
itif cn e Ci oc nS fl ea rn eo ni ct ea 2nr 0e 1t 1nI

ISC 2011

Proceeding of the International Conference on Advanced Science,
Engineering and Information Technology 2011

Hotel Equatorial Bangi-Putrajaya, Malaysia, 14 - 15 January 2011

ISBN 978-983-42366-4-9

ISC 2011

International Conference on Advanced Science,
Engineering and Information Technology

ICASEIT 2011

Cutting Edge Sciences for Future Sustainability

Hotel Equatorial Bangi-Putrajaya, Malaysia, 14 - 15 January 2011

SRI EA V IUN

 ITN IES

ED KO
BIN

NR A

GJA

AL SA

AE

N P

M N

AA

LU

AT

YA

SS

AI

R
E

P

NIN
O O

D

I TA EN
I CO AI S

SSA TS N
STNEDU

Organized by
Indonesian Students Association
Universiti Kebangsaan Malaysia

Proceeding of the

XML Labeling Schemes for Dynamic Updates:

Strengths and Limitations
Samini Subramaniam

1
, Su-Cheng Haw

2
, Poo Kuan Hoong

3

Faculty of Information Technology

Multimedia University

Cyberjaya, Malaysia

samini.subra@mmu.edu.my
1
, sucheng@mmu.edu.my

2
, khpoo@mmu.edu.my

3

Abstract— The importance of XML processing has become a significant field at present days with the intention to support user

queries in the most proficient way. In conjunction with this, many labeling schemes were proposed to identify the elements in XML

document uniquely as well as preserve structural relationships among the nodes to cater queries with multiple combinations. On the

other hand, due to the flexible structure of XML document, the data that is presented and communicated through this technology

changes frequently. Therefore, labeling scheme must be able to support dynamic updates so that the existing labels do not require

alteration. In this paper, we present some of the existing labeling techniques and their degree of support for structural relationship

and dynamic updates.

Keywords— XML, Numbering scheme, Labeling scheme, Structural Relationship, Dynamic update

I. INTRODUCTION

Recently, RDBMS has become the most ultimate storage
standard for data management in the World Wide Web
(WWW). RDBMS production has evolved over time and its
importance was comprehended and more sources are using
this tool to store and query the XML document. Due to this,
an efficient mapping method is certainly provision to ensure
seamless data integration between XML and RDBMS. The
process of shredding an XML document into relational
database and constructing an XML document based on the
information stored in the relational database requires the
nodes or elements in the XML document to be identified
uniquely so that data integrity can be sustained throughout
the storing and querying processes. Hence, the effort of
scrutinizing and proposing techniques to uniquely identify the
nodes, to be exact, labeling methods in XML document is a
great challenge to the researchers.

Generally, there are two types of user queries which are
full-text and structural queries. Full-text query is a text based
search where the queries contain keywords and the RDBMS
needs to search the matching results based on the word(s)
entered. For an example, ‘Find all the hotel names which
starts with Renaissance’. Thus, DBMS will return all the
hotel names which contain the word Renaissance. This query
is simpler compared to structural queries. This is because, the

support for structural query requires the structural
relationships among the nodes to be preserved and recorded.
Structural relationship among the nodes in XML document
can be classified into four categories which are Ancestor-
Descendant (A-D), Parent-Child (P-C), Sibling and Level
information. Users’ queries can fall into any one or
combination of these categories. Simultaneously, labeling
method must be able to cater these queries adequately. For an
example, ‘Find all the hotels names which are situated in
Klang Valley, price less than RM 200 per night and rated as
three stars’. In order to cater this query, the relationships
among the elements, in this case hotel name, price, location
and rating need to be recorded to provide accurate answers
which match all these conditions.

Apart from the support for both types of queries, a good
labeling scheme must be able to support dynamic updates
which can be adding, deleting or updating the data in the
original source. This is in view of the fact that the data in
XML document changes frequently according to the
requirements by the people in an organization or users. A
good labeling method should allow these to occur without re-
computing the labels of the existing nodes.

The objective of this paper is to study the techniques used
in the existing labeling methods which classifies the nodes
distinctly and determine strengths and limitations of these
approaches.

236

The rest of the paper is ordered as follows. In section II,
we briefly present some preliminaries on XML labeling
scheme. Section III is the main focus of our paper whereby
we describe the existing labeling approaches. In section IV,
we show comparisons of existing labeling techniques. Lastly,
section V concludes the paper.

