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Abstract— This paper presents the results of an analysis of three algorithms for the Travelling Salesman Problem (TSP). The basic 
steps of genetic algorithms (GAs) and their benefits in solving combinatorial optimization problems are also presented. Moreover, 
several studies related to TPS and some approaches to its solution are discussed. An optimized version of the standard recursive 
algorithm for solving TSP using the backtracking method is presented. This algorithm is used to generate optimal solutions 
concerning the studied graphs. In addition, a standard genetic algorithm for solving TSP and its modification are also presented. The 
modified algorithm uses the genetic operator mutation in a different way. The results show that the recursive algorithm can be used 
successfully to solve the TSP for graphs with a small number of vertices, for instance, 25-30. The results of the two GAs were 
different. The modified GA found the optimal solutions for all tested graphs, while the standard GA found the optimal solutions in 
only 40% of the cases. These results were obtained for a reasonable time (in seconds), with appropriate values of the control 
parameters - population size and reproduction number. It appeared that the use of the genetic mutation operator yields better results 
when applied to identical solutions. If pairs of identical solutions are found in a population, then every second must mutate. The 
methodology and the conditions for conducting the experiments are described in details. 
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I. INTRODUCTION 

In the recent years, the interest in GAs [1]–[3] and their 
modifications [4]–[6] has increased significantly. These 
algorithms generate optimal (or near optimal) solutions for a 
reasonable time [7]. What is typical of most heuristic 
approaches is that they work well for certain problems, but 
they hardly adapt from one problem to another [8]–[10]. 
Therefore, the development of more adaptive approaches 
that work effectively for different problems will be further 
explored. 

For an important class of NP-hard problems, such as 
scheduling problems and graph problems, good approximate 
solutions were found using GAs [11]–[13]. This class of 
problems are known for being similar but not identical to the 
problems for which there are efficient algorithms. A small 
change in the problem definition can result in a great change 
in the performance of the best known algorithm [14]. 

When an algorithm uses the backtracking method, it 
checks a large number of possible solutions. Exploring all 
solutions is often unnecessary. Therefore, a number of 
methods have been proposed to reduce the number of 
solutions considered. Applying such approaches increases 
the performance of the algorithms used. This will also be 

shown in this paper as well, with presenting the results of the 
experiments. 

Unlike the exact algorithms, the genetic ones are 
approximated and are based on ideas borrowed from nature. 
These algorithms process a collection (population) of 
possible solutions (individuals). These solutions are 
combined and modified to generate better ones. Each 
solution is presented in a digital form and evaluated based on 
a predefined criterion of optimality. 

After generating all solutions in the initialization 
population, each one can be left unchanged in the next 
population, can be re-combined with another solution to get 
a new one or can be removed. Some of the solutions can be 
changed (i.e., mutated), with a predetermined probability 
[15]. 

Each iteration of GA generates a new generation (with 
individuals, i.e., solutions), thus performing a reproduction 
process. Defining whether a solution is better or worse is 
done by a fitness function. This function "evaluates" each 
solution (according to the criterion of optimality). The 
solutions are classified (as better or worse) based on these 
estimates [16]–[18]. 

The steps that one GA performs are schematically 
presented in Fig. 1 ÷ Fig. 10. 
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Step 1. At first, a number of acceptable solutions is 
created. They form the initialization population P0 = {S1, 
S2, ..., Sk}. These solutions are the basis for the formation of 
the next generations and are most often generated randomly 
(Fig. 1). 

 

 
Fig. 1 Step 1 of GA 

 
Step 2. The fitness function evaluates each solution 

according to the criterion of optimality. In this way, each 
solution is compared with a quantitative measure of its 
quality (Fig. 2). 

 

 
Fig. 2 Step 2 of GA 

 
Step 3. All solutions are ordered descending according to 

their costs (calculated in step 2). In this way a selection of 
certain solutions can be made (Fig. 3). 

 

 
Fig. 3 Step 3 of GA 

 
Step 4. A number of solutions (such as k/2 or other even 

number) that have the best costs are selected. Since all 
solutions are ordered descending (in step 3), the first several 
solutions will be selected from the population. Other 
solutions will be removed. The number of selected solutions 
may vary from 10% to 50% (Fig. 4). 

