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Abstract— Real-life optimization problems demand robust algorithms that perform efficient search in the environment without
trapping in local optimal locations. Such algorithms are equipped with balanced exploration and exploitation capabilities. Cuckoo
search (CS) algorithm is also one of these optimization algorithms, which is inspired by nature. Despite effective search strategies such
as Lévy flights and solution switching approach, CS suffers from a lack of population diversity when implemented in hard
optimization problems. In this paper, enhanced local and global search strategies have been proposed in the CS algorithm. The
proposed CS variant uses personal best information in solution generation process, hence called Personal Best Cuckoo Search
(pBestCS). Moreover, instead of constant value for switching parameter, pBestCS dynamically updates switching parameter. The
prior approach enhances local search ability, whereas the later modification enforces effective global search in the algorithm. The
experimental results on test suite with different dimensions validated the efficiency of the proposed modification on optimization
problems. Based on statistical and convergence analysis, pBestCS outperformed standard CS algorithm, as well as, particle swarm
optimization (PSO) and artificial bee colony (ABC).
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the counterparts. For example, [9] solved a non-linear
I. INTRODUCTION optimization problem of optimal power flow at the
ddistribution system, using CS and PSO. The research
concluded that CS produced efficient results compared to
PSO due to strong search ability and fast convergence speed.

Optimization is needed in business, engineering, an
scientific fields to achieve the best results with minimum

budget and resources. Finding optimum solutions is a h ; | stud o1 efficientl hieved
difficult task; it requires plenty of resources and computation.In another experimental study, [10] efficiently achieved an

Thanks to optimization algorithms including genetic optimal design c_)f truss structures using CS al_gorithms. The
algorithms (GA) [1], differential evolution (DE) [2], particle results of experiments on design problem_s with a d|ffe_r_ent
swarm optimization (PSO) [3], ant colony optimization number of decision variables and design complexities
(ACO) [4], artificial bee colony (ABC) [5], and cuckoo validated that CS is a better algorithm than other state-of-
search (CS) [6] which have reduced computational cost anothe'lart dn}etaheurlsnlcs L'lke PSO a?d GA. [11] employe(icl (P:|S
efficiently solved optimization problems. These powerful on load frequency load problem for optimum tuning o
metaheuristic algorithms have been designed with theCOntrollers. In this study, a three-area power system was
inspiration from intelligence found in nature considered to evaluate the proposed model. In comparison
Cuckoo search (CS) is also one of the recently introduced"Vith other famous counterparts GA and PSO, CS achieved

popular metaheuristic algorithms, which are categorized asoptimum results. In a recent comparative experimental study,

population-based algorithms, where a set of solutions are[lz] found CS_better than PSO so_lvir)g the highly nonlinear
evaluated to find the best one. CS has been implemented oHr‘flem c]zf optm;]al pOW(le_r fIc_)w at d:cstgtéutmn ”_et""oc;k- b
a wide variety of problems in the domains of medical, image part irom the applications o mentioned above,

processing, data mining, engineering, energy and economics’/a"10us modifications and hybrids of the algorithm are

etc. [7]. According to Mareli and Twala [8], CS is an prop_o_sed_ in _the literature. [13] _proposed a PSQ-inspired
efficient algorithm for global optimization problems than mod!f!cat!on n CS to enhance its convergenc? rate. The
other population-based metaheuristics. This has beermodification is made in two components of CS: firstly, to

