

Vol.8 (2018) No. 3

ISSN: 2088-5334

Different Applications of the Genetic Mutation Operator for Symetric
Travelling Salesman Problem

Velin Kralev

Department of Informatics, South-West University "Neofit Rilski", 66 Ivan Michailov Str., Blagoevgrad, 2700, Bulgaria
 E-mail: velin_kralev@swu.bg

Abstract— This paper presents the results of an analysis of three algorithms for the Travelling Salesman Problem (TSP). The basic
steps of genetic algorithms (GAs) and their benefits in solving combinatorial optimization problems are also presented. Moreover,
several studies related to TPS and some approaches to its solution are discussed. An optimized version of the standard recursive
algorithm for solving TSP using the backtracking method is presented. This algorithm is used to generate optimal solutions
concerning the studied graphs. In addition, a standard genetic algorithm for solving TSP and its modification are also presented. The
modified algorithm uses the genetic operator mutation in a different way. The results show that the recursive algorithm can be used
successfully to solve the TSP for graphs with a small number of vertices, for instance, 25-30. The results of the two GAs were
different. The modified GA found the optimal solutions for all tested graphs, while the standard GA found the optimal solutions in
only 40% of the cases. These results were obtained for a reasonable time (in seconds), with appropriate values of the control
parameters - population size and reproduction number. It appeared that the use of the genetic mutation operator yields better results
when applied to identical solutions. If pairs of identical solutions are found in a population, then every second must mutate. The
methodology and the conditions for conducting the experiments are described in details.

Keywords— travelling salesman problem; genetic algorithm; crossover; mutation

I. INTRODUCTION

In the recent years, the interest in GAs [1]–[3] and their
modifications [4]–[6] has increased significantly. These
algorithms generate optimal (or near optimal) solutions for a
reasonable time [7]. What is typical of most heuristic
approaches is that they work well for certain problems, but
they hardly adapt from one problem to another [8]–[10].
Therefore, the development of more adaptive approaches
that work effectively for different problems will be further
explored.

For an important class of NP-hard problems, such as
scheduling problems and graph problems, good approximate
solutions were found using GAs [11]–[13]. This class of
problems are known for being similar but not identical to the
problems for which there are efficient algorithms. A small
change in the problem definition can result in a great change
in the performance of the best known algorithm [14].

When an algorithm uses the backtracking method, it
checks a large number of possible solutions. Exploring all
solutions is often unnecessary. Therefore, a number of
methods have been proposed to reduce the number of
solutions considered. Applying such approaches increases
the performance of the algorithms used. This will also be

shown in this paper as well, with presenting the results of the
experiments.

Unlike the exact algorithms, the genetic ones are
approximated and are based on ideas borrowed from nature.
These algorithms process a collection (population) of
possible solutions (individuals). These solutions are
combined and modified to generate better ones. Each
solution is presented in a digital form and evaluated based on
a predefined criterion of optimality.

After generating all solutions in the initialization
population, each one can be left unchanged in the next
population, can be re-combined with another solution to get
a new one or can be removed. Some of the solutions can be
changed (i.e., mutated), with a predetermined probability
[15].

Each iteration of GA generates a new generation (with
individuals, i.e., solutions), thus performing a reproduction
process. Defining whether a solution is better or worse is
done by a fitness function. This function "evaluates" each
solution (according to the criterion of optimality). The
solutions are classified (as better or worse) based on these
estimates [16]–[18].

The steps that one GA performs are schematically
presented in Fig. 1 ÷ Fig. 10.

762

Step 1. At first, a number of acceptable solutions is
created. They form the initialization population P0 = {S1,
S2, ..., Sk}. These solutions are the basis for the formation of
the next generations and are most often generated randomly
(Fig. 1).

Fig. 1 Step 1 of GA

Step 2. The fitness function evaluates each solution

according to the criterion of optimality. In this way, each
solution is compared with a quantitative measure of its
quality (Fig. 2).

Fig. 2 Step 2 of GA

Step 3. All solutions are ordered descending according to

their costs (calculated in step 2). In this way a selection of
certain solutions can be made (Fig. 3).

Fig. 3 Step 3 of GA

Step 4. A number of solutions (such as k/2 or other even

number) that have the best costs are selected. Since all
solutions are ordered descending (in step 3), the first several
solutions will be selected from the population. Other
solutions will be removed. The number of selected solutions
may vary from 10% to 50% (Fig. 4).

Fig. 4 Step 4 of GA

Step 5. The selected solutions (in step 4) are combined in

pairs, for instance k/4 in number. The ways of doing so may
be different, for example, by random means or by the two
best successive solutions (Fig. 5).

Fig. 5 Step 5 of GA

Step 6. The combined pairs of solutions (total k/4) play

the role of parents. By applying the crossover, each parent
pair generates one, two or more new solutions. The total
number of these solutions must match the number of
solutions removed in step 4: k/2 (Fig. 6).

Fig. 6 Step 6 of GA

Step 7. Some of the new solutions are modified by

applying the genetic mutation operator. This operator
modifies a solution by changing one or more of its genes.
Generally, The number of modified genes is small (e.g., up
to 10% of the total number of genes in the solution). This
genetic operator can also be applied in other cases, for
example, when the population has identical solutions (Fig. 7).

Fig. 7 Step 7 of GA

Step 8. The new solutions are obtained as a result of the

implementation of the genetic operators crossing and
mutation. These solutions are also evaluated by the fitness
function (Fig. 8).

Fig. 8 Step 8 of GA

Step 9. At this step of GA, parents and descendants are

united. In this way the new Pt+1 population is formed (Fig. 9).