 

 
Fig. 4 Step 4 of GA 

 
Step 5. The selected solutions (in step 4) are combined in 

pairs, for instance k/4 in number. The ways of doing so may 
be different, for example, by random means or by the two 
best successive solutions (Fig. 5). 

 

 
Fig. 5 Step 5 of GA 

 
Step 6. The combined pairs of solutions (total k/4) play 

the role of parents. By applying the crossover, each parent 
pair generates one, two or more new solutions. The total 
number of these solutions must match the number of 
solutions removed in step 4: k/2 (Fig. 6). 

 
Fig. 6 Step 6 of GA 

 
Step 7. Some of the new solutions are modified by 

applying the genetic mutation operator. This operator 
modifies a solution by changing one or more of its genes. 
Generally, The number of modified genes is small (e.g., up 
to 10% of the total number of genes in the solution). This 
genetic operator can also be applied in other cases, for 
example, when the population has identical solutions (Fig. 7). 

 

 
Fig. 7 Step 7 of GA 

 
Step 8. The new solutions are obtained as a result of the 

implementation of the genetic operators crossing and 
mutation. These solutions are also evaluated by the fitness 
function (Fig. 8). 

 

 
Fig. 8 Step 8 of GA 

 
Step 9. At this step of GA, parents and descendants are 

united. In this way the new Pt+1 population is formed (Fig. 9). 
 

 
Fig. 9 Step 9 of GA 

 
Step 10. Creating new generations continues until the 

algorithm end criterion is met. Such a criterion, for example, 
is the creation of a certain number of generations, or the 
number of generations after which there is no improvement 
to the last best solution found (Fig. 10). 

 

 
Fig. 10 Step 10 of GA 

 
GAs are widely used to solve a large number of 

optimization problems from various fields of science, such 
as the graph theory. This is a part of computer science, 
which has an excessive practical application. In many cases, 
the analysis and description of different systems is done 
successfully with graph structures [19]. One major class of 
graph theory problems – NP-hard, can be solved well by 
some approximate algorithms such as GAs [20]–[24]. 
Finding an exact solution to these problems (with a large 
input size) can take a long time [25]. The approaches based 
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on the backtracking method yield the best results but only 
for problems with small input size. This method, though 
possible, is practically inapplicable. For instance, in a 
complete graph with 26 vertices and 26*(26-1)/2=325 edges, 
the number of all possible Hamiltonian cycles is 
considerable, respectively: (26-1)!/2=7 755 605 021 665 490 
000 000 000. Therefore, the modifying and the improvement 
of existing heuristic algorithms is understandable [26]–[29]. 

The problem to find a minimal Hamiltonian cycle in a 
graph is an optimization problem. It is also known as the 
Travelling Salesman Problem, and its variants and detailed 
description are presented in [30] and [31]. There are several 
approaches and a large number of algorithms for TSP 
solving [32]–[34]. However, only two of them are basic - the 
exact and approximate methods. The exact algorithms 
always find the best solution, but a lot of computational time 
is required. It is applicable when the number of the vertices 
in a graph is small [35] and [36]. On the other hand, 
approximated algorithms find a solution that is close to the 
optimal one, and the time for this is acceptable. Such 
algorithms have been discussed in [37]–[39]. 

II. MATERIAL AND ALGORITHM 

This section presents the description and the analysis of 
three different algorithms which can be used to solve TSP. 
The first algorithm is based on the backtracking method, and 
it always finds the exact solution. The other two algorithms 
are GA modifications which can be used to solve 
approximate TSP. The main results that will be analyzed are 
the length of the found Hamiltonian cycle (it should be as 
small as possible) and the algorithms execution time. 
 
01 var 
02 │ VertexCount: Integer; 
03 │ CycleLength: Integer; 
04 │ MinimalCycleLength: Integer; 
05 │ HamiltonianCycle: array of Integer; 
06 │ Individuals: Integer; 
07 │ Generations: Integer; 
08 │ MarkedArray: array of Boolean; 
09 │ ScoreArray: array of Integer; 
10 │ Population: array of array of Integer; 
11 │ AdjacencyMatrix: array of array of Integer; 
12 initialization 
13 │ SetVertexCount(30); 
14 │ SetIndividuals(640); 
15 │ SetGenerations(1000); 
16 │ SetLength(MarkedArray, VertexCount+1); 
17 │ SetLength(ScoreArray, VertexCount+1); 
18 │ SetLength(Population, 
19 │  Individuals+1, VertexCount+1); 

Fig. 11  Code of the global declarations 
 
For the implementation of algorithms and the parameter 

analysis, it is necessary to pre-declare and initialize (with the 
appropriate methods) some global data structures (dynamic 
arrays and variables) as shown in Fig. 11 (in Delphi). 