evidenced in multiple studies where CS has outperformed.er.1hance Q|vers_|ty In popullatlon, a new population was
injected with neighborhood information; secondly, two new
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search strategies were introduced in CS to balancealgorithm is still significant. Mostly, the hybrids and
exploration and exploitation. The CS variant outperformed modifications often make the algorithm more complicated
classic and latest metaheuristic algorithms, including PSO,and challenging to implement. To address this, the current
ABC, Bat Algorithm (BA), etc., on 30 benchmark test paper proposes a simple modification in CS inspired by PSO,
functions. In another work, [8] introduced the strategy of using personal best information in position update equation.
dynamically adjusting the switching parameter which is The proposed CS variant also adaptively adjusts switching
fixed to 25% in the standard CS algorithm. The researchparameter as the iterations proceed. For the validation of the
proposed three different variants based on this strategyeffectiveness of the suggested changes in CS, numerical
linearly increasing switching parameter value with some optimization problems have been solved in this experimental
iterations, exponential increase in a parameter with thestudy. The results are then compared with PSO, ABC, and
increase in iterations, and lastly, increasing parameter valuestandard CS. The paper is organized as follows. The
to the power three as the iterations increase. The variantsubsequent section presents materials and methods. The
were tested on ten benchmark mathematical functions andundamental knowledge of CS algorithm is given, followed
compared with the standards CS and other variants. Theby the proposed modification. The results are presented and
researchers found that the strategy of increasing switchingdiscussed in Section Il along with the detail of the
parameter value exponentially was more effective thanexperimental environment. The study is duly concluded in
others. Another PSO-inspired modification in CS was Section IV.

proposed in [14]. The modified variant, the so-called

Adaptive CS algorithm (ACSA), adopted search acceleration [I. MATERIALS AND METHODS

strategy in PSO which controls inertia weight. Same as PSO, Deb and Yang [6] developed a Cuckoo Search (CS)

ACSA also controlled step size parameter used in I‘évyalgorithm in 2009. CS is inspired by the aggressive breeding

flight random walk. The_policy of adapting step size was behavior of the beautiful sound-making cuckoo bird. Cuckoo
based on the higher survival rate of cuckoo eggs. Hence, th%irds do not build their nests. Hence, they lay eggs in the

proposed CS variant was able to explore search space moraqis of other host birds — with similar matching eggs. On
rigorously for searching the suitable breeding place for yo occasion when the host bird detects cuckoo eggs, it either
tdestroys the cuckoo eggs or abandon the nest. It is, therefore,
a cuckoo bird is always in search of the host nests where its
eggs are highly likely to hatch. Once found unsuitable host
nests, a cuckoo will search any other destination to lay more

eggs.

functions with different modalities and dimensions validated
the effectiveness of the proposed ACSA in comparison with
PSO, GA, DE, and other CS variants from literature.

CS is also hybridized with other heuristic and

metaheuristic algorithms to benefit from one or the other The most popular CS algorithm employs a Lévy flight

technique. [15] hybridized CS with hill climbing algorithm d Ik 161 1181 which effectivel h h
in a way that CS started the global search. After finding rea;f?dgancywa [6]. [18] which effectively enhances searc

potential neighborhoods, the search was handed over to hill
climbing algorithm for accelerated convergence to optimum A. Lévy Flights

solutions. The proposed variant overcame a slow pifferent types of random walks can be used to enforce
convergence issue in standard CS. The search evaluated trkﬁversity in search mechanism of any metaheuristic

so-called CS Algorithm with Hill Climbing (CSAHC) on  gigorithm. Lévy flights are also random walks based on step
global optimization tasks and found CSAHC effective gjze derived from Lévy distribution. The Lévy flights
modification. Another hybrid variant of CS was proposed in effectively represent random moves performed by animals

[16] where CS was hybridized with PSO for solving anq insects, as compared to other random distribution
continuous optimization and engineering design problems. athods.