Fig. 9 Step 9 of GA

Step 10. Creating new generations continues until the

algorithm end criterion is met. Such a criterion, for example,
is the creation of a certain number of generations, or the
number of generations after which there is no improvement
to the last best solution found (Fig. 10).

Fig. 10 Step 10 of GA

GAs are widely used to solve a large number of

optimization problems from various fields of science, such
as the graph theory. This is a part of computer science,
which has an excessive practical application. In many cases,
the analysis and description of different systems is done
successfully with graph structures [19]. One major class of
graph theory problems – NP-hard, can be solved well by
some approximate algorithms such as GAs [20]–[24].
Finding an exact solution to these problems (with a large
input size) can take a long time [25]. The approaches based

763

on the backtracking method yield the best results but only
for problems with small input size. This method, though
possible, is practically inapplicable. For instance, in a
complete graph with 26 vertices and 26*(26-1)/2=325 edges,
the number of all possible Hamiltonian cycles is
considerable, respectively: (26-1)!/2=7 755 605 021 665 490
000 000 000. Therefore, the modifying and the improvement
of existing heuristic algorithms is understandable [26]–[29].

The problem to find a minimal Hamiltonian cycle in a
graph is an optimization problem. It is also known as the
Travelling Salesman Problem, and its variants and detailed
description are presented in [30] and [31]. There are several
approaches and a large number of algorithms for TSP
solving [32]–[34]. However, only two of them are basic - the
exact and approximate methods. The exact algorithms
always find the best solution, but a lot of computational time
is required. It is applicable when the number of the vertices
in a graph is small [35] and [36]. On the other hand,
approximated algorithms find a solution that is close to the
optimal one, and the time for this is acceptable. Such
algorithms have been discussed in [37]–[39].

II. MATERIAL AND ALGORITHM

This section presents the description and the analysis of
three different algorithms which can be used to solve TSP.
The first algorithm is based on the backtracking method, and
it always finds the exact solution. The other two algorithms
are GA modifications which can be used to solve
approximate TSP. The main results that will be analyzed are
the length of the found Hamiltonian cycle (it should be as
small as possible) and the algorithms execution time.

01 var
02 │ VertexCount: Integer;
03 │ CycleLength: Integer;
04 │ MinimalCycleLength: Integer;
05 │ HamiltonianCycle: array of Integer;
06 │ Individuals: Integer;
07 │ Generations: Integer;
08 │ MarkedArray: array of Boolean;
09 │ ScoreArray: array of Integer;
10 │ Population: array of array of Integer;
11 │ AdjacencyMatrix: array of array of Integer;
12 initialization
13 │ SetVertexCount(30);
14 │ SetIndividuals(640);
15 │ SetGenerations(1000);
16 │ SetLength(MarkedArray, VertexCount+1);
17 │ SetLength(ScoreArray, VertexCount+1);
18 │ SetLength(Population,
19 │ Individuals+1, VertexCount+1);

Fig. 11 Code of the global declarations

For the implementation of algorithms and the parameter

analysis, it is necessary to pre-declare and initialize (with the
appropriate methods) some global data structures (dynamic
arrays and variables) as shown in Fig. 11 (in Delphi).

An Optimization of a recursive algorithm [26] to find a
minimal Hamiltonian cycle in a complete undirected graph is
shown in Fig. 12. This algorithm based on the Depth-first
search (DFS) approach. The FindMinimalHamiltonianCycle
procedure is recursive and calls itself on lines 26 and 27.
When the last vertex from the graph - VertexCount is added
to the constructed path (line 8), the length of the resulting
Hamiltonian cycle is stored as minimal. The verification of

whether the generated cycle is minimal or not is performed
at the previous recursive procedure call of line 24. After
every recursive procedure call to the current length of the
constructed path, the length of the edge that connects the
Iteration and J vertices is added (lines 22 and 23). If the
length of the currently constructed cycle (albeit incomplete)
is greater than the length of the last one, it is a step back and
the last added edge is removed from the constructed path
(lines 28 and 30). In this way, the search process is
optimized, as all other possible extensions are not made.
This optimization does not reduce the complexity of the
algorithm, which remains exponential.

01 procedure FindMinimalHamiltonianCycle
02 │ (Iteration, Position, VertexCount: Integer);
03 var
04 │ J: Integer;
05 begin
06 │ if ((Iteration = 1) and (Position > 1)) then
07 │ begin
08 │ │ if (Position = (VertexCount + 1)) then
09 │ │ begin
10 │ │ │ MinimalCycleLength := CycleLength;
11 │ │ end;
12 │ │ Exit;
13 │ end;
14 │ if (MarkedArray[Iteration] = True) then Exit;
15 │ MarkedArray[Iteration] := True;
16 │ for J := 1 to VertexCount do
17 │ begin
18 │ │ if ((AdjacencyMatrix[Iteration,J] > 0) and
19 │ │ │ (J <> Iteration)) then
20 │ │ begin
21 │ │ │ HamiltonianCycle[Position] := J;
22 │ │ │ CycleLength := CycleLength +
23 │ │ │ AdjacencyMatrix[Iteration,J];
24 │ │ │ if (CycleLength < MinimalCycleLength) then
25 │ │ │ begin
26 │ │ │ │ FindMinimalHamiltonianCycle
27 │ │ │ │ (J, Position + 1, VertexCount);
28 │ │ │ end;
29 │ │ │ CycleLength := CycleLength -
30 │ │ │ AdjacencyMatrix[Iteration,J];
31 │ │ end;
32 │ end;
33 │ MarkedArray[Iteration] := False;
34 end;

Fig. 12 Code of the recursion based algorithm

Two other algorithms for finding a minimal Hamiltonian

cycle in a complete undirected graph will be presented. The
first is a standard genetic algorithm (SGA) that performs the
basic steps presented in Fig. 1÷10. The second algorithm
(MGA) is a modification of the first. The difference being in
the mode of application of the genetic mutation operator.
The main difference is the application of the genetic
mutation operator. The necessary methods (procedures and
functions) that are common to both algorithms have been
implemented in advance.