II. PRELIMINARIES

There are two types of labeling that can be used to in an

XML document namely edge labeling and node labeling.

Edge labeling labels edges in an XML tree using the element

names that appear in an XML document. Fig. 1 illustrates

edge labeling for simple XML document.

Fig. 1 XML tree with Edge labeling

Node labeling labels the nodes using element names that

appear in an XML document. Most of the labeling schemes

in present days use the node-labeling method as the root to

produce unique labels for the elements in the XML

document. Fig. 2 illustrates node labeling for a simple XML

document.

Fig. 2 XML tree with Node labeling

It is vital for a XML document to be conventional to a

reliable labeling scheme which plays an important role to

the efficient XML and query processing.

III. EXISTING LABELING SCHEMES AND THEIR TECHNIQUES

There are many labeling techniques proposed by many

researchers with the intent to identify the nodes uniquely and

preserve the structural information among the nodes to cater

users’ queries. In this section, we describe and present the

ideas used by the existing approaches.

A. Global Order Encoding

Global Order Encoding [1] assigns each node in an XML

tree with a digit which denotes the node’s absolute position

in an XML document. As Global Encoding Scheme uses the

depth-first search to assign the unique number it is easier to

determine parent child relationships among nodes. Fig. 3

illustrates the numbering technique used in Global Order

Encoding scheme.

Fig. 3 Global Order Encoding

This scheme does not support dynamic updates because

the labels of the existing node require renumbering in case if

there is any insertion, deletion or update to the existing

document. For an instance, if a new node is inserted into the

existing document, all the nodes after the newly inserted

node requires re-numbering. This shows the inefficiency of

this method because re-computation of labels consumes

memory and delays XML processing which degrades the

performance of query handling.

B. Local Order Encoding

Local Order Encoding [1] assigns a number to the nodes

based on their relative position among the siblings. This

scheme can be used to generate a path vector by combining

the ids of the parent and ancestors. Nevertheless, this path

may grow larger depending on the complexity of an XML

document. Fig. 4 illustrates labeling method using Local

Order Encoding.

Fig 4: Local Order Encoding

237

In addition to this, Local Order Encoding does not support

dynamic update because the siblings after the newly inserted

node require re-calculation to generate new unique labels.

Although this scheme results lower overhead during update

process compared to Global Encoding method, certainly this

scheme consumes time which delay the XML processing.

C. DeweyID

Dewey Encoding [1] is a better approach in determining

the structural relationship among nodes compared to Global

and Local Encoding. This is due to fact that Dewey

Encoding assigns each node with a vector which denotes the

path from the root node to the current node and these paths

are separated by a dot divider. Thus, A-D relationship can

be determined if the ancestor’s label is the prefix of the

descendant’s label. However, a complex XML document

may have longer paths and assigning extensive label to a

node is absolutely not feasible. Fig. 5 depicts the numbering

technique used in Dewey Order ID. Apart from that, since

this scheme is a prefix-based scheme, the support for

dynamic update is essentially complicated. This is because,

if there is a change in the parent label, the child and

descendant labels will be adjusted simply because ancestor’s

labels are being inherited throughout the document.

Apparently, this scheme is not appropriate to support

dynamic update.

Fig. 5 Vector path in Dewey ID

D. Prime Number Labeling

There are two methods that can be used in prime number

labeling scheme namely, bottom-up and top-down labeling

schemes [2]. For bottom-up approach, leaf nodes will be

assigned a unique prime number which represents the self-

label of the node itself. The parent node will be the product

of the child nodes. For an instance, if the labels for two leaf

nodes are 3 and 5 respectively, the label of the parent node

will be 15 (3 x 5). Parent-child relationship can be

determined easily be calculating the factor for the number

assigned for the parent node. Ancestor-descendant

relationship can be calculated by calculating the modulus of

the ancestor and descendant node. If the result is 0 then

ancestor-descendant relationship among the two nodes exists.

For an instance, if the self-label of the ancestor node is 77

and child node = 7, 77 mod 7 = 0; thus, node with the label

77 is the ancestor of node with the label 7.