The research proposed a modification in population
initialization, adaptively adjusting control parameters and B. Cuckoo Search Algorithm

the incorporation of PSO. The primary purpose of  Cs is one of the popular nature-inspired metaheuristic
hybridizing PSO with CS was to increase population gigorithms, which is developed on the reproduction system
diversity and increase convergence speed. In this researchsf the cuckoo bird. In CS, each cuckoo lays one egg in a nest
the PSO update equation was embedded into CS followingat a time, and the egg represents solution vector. The basic

the cuckoo position update equation. The proposed CSPSQyrinciples behind the design of the CS algorithm are as
outperformed PSO, CS, BA, and different other following:

metaheuristic algorithms from literature while solving . The number of cuckoo eggs and host nests is equal,
benchmark numerical optimization problems. In [17], CS . Each cuckoo lays one egg at a time in a randomly
was hybridized with the GA algorithm to propose two hybrid selected host nest,

schemes. In this research, CS or GA was first employed on . The eggs with a high probability of survival are
an exploration of the search environment, and the other carried to next generations,

algorithm to get rid of local minima problem improved later « The host bird can discover the cuckoo bird’s egg with
global search. The experimental results on benchmark test probabilityp. e [0,1].

functions proved the efficiency of the proposed hybrid  The |ast rule implements exploration in CS as a certain
strategy. percentage of solutions are abandoned, and new random

Despite multiple modifications and hybrids proposed by sojutions are generated to endorse population diversity. The
researchers in literature, the room of improvement in CSquality of the solution is represented by the fitness value of
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the objective function, whereas a solution in CS is a cuckoosolution generation using Lévy flight is explained in detail

egg, nest, or cuckoo itself. Last rule aims to replace a badvia (4):

cuckoo egg, nest, or cuckoo with new and better one. 1
CS implements a balance between exploration and . Le vy(A). Rand |/

exploitation with the help of local random walk and the StepSize= O'Ol(angj (% - gbesr)'

global random search with the help of Lévy flights. This

balance is achieved through switching parameter, as X ow = X+ StepSize Rap (4)

mentioned in the last rule discussed above. This strategy

makes the algorithm efficient than other famous counterpartswhere StepSizeis calculated using Lévy flight and current

The step-by-step procedure of CS is explained below inglobal best solutiorXges X is ith solution.Rand, Rang,

Algorithm 1: and Rand are three different random variables generated
ALGORITHM | using Gaussian distributionx,, is the new solution
CSPROCEDURE generated which is then evaluated with the existing solution.
Set parameter3,, a, 4 If the fitness value of the new solution is better than the
Initialize N nests existing one then it is replaced with the new one; otherwise,
Repeat _ o it remains as is.
L ﬂcfﬁéssﬁ?d‘oo (sayby Levy flights @) and evaluate In the second step, a portion of solutions is abandoned
2. Choose a nest amohg(sayb) randomly with the new ones generated using (5):
3. IFF;is better thafr; THEN replace; with F;
4. P, nests are abandoned and replaced with new ones Xew= X+t Rand H p- RangO( x X (5)
5. Rank the nests and find the current best nest (global
best solution) Where x; is a current solutiony and x, are two different
Until maximum iterations; solutions chosen randomlf(u) is the Heaviside function,
Return best solution found. Rand and Rand are two different random numbers

) ] ] generated with uniform distribution, and lastl, is the
~As mentioned in Algorithm 1, CS commences search by propapility of abandoning the solution. After this step, all the
initializing a population of host nests. However, before this, go|utions are ranked to find the global best solution. This

control parameters: switching parameffar step sizea, and  gjopal best solution is then used in the first step as shown in

Lévy flights step length is set. The population initialization (4). Fig. 1 illustrates the step-by-step procedure of the CS
is performed as follows: algorithm.

x = Ig + Rang( up- 1p 1)

Wherex, Ib;, ub, andRand are solution representing cuckoo

Initialize control parametef,, a, 1.
Cuckoos lay eggs iN random nest

egg in host's nest, lower and upper bounds of the problem v

domain, and a random variable is drawn from the uniform 5| Get a cuckoo (say by Lévy flights and
distribution within the interval [0, 1], respectively. evaluate fitness Fi;