The method of evaluating the quality of a solution is
CalculateScore (Fig. 13). This function receives as an input
parameter a solution index, and as a result, it returns its score.
The computational complexity of this method is linear, since
only one loop of the vertices in the graph is performed (line
10). This process starts from the edge that connects the latter
with the first vertex (line 6-9). All weights of edges that
connect every two consecutive remaining vertices are also
added (lines 12-14).

764

01 function
02 │ CalculateScore(Individual: Integer): Integer;
03 var
04 │ Index: Integer;
05 begin
06 │ Result :=
07 │ AdjacencyMatrix[
08 │ Population[Individual,VertexCount],
09 │ Population[Individual,1]];
10 │ for Index := 1 to VertexCount-1 do
11 │ begin
12 │ │ Inc(Result, AdjacencyMatrix[
13 │ │ Population[Individual,Index],
14 │ │ Population[Individual,Index+1]]);
15 │ end;
16 end;

Fig. 13 Code of the CalculateScore fucntion

The method for generating the initial population is

GenerateRandomIndividuals (Fig. 14). This procedure
generates random Hamiltonian cycles to fill the initial
population (lines 7-19). The computational complexity of
this method is Θ(n.m), where n is the number of individuals
in the population, and m is vertices in the graph. All
generated Hamilton cycles are evaluated with the fitness
function – CalculateScore (lines 20-21).

01 procedure GenerateRandomIndividuals;
02 var
03 │ Individual, Gene, Value, T: Integer;
04 begin
05 │ for Individual := 1 to Individuals do
06 │ begin
07 │ │ for Gene := 1 to VertexCount do
08 │ │ begin
09 │ │ │ MarkedArray[Gene] := False;
10 │ │ │ Value := Random(VertexCount-Gene);
11 │ │ │ T := 0;
12 │ │ │ repeat
13 │ │ │ │ while MarkedArray[T] do Inc(T);
14 │ │ │ │ Dec(Value); Inc(T);
15 │ │ │ until (Value = 0);
16 │ │ │ Dec(T);
17 │ │ │ Population[Individual,Gene] := T;
18 │ │ │ MarkedArray[T] := True;
19 │ │ end;
20 │ │ ScoreArray[Individual] :=
21 │ │ CalculateScore(Individual);
22 │ end;
23 end;

Fig. 14 Code of the GenerateRandomIndividuals procedure

The OrderIndividualsByScore method performs ordering

of individuals in the population depending on their scores,
i.e., depending on the lengths of the formed Hamiltonian
cycles (Fig. 15). The computational complexity of this
method is Θ(m.n2), where n is the number of individuals in
the population, and m is vertices in the graph. When
changing the order of the individuals in the population (lines
5 and 7), all elements of the solution are also copied (lines
11-13). After that, the scores of the solutions also exchanged
(line 14).

The Swap procedure is pre-declared. It gets two
parameters that are passed by address and then exchanging
their values. Since the computational complexity of this
method is determined by the population size (rather than by
the number of the vertices in the graph) when the number of
individuals is large, it is better to replace selection sort
method by another one, such as a quick sort or merge sort.

01 procedure OrderIndividualsByScore;
02 var
03 │ Index, T, V: Integer;
04 begin
05 │ for Index := 1 to (Individuals-1) do
06 │ begin
07 │ │ for T := (Index+1) to Individuals do
08 │ │ begin
09 │ │ │ if (ScoreArray[T]< ScoreArray[Index]) then
10 │ │ │ begin
11 │ │ │ │ for V := 1 to VertexCount do
12 │ │ │ │ │ Swap(Population[Index,V],
13 │ │ │ │ │ Population[T,V]);
14 │ │ │ │ Swap(ScoreArray[Index], ScoreArray[T]);
15 │ │ │ end;
16 │ │ end;
17 │ end;
18 end;

Fig. 15 Code of the OrderIndividualsByScore procedure

One of the essential methods of GA is the one that

performs the genetic crossover operator. This method has
been implemented in the DoCrossover procedure (Fig. 16).

01 procedure DoCrossover(P1, P2, F1, F2: Integer);
02 var
03 │ Index, Left, Right: Integer;
04 begin
05 │ Left := Random(VertexCount);
06 │ repeat
07 │ │ Right := Random(VertexCount);
08 │ until (Right <> Left);
09 │ if Left > Right then Swap(Left, Right);
10 │ for Index := 1 to Left-1 do
11 │ begin
12 │ │ Population[F1,Index]:= Population[P1,Index];
13 │ │ Population[F2,Index]:= Population[P2,Index];
14 │ end;
15 │ for Index := Left to Right-1 do
16 │ begin
17 │ │ Population[F1,Index]:= Population[P2,Index];
18 │ │ Population[F2,Index]:= Population[P1,Index];
19 │ end;
20 │ for Index := Right to VertexCount do
21 │ begin
22 │ │ Population[F1,Index]:= Population[P1,Index];
23 │ │ Population[F2,Index]:= Population[P2,Index];
24 │ end;
25 │ ScoreArray[F1] := CalculateScore(F1);
26 │ ScoreArray[F2] := CalculateScore(F2);
27 end;

Fig. 16 Code of the DoCrossover procedure

The parameters P1 and P2 are the indices of solutions

from the current population that are selected for parents. The
other two parameters, F1 and F2, are indexes of solutions
from the second half of the current population that will be
replaced by the generated descendants. The individuals in
the population are ordered by their score, which means that
the worst solutions are in the second half of the population.
The crossing points are determined by the values of the Left
and Right variables (set in lines 5-9). These values are
generated in such a way that they are random, different, and
Left is less than Right. The new solutions are obtained by
copying different sections of genes from both parents, then
combining them. In this way of crossing it is possible in
some of the new solutions to appear repetitive and
respectively missing vertices. This problem is solved by
repeating vertices being replaced by missing ones. After
generating new solutions, their scores are calculated using
the CalculateScore function (lines 25-26). The complexity of

765

this method is Θ(m2), where m is the number of vertices in
the graph.