On the other hand, top-down approach calculates the

label of a node by multiplying parent label and self-label

which is a unique prime number. For an instance, if the

parent label is 2 and the self-label is 7 (prime number), the

label assigned for this node is 14 (2x7). Parent-child

relationship can be determined easily by dividing the child

label and parent label. If these numbers are divisable, then

parent-child relationship exists between these nodes.

Ancestor–descendant relationship can be ascertained using

the same method as in bottom-up approach. Though this

approach supports dynamic update, prime number used in

this approach may grow larger which produces huge value

for the self label of a node. Since prime number that is

assigned to a node can only be used once thus, larger amount

of prime numbers are required for complex XML document.

E. Interval- Based Labeling Scheme

Interval-based labeling [3] method is based on the depth-

first traversal which assigns an unique number to each label

which can be referred as the start_position_number and

followed by an end_position_number which is given when

the node is traversed back from the same branch of the tree.

An interval will be given between the start-position and end-

position. Fig. 6 shows the technique used in Interval-based

labeling.

Fig. 6 Interval-based Labeling

Even though this technique allows determining

ancestor-descendant and parent-child relationship,

dynamic update is not supported if the inserted nodes

are more than the interval allocated between the

existing nodes. In the worst case scenario, re-labeling

will be required which is certainly arduous.

F. Dynamic Interval Labeling Scheme

Interval [4] and Interval-based Labeling are comparable

in terms of the reserved numbers allocated for newly

inserted nodes. In order to fix the limitation the Interval-

based Labeling, Dynamic Interval treats newly inserted

nodes as a sub tree and only one numbers will be used from

238

the reserved number. This is an advantage for bulk loading

as the nodes in single insertion will be considered as one tree.

Clearly, this reduces the usage of the reserved numbers and

more nodes can be inserted at a time.

G. ORDPATH

The labels of the nodes denote the path from the ancestor

to the current node based on ORDPATH [5]. ORDPATH

assigns only odd and positive integers as the label for

existing nodes. Fig 7 illustrates an example of node labeling

using ORDPATH. This scheme uses negative and even

integers for new insertion of nodes. For an example, if an

insertion happens on the right of the existing nodes, then the

new label for the node can be generated by +2 will be added

to the last ordinal. Likewise if a node is added on the left of

the existing nodes, -2 will be added to the first ordinal from

left.

Fig. 7 Example of ORDPATH

 The drawback of ORDPATH is the length of the labels

which very much depending on the depth of the tree which

exemplify complexity of XML document.

H. LSDX

LSDX [6] proposes a different labeling technique as

compared to other techniques which combines integer and

character to generate unique labels for the nodes. This

method produces more unique labels which allow more

insertions to happen to the existing document. Label of a

node starts with level, followed by parent label, a dot

separator and b for the first label and then subsequent

alphabets in an alphabetical order. Example of LSDX

labeling is shown in Fig. 8.

The disadvantage of this approach is collision may occur

which is caused by the production of same labels for two

nodes which is absolutely improper and inadequate.

Fig. 8 Example of LSDX

I. Persistent Labeling Scheme

Persistent Labeling [7] is an example of an efficient

labeling method which provides the ability to determine

structural relationships among the nodes in the document.

This is due to the schema proposed by this approach which

is (level(l), [parent_label] (pi,pj), [self_label] (si,sj)) with the

aim to maintain the parent-child relationships among nodes

throughout the document. Along with this, ancestor-

descendant relationships can be ascertained by tracing the

parent-label of the descendant node bottom-up until the

ancestor node is reached. This scheme also caters dynamic

updates efficiently without having the labels of the existing

nodes to be re-calculated. Persistent labeling produces

unique labels each time a node is being inserted and deletion

or any updates to the existing nodes are certainly allowed

without any changes to the existing labels consequently.

There are three significant scenarios that need to be

concerned to generate unique labels for newly inserted nodes.

The scenarios are shown in the Table 1. Assume that the

label Node C denotes the newly inserted node.

TABLE I
LABELING TECHNIQUE USING PERSISTENT LABELING SCHEME

Scenario Technique to Generate Unique

Label

Node C is inserted before Node

A provided that no nodes before

Node A;

Label C = (ci,cj)

:- (ci,cj) = (ai -1,aj)

239

Node C is inserted after Node B

provided that no nodes after

Node B after Node B;

Label C = (ci,cj)

:- (ci,cj) = (bi + 1,bj)

Node C is inserted between

Node A and Node B

Label C = (ci,cj)

ci = bi. aj + ai. bj / d

cj = 2. aj. bj / d

 : where d is Highest

 Common Factor for

 (bi.aj + ai.bj) and (2.aj.bj)

Hence, Persistent Labeling method is absolutely efficient

for dynamic mapping. However, the disadvantage of this
approach is length of the labels which is long and this may
degrade the performance of the labeling scheme to identify a
node expeditiously.