Iteratively, CS covers two steps: first, generating new ;

solutions using Lévy flights and replacing randomly chosen
solutions with new ones if better in quality (fitness value),
and second, abandoning a portion of old solutions to replace ¢
with new randomly generated ones; in other words,

switching nests. The solutions are ranked based on fithess

Select nest amorg randomly (say)

ReplaceF; with F; if the latter is better

‘ ! solution
value, and only the toN solutions are carried to next
generation until a stopping criterion is met. ¢
When generating a solution for next-generatigh in the Pa nests are abandoned to replace with
first step, CS performs Lévy flight as (2): randomly generated new solutions
+ .
X" = x+ ald LévyA) ) y

Rank population and find the best solution

Wherea > 0 is step size ang is existing search location.
The value for step size parameter is set carefully according
to problem landscape. The product-wise multiplicati®ns
same as PSO. The Lévy flight is a random walk while the

Termination criteria
satisfied'

step length is drawn from Lévy distribution as (3): No
, AT(A)sin(A 12) 1
Le Vy(/]) = 1+ 3 Stop search and return the solution found
m S
WhereT is a Gamma function representing random step Fig. 1 CS step by step procedure

length ands is step sizel is random step length. The
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Despite wider range of applications, CS algorithm still pBestCS introduces additional parametersaXR, and
needs improvement in search strategy as it suffers fromminP,).

imbalanced exploration and exploitation when the problem maxp, — mirp
becomes complex [19]. This also causes unstable p, = maxp, - - 2 x Kk (8)
convergence. To address this, various modifications and IS o

hybrids have been proposed, as discussed in the previouwhere maxp and minp, are maximum and minimum
section. However, it is often observed that these abandon rates respectiveliter,.,, and k are maximum
modifications increase the complexity of the algorithm. iterations and current iteration number respectively. The
Keeping this in view, the current study proposes a simplepersonal best information is embedded in the proposed CS
modification, yet the search efficiency is improved. The next variant to endorse exploitation, whereas the dynamically
subsection discusses the proposed modification in the CSupdating switching parameter is for exploration purpose.
algorithm. These two features help pBestCS maintain balance between
exploration and exploitation, which is crucial to any efficient

C. Proposed Personal Best Cuckoo Search Algorithm optimization algorithm.

The standard CS algorithm utilizes the global best
solution, which is carried to the next generation. This is I1l. RESULTS ANDDISCUSSION
similar to PSO, which maintains social memory. However,
unlike PSO, CS does not maintain the personal memory of aA. Experimental Settings
population individual. CS replaces the current solution if the  In order to validate the proposed modification in CS,
new solution is better than the existing solution, which pBestCS is tested on a suite of benchmark test functions,
means there is no personal memory of an individual. While which comprises of unimodal and multimodal functions. The
creating a new solution, both in Lévy flights step (4) and unimodal functions have one global optimum with no or one
solution-switching step (5), CS generates new solutions fromlocal optimal location, whereas multimodal functions
the information of existing solutions with some maintain single global optimum solution hidden among
randomization methods. This may result in a lack of several local or suboptimum solutions. The unimodal
diversity due to limited information about the search space functions are employed in experiments to test exploitation
visited so far. Moreover, switching paramegris fixed in capability, whereas exploration capability of the algorithm is
existing CS, which means a fixed number of unpromising verified using multimodal functions. Table 1 lists six
solutions to be abandoned. This parameter is crucial forbenchmark test functions used in this research. The range of
dynamically adjusting convergence rate as the iterationsthe search environment and theoretical optimum solutions
proceed. are also presented. Frof to F; are unimodal functions,