Another important method of GA is the one that performs
the genetic mutation operator. This method is implemented
in the DoMutate procedure (Fig. 17). This procedure obtains
the index of a particular solution as an input parameter. The
exchange positions (genes) are determined by the values of
two variables - LeftGene and RightGene (lines 5-8). These
values are generated in a similar way as in the DoCrossover
procedure, i.e., they are random and different, but the value
of LeftGene is not obligatorily smaller than the value of
RightGene. The new solution is obtained after the values of
these two positions are exchanged through the Swap
procedure (lines 9-11). After generating the new solution, its
score is calculated using the CalculateScore function (lines
12-13). The computational complexity of this method is a
constant because only one individual of the population and
two of its genes are changed (i.e., only two vertices are
counted in the graph, not all of them).

01 procedure DoMutate(Individual: Integer);
02 var
03 │ LeftGene, RightGene: Integer;
04 begin
05 │ LeftGene := Random(VertexCount);
06 │ repeat
07 │ │ RightGene := Random(VertexCount);
08 │ until (RightGene <> LeftGene);
09 │ Swap(
10 │ Population[Individual,LeftGene],
11 │ Population[Individual,RightGene]);
12 │ ScoreArray[Individual] :=
13 │ CalculateScore(Individual);

Fig. 17 Code of the DoMutate procedure

In the present study, two variants of the reproduction

generation procedure will be used and analyzed. In the first
variant, the standard steps of the GA, which were presented
in the previous section, are implemented. The code of the
StandardReproduce procedure is presented in Fig. 18.

01 procedure StandardReproduce;
02 var
03 │ Generation, Individual, I: Integer;
04 │ IsEqual: Boolean;
05 begin
06 │ GenerateRandomIndividuals;
07 │ for Generation := 1 to Generations do
08 │ begin
09 │ │ OrderIndividualsByScore;
10 │ │ Individual := 1;
11 │ │ while (Individual < (Individuals div 2)) do
12 │ │ begin
13 │ │ │ DoCrossover(Individual, Individual+1,
14 │ │ │ Individuals-Individual,
15 │ │ │ Individuals-(Individual-1));
16 │ │ │ Inc(Individual,2);
17 │ │ end;
18 │ │ for I := 1 to Round(Individuals*0.1) do
19 │ │ begin
20 │ │ │ DoMutate(Individuals –
21 │ │ │ Random((Individuals div 2)));
22 │ │ end;
23 │ end;
24 end;

Fig. 18 Code of the StandardReproduce procedure

Initially, steps 1 and 2 (combined in the GenerateRandom

Individuals method, line 6) are performed. This method

generates the initial population, while also invoking the
CalculateScore function to evaluate each generated solution.
The reproduction generation process begins at line 7. The
number of these reproductions is determined by the value of
the Generations variable, which is initialized at the
beginning of the program. Creating a new population starts
with the implementation of step 3 on line 9. Then (combined)
steps 4, 5, 6, 8 and 9 (lines 10-17) are performed. After the
execution of the crossover operator, 20% of the new
solutions mutate. This is equivalent to 10% (0.1) of the
population size. This is done on lines 18-22 and corresponds
to a combined execution of steps 7, 8 and 9. Checking for
the end of the process of generating new reproductions is
done at line 22 (corresponds to step 10 of the GA). If the
specified number of reproductions (the value of the
Generations variable) is reached, the transition to step 3 (line
9) is not done. Otherwise the process of generating the next
reproduction will continue. The computational complexity of
this procedure is quadratic, depending on the number of
vertices in the graph and the number of individuals in the
population (the values of the VertexCount and Individuals
variables). In the analysis of the computational complexity,
the value of the Generations variable can also be included as
the overall complexity of the program depends linearly on
the number of generated reproductions.

A modified reproduction generation procedure that is
different from the standard one will be presented (Fig. 19).

01 procedure ModifiedReproduce;
02 var
03 │ Generation, Individual, I, Gene: Integer;
04 │ IsEqual: Boolean;
05 begin
06 │ GenerateRandomIndividuals;
07 │ for Generation := 1 to Generations do
08 │ begin
09 │ │ OrderIndividualsByScore;
10 │ │ Individual := 1;
11 │ │ while (Individual < (Individuals div 2)) do
12 │ │ begin
13 │ │ │ DoCrossover(Individual, Individual+1,
14 │ │ │ Individuals-Individual,
15 │ │ │ Individuals-(Individual-1));
16 │ │ │ Inc(Individual,2);
17 │ │ end;
18 │ │ for Individual := 1 to Individuals - 1 do
19 │ │ begin
20 │ │ │ for I := Individual + 1 to Individuals do
21 │ │ │ begin
22 │ │ │ │ IsEqual := True;
23 │ │ │ │ for Gene := 1 to VertexCount do
24 │ │ │ │ │ if(Population[Individual, Gene] <>
25 │ │ │ │ │ │ Population[I, Gene]) then
26 │ │ │ │ │ │ begin IsEqual:= False; Break; end;
27 │ │ │ │ if IsEqual then DoMutate(I);
28 │ │ │ end;
29 │ │ end;
30 │ end;
31 end;

Fig. 19 Code of the ModifiedReproduce procedure

The difference is when using the genetic mutation

operator. After the process of generating new solutions (lines
11-17) is completed, it is checked whether there are same
solutions among them. When two identical solutions are
found, the second one mutates (lines 18-29). This leads to an
increase in the computational complexity of the whole
procedure, which is already cubic and depends both on the

766

number of vertices in the graph and the number of
individuals in the population, along with the number of
reproductions generated.

