efficiency of the proposed 
pBestCS algorithm. Based on comparison with the standard 
CS, as well as, with other popular swarm-based 
metaheuristic algorithms PSO and ABC, it can be implied 
that pBestCS has improved search results than the peer 
algorithms tested in this study. 
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