The drawbacks of the existing CS algorithm discussed whereas fronfr, to F are multimodal functions.
above are addressed in the proposed modification in this Dimension size is crucial to metaheuristic performance, as
section. To deal with lack of information about the search the curse of dimensionality is often a challenge for the
environment, the modified CS algorithm maintains the optimization algorithms. The size of search-space is directly
personal best memory of a population individual. This proportional to the dimension size of the optimization
information is then utilized to generate new solutions both problem at hand. For practical evaluation, all the test
the solution generation steps in CS algorithm. Because theunctions were solved with a variety of dimensions: 10, 30,
proposed modified variant utilizes personal best information, and 50 dimensions. The experiments were run 30 times and
hence it is named &ersonal Best Cuckoo Sear@@BestCS)  the results are averaged to present fair comparison. Apart
algorithm. The proposed variations in equations (4) and (5)from mean, best, worst, and standard deviation of objective
are mathematically expressed as (6) and (7): functions values achieved over 30 runs are presented in

1 results and discussion subsection. For all the algorithms, the
Le'vy(4). Rand |/ x4 maximum number of iterations was 1500. The experimental
Rand (% gbest) (6) settings including test functions, number of dimensions, and
the number of experimental runs are taken from the
(pBest- X)) commonly used settings suggested in [21].
We used the Friedman test to determine if the proposed
_ pBestCS performed significantly different from the
Xoew = X+ (PBESt— X+ counterparts. A null hypothesis suggests that the two
RandO H p- Rang)O( p- 3 (7) algorithms performed almost similar; otherwise, the
hypothesis is rejected. We used significance level 0.95
(a=0.05) for the Friedman test.

The parameters settings of each algorithm are presented in
Table 2. In all cases, the population size for CS, pBCS, and
(FSO were 25, except for ABC with 50 as total neighborhood
solutions. The initial population in every run was generated
using uniformly distributed random initialization within the
search range specified in Table 1.

StepSize= 0.01(

where pBest is the personal best memory of a population
individuali.
Apart from injecting personal best information in solution

dynamically adjusts abandon rate or switching parantgter

along with iterations, as inspired from inertia weight
adjustment in PSO [20]. The switching parameter is high in
initial iterations, and as the iterations proceed, it linearly
reduces to minimum abandonment rate (8). Therefore,
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TABLE |
BENCHMARK TESTFUNCTIONSUSED IN EXPERIMENTS

Function Formula Search Range Theoretical Optimum
D
Sphere F(X)=) % [-100, 100P 0
-
D
Quartic F(¥) =) ix’ [-1.28, 1.28} 0
i=1
D D
Schwefel 2.22 R () = %[+ D] ] [-10, 10P 0
i=1 i=1
18,
F,(X) =-20exg 0.2 BZ)g -
Ackley . [-32, 32P 0
D
exp(%Zcos@g )j+ a+ exp(l
i=1
D
Rastrigin F5(X)=Z(Xi2—10005(27>§ ¥ 1()’ [-5.12,5.127 0
i=1
i 1 D D X
Griewank Fs(X) _M); X - H CO{WJ +1 [-600, 600P 0
TABLE I Friedman tests with 5% significance level @¥0.05), to
ALGORITHM-SPECIFICPARAMETER SETTINGS determine the performance of the proposed pBestCSp-The
Algorithm Parameters values of the-tests on results are reported in Table 6.
N = 25 (Number of nests) From Table 3 and Table 4, averagely pBestCS
CS P,= 0.25 (Switching parameter) outperformed PSO, ABC, and standard CS in most of the
a=0.01 (Lévy flights step length) problems; only exceptions arB;, F;, and F, with 10
N = 25 (Number of particles) dimensions where PSO achieved best results. This is
C, = 2 (Cognitive factor) consistent with typical findings in the literature that PSO is
PSO C,= 2 (Social factor) good on low dimensional problems. According to Table 3,
Wiax= 0.9 (Maximum inertia weight) pBestCS yielded significantly better resultsrandF; (30
Wiyin= 0.4 (Minimum inertia weight) and 50 dimensions). Table 4 also suggests that, excefpj for
roc N = 25 (Number of bees) (10 glimensions), pBes'gCS achieved fa_r bette_zr objective
Limit = D X N (Bee switching parameter) function values on multimodal test functions with 10, 30,
— and 50 dimensions. The dimension-wise performance
N = 25 (Number of nests) LT . .
a=0.01 (Lévy flights step length) ranking is summarized in Table 5 where the performanpe _of
pBestCS = . - pBestCS, CS, PSO, and ABC are ranked on mean objective
maxP, = 0.4 (Maximum switching rate) . . .
e . o function values obtained over 30 independent runs. From
minP,= 0.1 (Minimum switching rate)