The experiments showed that with a large number of
individuals in the population (many times higher than the
number of vertices in the graph), a large percentage (in some
cases more than 50%) of the generated solutions are
identical.

III. RESULTS AND DISCUSSION

Two experiments will be conducted in this study. First, it
will be checked experimentally for which graphs and with
how many vertices (respectively edges), the recursive
algorithm (using the backtracking and branch-and-bound
methods), can be used to find a minimal Hamiltonian cycle
for a reasonable time. Second, a comparative analysis
between the two GA variants will be made, analyzing the
quality of the found solutions, the time to find them, and the
effect of the use of the genetic mutation operator.

A. The methodology of the experiments

Twelve complete and weighted graphs were created for
the experiments, respectively with 15÷26 vertices. Each
graph (except K15) was created by adding a new vertex (n)
and n-1 edges. These edges connect the new vertex with all
other vertices. The coordinates of the vertices are shown in
Table I. These are the screen coordinates of the centers of
the vertices.

TABLE I
THE COORDINATES OF THE VERTICES OF THE K26 GRAPH

V X Y V X Y V X Y
1 178 499 10 261 509 19 159 156

2 99 515 11 307 419 20 83 139

3 258 227 12 320 171 21 48 251

4 34 184 13 117 433 22 248 28

5 110 245 14 49 437 23 22 326

6 127 300 15 232 435 24 85 367

7 126 84 16 301 275 25 60 35

8 234 317 17 235 137 26 35 93

9 286 78 18 207 75

All three algorithms use an adjacency matrix – A[|V|,|V|].

Each item A[i,j] is greater than 0, for ∀ i ≠ j, and is equal to
the length of the edge (i,j). These values are equal to the
Euclidean distance between each pair of vertices. Since the
tested graphs are undirected and have no loops, the elements
in the matrix below and above the main diagonal are equal
(i.e., the matrix A is symmetrical), and those on the main
diagonal - A [i,i] have values equal to 0.

B. Experimental Conditions

The experimental conditions are the following: PC with
64–bit Operating System Windows 10, x64–based processor
and hardware configuration: Processor: Intel (R) Core (TM)
i7–4712MQ CPU at 2.30 GHz; RAM: 8GB DDR3.

C. Experimental results

The results of the recursion based algorithm for K15 ÷ K26
graphs are shown in Table II.

TABLE II
THE RESULTS OF THE RECURSION BASED ALGORITHM

G Length Imp Recursive Calls Time (in ms) Rcpms
K15 1 450 21 407 554 47 8 671

K16 1 569 24 1 593 906 188 8 478

K17 1 612 27 7 980 375 953 8 374

K18 1 696 35 27 655 276 3 390 8 158

K19 1 746 37 125 799 721 16 257 7 738

K20 1 755 43 680 150 761 90 625 7 505

K21 1 777 47 2 317 052 334 327 547 7 074

K22 1 780 37 7 051 026 768 1 087 625 6 483

K23 1 853 40 51 144 113 151 10 154 156 5 037

K24 1 871 43 180 806 431 928 42 860 625 4 218

K25 1 898 41 814 421 034 545 258 414 656 3 152

K26 2 002 58 6 583 890 702 285 2 312 113 594 2 848

The minimum Hamiltonian cycles that were generated by

the recursive based algorithm for the K26 graph is shown in
Fig. 20.

Fig. 20 K26 minimal Hamiltonian cycle

Table II shows that with the addition of a new vertex n

(and n-1 edges), the time to find the minimal Hamiltonian
cycle increases exponentially. In order to accurately measure
this time, ten program runs for the K15÷K23 graphs, five runs
for the K24 and K25 graphs, and one run for the K26 graph
were made. For all graphs, the values in the Time (in ms)

767

column, except for the K26, are calculated in arithmetic mean
from all runs. The results show that when using the recursive
algorithm to find the minimal Hamiltonian cycle for the K26
graph, the program ran for 26 days, 18 hours and 15 minutes.

Two other factors also need to be analyzed when
interpreting the time to execute the recursive algorithm.
These are the number of recursive calls made for 1 ms and
the number of improvements found in the search process.
These dependencies and their trends are shown in Fig. 21.

Fig. 21 Influence of the number of vertices (the x-axis) on the recursive
calls per millisecond (the left y-axis) and on the improvements (the right y-
axis) for recursive algorithms (for all tested graphs)

The number of recursive calls per millisecond (Rcpms) is

calculated by dividing the values in the Recursive Calls
column by those in the Time (in ms) column (Table II). The
recursive algorithm accumulates the number of
improvements during the minimal Hamiltonian cycle search
process.

Fig. 21 shows that when increasing the execution time,
the number of recursive calls per millisecond decreases. This
is because the operating system dynamically changes the
priority of the programs (and processes) that run for a longer
time. In addition, when increasing the number of vertices in
the graph, the improvements (when looking for better
Hamiltonian cycles) are also increased.