IV. COMPARISONS BETWEEN EXISTING APPROACHES

There are many labeling approaches that were proposed in

recent years but they need to be assessed if they support two

most crucial issues which are: i) support for structural query;

ii) support for dynamic updates. The assessment of each

approaches are recorded in Table 2 as shown below:

TABLE 2
COMPARISONS BETWEEN LABELING SCHEMES

Structural Relationship Approach

PC

*

AD# Sibling

Dynamic

Update

Remarks

Global Order √ × × × All the nodes

after newly

requires re-

labeling

during

dynamic

updates

Local Order × × × × Sibling nodes

after newly

inserted

during

dynamic

updates

Dewey ID √ √ √ × Child nodes

and sibling

nodes

requires re-

labeling

during

dynamic

updates

Bottom-Up

Prime

Number

Labeling

√ √ × √ All prime

numbers

might be used

up for

complex

XML

document

Top-Down

Prime

Number

Labeling

√ √ × √ All prime

numbers

might be used

up for

complex

XML

document

Interval-

Based

Labeling

√ √ √ √ Reserved

number in the

interval

might be used

up for

complex

XML

document. If

such, re-

labeling is

required

Dynamic-

Interval

Based

√ √ √ √ Reserved

number in the

interval

might be used

up for

complex

XML

document. If

such, re-

labeling is

required

ORDPATH √ √ √ √ Extensive

size of label

length for

complex

XML

document

LSDX √ √ √ √ Collision of

label which

generates

same IDs for

nodes

Persistent

Labeling

√ √ √ √ Length of

label is rather

long and

should be

simplified

adequately
* PC: Parent-Child

AD: Ancestor-Descendant

 Users’ queries may vary according to their needs. It is

indeed crucial for a labeling scheme to maintain the

structural relationships among nodes to support for structural

queries which contains either P-C or A-D relationships or

combination of both P-C and A-D.

240

V. COMPARISONS AND FUTURE WORK

Labeling scheme plays significant role in supporting user

queries regardless of full-text or structural query. Many

labeling methods that were proposed support keyword-based

search but be oblivious to structural queries which obstructs

the processing of queries with multiple criteria.

Simultaneously, it is also important for a labeling scheme to

support dynamic update to avoid the labels of the existing

nodes to be adjusted when there is a new insertion, deletion

or updates to the nodes. Thus, an efficient and dynamic

labeling scheme contributes to the competency and seamless

XML query processing and maintenance of XML data can

be done without any alteration to the existing nodes.

VI. REFERENCES

[1] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,

and C. Zhang, “Storing and Querying Ordered XML Using a
Relational Database System”, In Proceedings of ACM SIGMOD,
2002, pp. 204-215.

[2] X. Wu, M.L. Lee and W. Hsu, “A Prime Number Labeling Scheme for
Dynamic Ordered XML Trees,” In Proc. of ICDE, 2004, pp. 66-78.

[3] C. Zhang, J. Naughton, D. DeWitty, Q. Luo, and G. Lohman, “On
Supporting Containement Queries in Relational Dabase Management
System”, In Proc. of ACM SIGMOD, 2001, pp. 425-436.

[4] J-H. Yun and C.W. Chung, “Dynamic Interval-based Labeling
Scheme for Efficient XML Query and Update Processing”, Journal of
Systems and Software, 2008, pp. 56-70.

[5] P. O’Neil, E. O’Neil, S. Pal, L.Cseri, G. Schaller, and N.Westbury,
“ORDPATHS: Insert-Friendly XML Node Labels”, In Proc. of ACM
SIGMOD, 2004, pp. 903- 908.

[6] M. Duong, and Y. Zhang, “LSDX: New Labbeling Scheme for
Dynamically Updating XML Data”, In Proc. of 16th Australian
Database Conference, 2005, pp.185- 193.

[7] A. Gabillon and M. Fansi, “A Persistrent Labeling Scheme for XML
and tree Database,”In Proc. of ACI, 2006, pp. 110-115 .

241