Table 5, we can say that pBestCS generally achieved top
sition in the experiments.
To better validate the results of pBestCS, Table 6
provides statistical evidence regardmgalue obtained from
at-test of Friedman test against the counterpart algorithms.
B. Experimental Results According to thep-value, in Table 6, we can conclude that
In the experiments mentioned above, the proposedpBestCS has a significant difference from ABC on
pBestCS algorithm was evaluated. The experimental resultgoptimization problems with 10 dimensions, whereas it is
are reported and compared to standard CS, PSO, and ABQgontrary in case of CS and PSO. However, on rest of the
The statistical results in the form of mean, best, worst, andcases, the performance of pBestCS is significantly different
standard deviation of the objective function values obtainedfrom CS, PSO, and ABC.
over 30 independent runs are presented in Tables 3 and 4 for To summarize the results discussed above, it can be
dimensions 10, 30, and 50. In these tables, the best resultgéontended that the proposed pBestCS algorithm is suitable
are bold-faced. The performances of the metaheuristicfor high dimensional problems, which indicates its ability of
algorithms have been ranked in Table 5 for comparisonfinding global optimum solution in large and complex
purpose. These performances are reported dimension-wis@ptimization problems. This is further evident in Fig. 2, Fig.
while the overall performance rank is also given to 3, and Fig. 4 that pBestCS maintains better convergence
summarize the results. Apart from experimental results, ability then the counterparts. Especially, in caseé-p{30
some statistical analysis has also been performed viaand 50 dimensionsf;, andF; (50 dimensions)F, (30 and

The results of the experiments are then compared withP°
standard CS, PSO, and ABC.
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50 dimensions)Fs and F6 (10, 30, and 50 dimensions), Hence, we can say that pBestCS has strong exploration
pBestCS scaped local optimal locations and converged toability and is robust algorithm on large and complex
global optimum points quickly after few initial iterations. optimization problems.