In the second experiment, the two variants of GA will be
analyzed by comparing the quality of the solutions found,
the time for their generation, and the startup number where
the best solution is found. The number of reproductions for
all tested graphs will be set to 1 000. The population size
will be calculated by multiplying the number of vertices in
the graph by 10. If the resulting number is not exactly
divisible to 4 (necessary to form the parent pairs), it will be
equal to the closest integer that fulfills this requirement. For
example, for graph K15, this value will be 152.

The SGA results for all graphs K15-K26 are presented in
Table III. The abbreviations of the columns in Table III are
as follows: "G" – the abbreviation of the graph; "P Size" –
the population size; "Cycle Length" – the length of the
minimal Hamiltonian cycle (in pixels); "B/S" – the best
result of total runs; "Generated" – the number of all
generated individuals (including mutated); "Mutated" – the
number of mutated individuals only; "Time (ms)" – the
execution time (in milliseconds) of the algorithm.

TABLE III
THE RESULTS OF THE STANDARD GENETIC ALGORITHM

G P Size Cycle
Length B/S

Individuals Time
(in ms) Generated Mutated

K15 152 1 476 6/10 91 152 15 000 328

K16 160 1 595 3/10 96 160 16 000 344

K17 172 1 612 8/8 103 172 17 000 390

K18 180 1 696 4/4 108 180 18 000 406

K19 192 1 772 5/10 115 192 19 000 422

K20 200 1 755 3/3 120 200 20 000 438

K21 212 1 814 7/10 127 212 21 000 469

K22 220 1 780 6/6 132 220 22 000 484

K23 232 1 872 4/10 139 232 23 000 516

K24 240 1 997 2/10 144 240 24 000 563

K25 252 1 898 8/10 151 252 25 000 578

K26 260 2 052 5/10 156 260 26 000 625

The number of all generated solutions (the "Generated"

column) can be easily calculated. For example, for K26, with
a population size of 260 individuals, the new solutions that
will be generated at each reproduction are exactly half of this
value, i.e., 260 / 2 = 130. For 1 000 reproductions, the total
number of generated solutions will be 1 000 x 130 = 130 000.
When performing the mutation operator, 20% of the new
solutions mutate, i.e., 130 x 0.2 = 26. In this way, the total
number of mutated solutions for all reproductions is 26 x
1 000 = 26 000. These solutions are summed up with the
other solutions, which are generated by the crossover
operator, i.e., the total number of all solutions is 130 000 +
26 000 = 156 000. A further 260 solutions from the initial
population must be added to them, with the final number of
all generated solutions being 152 000 + 260 = 152 260.

The MGA results for all graphs K15-K26 are presented in
Table IV. The column names in Table IV are the same as
those in Table III.

TABLE IV
THE RESULTS OF THE MODIFIED GENETIC ALGORITHM

G P Size Cycle
Length B/S

Individuals Time
(in ms) Generated Mutated

K15 152 1 450 2/2 132 485 56 333 688

K16 160 1 569 1/1 133 964 53 804 766

K17 172 1 612 2/2 146 534 60 362 875

K18 180 1 696 1/1 154 116 63 936 968

K19 192 1 746 1/1 157 427 61 235 1 046

K20 200 1 755 1/1 169 285 69 085 1 250

K21 212 1 777 1/1 164 820 58 608 1 156

K22 220 1 780 1/1 158 503 48 283 1 266

K23 232 1 853 2/2 191 205 74 973 1 547

K24 240 1 871 4/4 194 526 74 286 1 734

K25 252 1 898 5/5 185 679 59 427 1 578

K26 260 2 002 2/2 200 880 70 620 1 969

The number of all generated solutions (the "Generated"

column) can be calculated in a similar way to SGA. For
example, for graph K26 with a population size of 260

768

individuals, the new solutions that are generated by the
genetic crossover operator will also be 130 000. However,
when performing the genetic mutation operator, the number
of mutated solutions depends on the number of the identical
ones among them. For graph K26, the total number of
mutated solutions is 70 620. These solutions are summed up
with the other solutions that are generated by the crossover
operator, so the total number of all solutions is 130 000 +
70 620 = 200 620. A further 260 solutions from the initial
population must be added to them, with the final number of
all generated solutions being 200 620 + 260 = 200 880.

Fig. 22 Results of the SGA and MGA

Tables III and IV, and Fig. 22 indicate that the MGA has

found optimal solutions for all tested columns. In 6 out of 10
cases, this happened with the first run. Unlike the MGA,
SGA has found optimal solutions only in 5 out of 12 cases.
The solutions in the other 7 cases are not optimal, but they
are close to them. Typical of SGAs is that more runs were
needed to find the best solutions (including the optimal ones).
This means that a larger total number of solutions has been
generated from all runs compared to the MGA. Another
important result is that in the MGA, the average percentage
of mutated solutions (in all 12 cases) is 62%, while at the
SGA this percentage was fixed at 20%. However, the MGA
execution time is 2.61 times higher than the SGA. This is
understandable because the computational complexity of the
MGA is greater than that of the SGA. This influences the
time to generate each solution and accordingly the time to
generate all solutions. Despite this time difference (of about
2 seconds), the MGA gives better results than the SGA in all
cases.

IV. CONCLUSION

This paper has shown an analysis of three algorithms for
the TSP. The main steps of genetic algorithms and their
benefits in solving combinatorial optimization problems
were presented. Furthermore, a number of studies analyzing
the TSP and some approaches for its solution were discussed
as well. An optimized version of the standard recursive
algorithm for TSP which uses the backtracking method was
introduced. This algorithm does not generate all solutions,
but only those that are closest to the optimal. Also, a
standard genetic algorithm for TSP and one of its

modification were presented. Modification itself is the use of
the genetic mutation operator. The results showed that the
recursive algorithm can be used to solve the TSP for graphs
with a small number of peaks 20-25. The results of GAs
have shown that the MGA finds optimal solutions in all
cases, and SGA in only 40% of them. Both algorithms are
executed for a reasonable time (up to 2 seconds). Also, it
was found that GAs finds optimal solutions only if
appropriate values of their parameters – population size and
number of reproductions are set. In addition, the genetic
mutation operator performs better if it is used to change the
identical solutions in the population instead of changing a
predefined number of solutions. However, the more the
number of vertices in the graph, the more difficult it
becomes for the MGA to find the best solution, i.e., more
runs (and therefore, more generated solutions) are needed to
find a better solution.

Future guidelines for research include conducting
additional experiments to study the impact of population size
on the quality of GA solutions. This parameter must be set to
match the optimal relationship between the number of
vertices in the graph and the population size. Besides this
parameter, there is another one that needs to be analyzed -
this is the number of reproductions. This parameter must be
set so that the population can reach a convergence state. This
is the state where the population contains identical solutions,
and further improvement cannot be achieved.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr.
Radoslava Kraleva and Dr. Dafina Kostadinova from the
South-West University in Bulgaria, for their suggestions and
constructive criticism regarding this paper.

REFERENCES
[1] Y. Wang, “A genetic algorithm with the mixed heuristics for

traveling salesman problem,” International Journal of Computational
Intelligence and Applications, vol. 14(1), pp. 33–46, Mar. 2015.

[2] W. R. Alkhayri, S. S. Owais, and M. Shkoukani, "A New Selection
Operator - CSM in Genetic Algorithms for Solving the TSP,"
International Journal of Advanced Computer Science and
Applications, vol. 7(10), pp. 62-66, Oct. 2016.

[3] M. Yamada, "1/f Noise in the Simple Genetic Algorithm Applied to a
Traveling Salesman Problem," Fluctuation and Noise Letters, vol.
16(3), 1750026, Sep. 2017.

[4] S. Meneses, R. Cueva, M. Tupia, Manuel, and M. Guanira, "A
genetic algorithm to solve 3D traveling salesman problem with initial
population based on a GRASP algorithm," Journal of Computational
Methods in Sciences and Engineering, vol. 17(S1), pp. S1-S10, Jan.
2017.

[5] J. Wang, O. K. Ersoy, M. He, and F. Wang, "Multi-offspring genetic
algorithm and its application to the traveling salesman problem,"
Applied Soft Computing, vol. 43, pp. 415-423, Jun. 2016.

[6] S. Maity, A. Roy, and M. Maiti, "A Modified Genetic Algorithm for
solving uncertain Constrained Solid Travelling Salesman Problems,"
Computers & Industrial Engineering, vol. 83, pp. 273-296, May
2015.

[7] P. V. Paul, N. Moganarangan, S. Sampath Kumar, R. Raju, T.
Vengattaraman, and P. Dhavachelvan, "Performance analyses over
population seeding techniques of the permutation-coded genetic
algorithm: An empirical study based on traveling salesman
problems," Applied Soft Computing, vol. 32, pp. 383-402, Jul. 2015.

[8] V. Kralev and R. Kraleva, "A Local Search Algorithm Based on
Chromatic Classes for University Course Timetabling
Problem,"International Journal of Advanced Research in Computer
Science, vol. 7(28), pp. 1-7, Jan. 2017.

769

[9] M. Traykov, S. Angelov, and N. Yanev, "A New Heuristic Algorithm
for Protein Folding in the HP Model," Journal of Computational
Biology, vol. 23(8), pp. 662-668, Aug. 2016.

[10] V. Kralev, R. Kraleva, and B. Yurukov, "An event grouping based
algorithm for university course timetabling problem," International
Journal of Computer Science and Information Security, vol. 14(6),
pp. 222-229, Jun. 2016.

[11] V. Kralev, "A genetic and memetic algorithm for solving the
university course timetabling problem," International Journal
"Information Theories & Applications, vol. 16(3), pp. 291-299, 2009.

[12] V. Vladimirov, F. Sapundzhi, R. Kraleva, and V. Kralev, “Modified
Genetic Algorithm to Traveling Salesman Problem for Large Input
Datasets,” Biomath Communications, vol. 3(1), p. 71, Jun. 2016.

[13] A. Chowdhury, A. Ghosh, S. Sinha, S. Das, and Av. Ghosh, "A
novel genetic algorithm to solve travelling salesman problem and
blocking flow shop scheduling problem," International Journal of
Bio-Inspired Computation, vol. 5(5), pp. 303-314, Oct. 2013.

[14] V. E. Alekseev, R. Boliac, D. V. Korobitsyn, and V. V. Lozin, “NP-
hard graph problems and boundary classes of graphs,” Theoretical
Computer Science, vol. 389(1), pp. 219–236, Dec. 2007.

[15] N. A. M. Zin, S. N. H. S. Abdullah, N. F. A. Zainal, and E. Ismail,
"A Comparison of Exhaustive, Heuristic and Genetic Algorithm for
Travelling Salesman Problem in PROLOG," International Journal
on Advanced Science, Engineering and Information Technology, vol.
2(6), pp. 49-53, Dec. 2012.

[16] S. Yuan, B. Skinner; S. Huang, and D. Liu, "A new crossover
approach for solving the multiple travelling salesmen problem using
genetic algorithms," European Journal of Operational Research, vol.
228(1), pp. 72-82, Jul. 2013.

[17] C. W. Tsai, S. P. Tseng, M. C. Chiang, C. S. Yang, and T. P. Hong,
"A High-Performance Genetic Algorithm: Using Traveling Salesman
Problem as a Case," The Scientific World Journal, vol. 2014, 178621,
May 2014.