TABLE Il
PERFORMANCECOMPARISON OFMETAHEURISTICALGORITHMS ONUNIMODAL FUNCTIONS
Function Dimensions Algorithms Best Worst Mean Std. Dev.
CS 6.94E-27 4.14E-25 1.87E-26 1.65E-26
10 PSO 2.79E-37 2.90E-36 2.18E-36 1.41E-36
ABC 2.37E-08 9.12E-07 1.25E-07 4.31E-08
pBestCS 1.10E-30 6.27E-25 5.61E-25 1.24E-22
CS 6.82E-09 5.96E-08 2.31E-08 8.09E-09
F 30 PSO 6.85E-08 1.48E-06 5.55E-07 1.51E-07
1 ABC 8.53E-07 1.03E-06 9.83E-07 7.49E-08
pBestCS 9.47E-31 1.01E-16 2.48E-18 1.74E-18
CS 1.32E-04 2.37E-04 1.68E-04 4.28E-05
50 PSO 1.23E-02 1.00E+02 6.58E+01 4. 75E+01
ABC 7.97E-05 2.40E-04 1.23E-04 6.22E-05
pBestCS 3.72E-15 5.39E-12 1.19E-12 2.47E-13
CS 1.83E-03 6.17E-03 4.64E-03 1.88E-03
10 PSO 2.09E-03 4.12E-03 2.46E-03 8.98E-04
ABC 9.42E-03 1.10E-02 1.04E-02 8.60E-04
pBestCS 5.38E-04 1.06E-03 8.32E-04 2.17E-04
CS 3.32E-02 7.72E-02 6.31E-02 2.99E-02
= 30 PSO 2.09E-03 4.12E-03 2.68E-03 5.98E-04
2 ABC 5.07E-02 7.15E-02 6.02E-02 6.87E-03
pBestCS 9.33E-04 4.41E-03 2.14E-03 1.61E-03
CS 2.39E-01 3.04E-01 3.79E-01 9.88E-02
50 PSO 3.09E-01 1.34E+02 4.34E+01 3.32E+01
ABC 2.10E-01 2.61E-01 2.47E-01 1.33E-02
pBestCS 5.43E-04 1.01E-02 2.93E-03 2.20E-03
CS 2.09E-12 9.34E-12 5.00E-12 3.09E-12
10 PSO 5.23E-20 3.86E-21 1.92E-20 1.31E-20
ABC 2.38E-05 3.21E-05 2.18E-05 3.46E-06
pBestCS 5.44E-19 8.24E-12 2.71E-14 3.88E-17
CS 3.13E-04 5.28E-04 3.92E-04 9.55E-05
F 30 PSO 3.47E-05 1.00E+01 6.66E+00 5.78E+0(
8 ABC 5.28E-05 1.35E-04 2.89E-05 1.37E-05
pBestCS 1.53E-13 1.77E-11 2.96E-12 2.11E-12
CS 1.10E-02 2.87E-02 1.96E-02 7.23E-03
50 PSO 3.00E+01 6.50E+01 4.34E+01 1.55E+01]
ABC 8.00E-03 2.15E-02 1.93E-02 5.86E-03
pBestCS 1.42E-08 1.36E-05 5.66E-06 3.75E-06
TABLE IV
PERFORMANCECOMPARISON OFMETAHEURISTICALGORITHMS ONMULTIMODAL FUNCTIONS
Function Dimensions Algorithms Best Worst Mean Std. Dev.
CS 5.19E-12 9.42E-12 6.93E-12 1.86E-12
10 PSO 2.66E-15 6.22E-15 3.58E-15 1.69E-15
ABC 3.90E-04 7.30E-04 1.95E-04 1.38E-04
pBestCS 9.77E-15 1.02E-13 4.16E-14 1.26E-14
CS 2.17E-04 6.74E-04 4.57E-04 1.13E-04
F 30 PSO 8.01E-05 2.24E-03 2.56E-04 9.69E-04
4 ABC 1.13E-03 2.13E-03 1.25E-03 5.27E-04
pBestCS 3.20E-11 8.25E-11 6.29E-11 2.21E-11
CS 9.12E-01 1.61E+00 1.39E+00 3.11E-01
50 PSO 5.85E+00 8.79E+00 6.70E+00 2.31E+0(
ABC 1.26E-02 1.98E-02 1.56E-02 3.04E-03
pBestCS 5.27E-11 1.58E-08 1.18E-09 6.44E-09
CS 2.88E+00 6.06E+00 3.65E+00 1.36E+00
= 10 PSO 3.98E+00 4.97E+00 4.52E+00 4.69E-01
5 ABC 2.25E+01 2.41E+01 2.31E+01 6.53E-01
pBestCS 0.00E+00 5.08E-07 1.67E-07 2.36E-07
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CS 4.66E+01 9.30E+01 6.26E+01 1.16E+01
30 PSO 6.51E+01 8.15E+01 6.54E+01 8.75E+0(
ABC 1.83E+02 1.90E+02 1.95E+02 1.24E+01
pBestCS 0.00E+00 6.05E-04 1.24E-06 1.81E-03
CS 1.32E+02 1.47E+02 1.38E+02 2.88E+00
50 PSO 2.90E+02 4.49E+02 3.96E+02 7.37E+01]
ABC 4.17E+02 4.43E+02 4.41E+02 1.17E+01
pBestCS 0.00E+00 1.58E-12 1.95E-12 1.69E-12
CS 2.01E-02 5.78E-02 4.32E-02 1.53E-02
10 PSO 7.87E-02 1.61E-01 1.30E-01 3.41E-02
ABC 2.52E-01 2.88E-01 1.61E-01 1.55E-02
pBestCS 8.77E-08 2.65E-05 1.16E-06 8.22E-05
CS 6.28E-04 1.27E-02 8.84E-03 5.09E-03
E 30 PSO 7.40E-03 1.12E-02 1.52E-02 3.53E-03
6 ABC 1.10E-02 6.12E-02 3.08E-02 2.06E-02
pBestCS 0.00E+00 0.00E+00 0.00E+00 0.00E+00
CS 1.42E-02 5.50E-02 5.40E-02 1.92E-02
50 PSO 1.81E+02 2.71E+02 2.70E+02 4.24E+01
ABC 1.09E-01 2.49E-01 1.62E-01 6.29E-02
pBestCS 0.00E+00 2.53E-08 1.01E-09 1.19E-08
TABLE V Mean Rank 2.83 3.50 2.67 1.00
PERFORMANCERANK OF METAHEURISTICS ONTESTFUNCTIONS Fq 3 4 2 1
- F, 3 4 2 1
Fur:]ctlo Dimension| CS PSO ABC | pBestCH Fs 50 3 4 2 1
F, 3 1 4 2 Fq 3 4 2 L
F, 4 3 2 1 Fs 2 3 4 1
Fs 2 4 3 1 Fe 3 4 2 1
= 10 3 1 2 5 Mean Rank 2.83 3.83 2.383 1.00
F: : a : 1 Overall Rank 2.83 3.33 2.72 1.11
Fe 2 3 4 1 TABLE VI
Mean Rank 2.83 2.67 3.17 1.3 P-VALUES AT A = 0.05BY FRIEDMAN TEST ONTESTFUNCTIONS
E; g i g 1 Dimensio | pBestCSvs| pBestCS vs pBestCS vs ABQ
Fs 3 4 > 1 ns CS PSO
E, 30 3 2 > 1 10 0.3545 0.7576 0.0308
Fe ) 3 2 1 30 0.0308 0.0136 0.0308
Fe 3 4 2 1 50 0.0136 0.0051 0.0136
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Fig. 2 Convergence comparison of CS, PSO, ABC, and pBestCS on 10 dimensional problems
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Fig. 4 Convergence comparison of CS, PSO, ABC, and pBestCS on 50 dimensional problems