[18] Y. Nagata and D. Soler, "A new genetic algorithm for the
asymmetric traveling salesman problem," Expert Systems with
Applications, vol. 39(10), pp. 8947–8953, Aug. 2012.

[19] R. J. Wilson, Introduction to Graph Theory, 5th ed., New Jersey,
USA: Prentice Hall, 2010.

[20] M. Alameen, M. Abdul-Niby, A. Salhieh, and A. Radhi, "Improved
Genetic and Simulating Annealing Algorithms to Solve the Traveling
Salesman Problem Using Constraint Programming," Engineering
Technology & Applied Science Research, vol. 6(2), pp.927-930, Apr.
2016.

[21] A. F. El-Samak and W. Ashour, "Optimization of Traveling
Salesman Problem Using Affinity Propagation Clustering and
Genetic Algorithm," Journal of Artificial Intelligence and Soft
Computing Research, vol. 5(4), pp. 239-245, Oct. 2015.

[22] C. Groba, A. Sartal, and X. H. Vazquez, "Solving the dynamic
traveling salesman problem using a genetic algorithm with trajectory
prediction: An application to fish aggregating devices," Computers &
Operations Research, vol. 56, pp. 22-32, Apr. 2015.

[23] Y. Wang, "A Genetic Algorithm with the Mixed Heuristics for
Traveling Salesman Problem," International Journal of
Computational Intelligence and Applications, vol. 14(1), 1550003,
Mar. 2015.

[24] M. K. Rafsanjani, S. Eskandari, and A. B. Saeid, "A similarity-based
mechanism to control genetic algorithm and local search
hybridization to solve traveling salesman problem," Neural
Computing & Applications, vol. 26(1), pp. 213-222, Jan. 2015.

[25] V. Kralev,"An Analysis of a Recursive and an Iterative Algorithm for
Generating Permutations Modified for Travelling Salesman
Problem," International Journal on Advanced Science, Engineering
and Information Technology, vol. 7(5), pp. 1685-1692, Oct. 2017.

[26] C. Changdar, G. S. Mahapatra, and R. K. Pal, "An efficient genetic
algorithm for multi-objective solid travelling salesman problem
under fuzziness," Swarm and Evolutionary Computation, vol. 15, pp.
27-37, Apr. 2014.

[27] Y. Nagata and S. Kobayashi, "A Powerful Genetic Algorithm Using
Edge Assembly Crossover for the Traveling Salesman Problem,"
Informs Journal on Computing, vol. 25(2), pp. 346-363, Sep. 2013.

[28] A. B. A. Hassanat, E. Alkafaween, N. A. Al-Nawaiseh, M. A.
Abbadi, M. Alkasassbeh, and M. B. Alhasanat, "Enhancing Genetic
Algorithms using Multi Mutations: Experimental Results on the
Travelling Salesman Problem," International Journal of Computer
Science and Information Security, vol. 14(7), pp. 785-801, Jul. 2016.

[29] M. Albayrak and N. Allahverdi, "Development a new mutation
operator to solve the Traveling Salesman Problem by aid of Genetic
Algorithms," Expert Systems with Applications, vol. 38(3), pp. 1313-
1320, Mar. 2011.

[30] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study, 2nd ed.,
Princeton, USA: Princeton University Press, 2007.

[31] G. Gutin and A.P. Punnen, The Traveling Salesman Problem and Its
Variations (Combinatorial Optimization), 2nd ed., New York City,
USA: Springer, 2007.

[32] A. Khanra, M. K Maiti, and M. Maiti, “A hybrid heuristic algorithm
for single and multi-objective imprecise traveling salesman
problems,” Journal of Intelligent and Fuzzy Systems, vol. 30(4), pp.
1987–2001, Mar. 2016.

[33] M. Mestria, “A hybrid heuristic algorithm for the clustered traveling
salesman problem,” Pesquisa Operacional, vol. 36(1), pp. 113–132,
Jan-Apr. 2016.

[34] Z. A. Othman, N. H. Al-Dhwai, A. Srour, and W. Diyi, "Water Flow-
Like Algorithm with Simulated Annealing for Travelling Salesman
Problems," International Journal on Advanced Science, Engineering
and Information Technology, vol. 7(2), pp. 669-675, Apr. 2017.

[35] M. Battarra, A. A. Pessoa, A. Subramanian, and E. Uchoa, “Exact
algorithms for the traveling salesman problem with draft limits,”
European Journal of Operational Research, vol. 235(1), pp. 115–128,
May. 2014.

[36] J. Kinable, B. Smeulders, E. Delcour, F. C. R. Spieksma, “Exact
algorithms for the Equitable Traveling Salesman Problem,”
European Journal of Operational Research, vol. 261(2), pp. 1339–
1351, Sep. 2017.

[37] Y. Deng, Y. Liu, and D. Zhou, "An Improved Genetic Algorithm
with Initial Population Strategy for Symmetric TSP," Mathematical
Problems in Engineering, vol. 2015, 212794, Oct. 2015.

[38] A. Hussain, Y. S. Muhammad, M. N. Sajid, I. Hussain, A. M.
Shoukry, and S. Gani, "Genetic Algorithm for Traveling Salesman
Problem with Modified Cycle Crossover Operator," Computational
Intelligence and Neuroscience, vol. 2017, 7430125, Oct. 2017.

[39] C. Contreras-Bolton and V. Parada, "Automatic Combination of
Operators in a Genetic Algorithm to Solve the Traveling Salesman
Problem," PLoS ONE, vol. 10(9), 0137724, Sep. 2015.

770