IV. CONCLUSIONS pBestCS algorithm employs personal best information —

CS algorithm is a recent addition to nature-inspired NSPired from PSO — in the process of generating new

population-based metaheuristic algorithms, which have N€ighborhood solutions. The personal best memory or
performed well in hard optimization problems. However, Information is embedded in both in

similar to other metaheuristic algorithms, CS also encounters-€VY _flights and solution switching steps of the CS
performance drawbacks when it is implemented in large ang&/gorithm. This modification enforces effective local search

complex optimization problems. Various modifications have aPility. On the other hand, the proposed pBestCS also
been introduced in literature, but mostly such modifications €MPIoys the strategy of dynamically adjusting switching

are proposed by compromising algorithm complexity. In this Parameter to endorse high exploration in the beginning,
paper, the simple and effective modification has been which is linearly reduced towards the end of search process.

proposed in CS to solve unbalanced exploration and The proposed modification resolves the problem of lack of
exploitation problem. The improved variant, so-called POPulation diversity in CS algorithm.
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The comprehensive analysis of experimental results on
both unimodal and multimodal test function with a variety of
dimensionality validate the efficiency of the proposed
pBestCS algorithm. Based on comparison with the standard
CS, as well as, with other popular swarm-based
metaheuristic algorithms PSO and ABC, it can be implied
that pBestCS has improved search results than the pee
algorithms tested in this study.
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