An Optimization of a recursive algorithm [26] to find a 
minimal Hamiltonian cycle in a complete undirected graph is 
shown in Fig. 12. This algorithm based on the Depth-first 
search (DFS) approach. The FindMinimalHamiltonianCycle 
procedure is recursive and calls itself on lines 26 and 27. 
When the last vertex from the graph - VertexCount is added 
to the constructed path (line 8), the length of the resulting 
Hamiltonian cycle is stored as minimal. The verification of 

whether the generated cycle is minimal or not is performed 
at the previous recursive procedure call of line 24. After 
every recursive procedure call to the current length of the 
constructed path, the length of the edge that connects the 
Iteration and J vertices is added (lines 22 and 23). If the 
length of the currently constructed cycle (albeit incomplete) 
is greater than the length of the last one, it is a step back and 
the last added edge is removed from the constructed path 
(lines 28 and 30). In this way, the search process is 
optimized, as all other possible extensions are not made. 
This optimization does not reduce the complexity of the 
algorithm, which remains exponential.  

 
01 procedure FindMinimalHamiltonianCycle 
02 │ (Iteration, Position, VertexCount: Integer); 
03 var 
04 │ J: Integer; 
05 begin 
06 │ if ((Iteration = 1) and (Position > 1)) then 
07 │ begin 
08 │ │ if (Position = (VertexCount + 1)) then 
09 │ │ begin 
10 │ │ │ MinimalCycleLength := CycleLength; 
11 │ │ end; 
12 │ │ Exit; 
13 │ end; 
14 │ if (MarkedArray[Iteration] = True) then Exit; 
15 │ MarkedArray[Iteration] := True; 
16 │ for J := 1 to VertexCount do 
17 │ begin 
18 │ │ if ((AdjacencyMatrix[Iteration,J] > 0) and 
19 │ │ │   (J <> Iteration)) then 
20 │ │ begin 
21 │ │ │ HamiltonianCycle[Position] := J; 
22 │ │ │ CycleLength := CycleLength + 
23 │ │ │ AdjacencyMatrix[Iteration,J]; 
24 │ │ │ if (CycleLength < MinimalCycleLength) then  
25 │ │ │ begin 
26 │ │ │ │ FindMinimalHamiltonianCycle 
27 │ │ │ │ (J, Position + 1, VertexCount); 
28 │ │ │ end; 
29 │ │ │ CycleLength := CycleLength - 
30 │ │ │ AdjacencyMatrix[Iteration,J]; 
31 │ │ end; 
32 │ end; 
33 │ MarkedArray[Iteration] := False; 
34 end; 

Fig. 12  Code of the recursion based algorithm 
 
Two other algorithms for finding a minimal Hamiltonian 

cycle in a complete undirected graph will be presented. The 
first is a standard genetic algorithm (SGA) that performs the 
basic steps presented in Fig. 1÷10. The second algorithm 
(MGA) is a modification of the first. The difference being in 
the mode of application of the genetic mutation operator. 
The main difference is the application of the genetic 
mutation operator. The necessary methods (procedures and 
functions) that are common to both algorithms have been 
implemented in advance. 

The method of evaluating the quality of a solution is 
CalculateScore (Fig. 13). This function receives as an input 
parameter a solution index, and as a result, it returns its score. 
The computational complexity of this method is linear, since 
only one loop of the vertices in the graph is performed (line 
10). This process starts from the edge that connects the latter 
with the first vertex (line 6-9). All weights of edges that 
connect every two consecutive remaining vertices are also 
added (lines 12-14). 
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01 function 
02 │ CalculateScore(Individual: Integer): Integer; 
03 var 
04 │ Index: Integer; 
05 begin 
06 │ Result := 
07 │   AdjacencyMatrix[ 
08 │     Population[Individual,VertexCount], 
09 │     Population[Individual,1]]; 
10 │ for Index := 1 to VertexCount-1 do 
11 │ begin 
12 │ │ Inc(Result, AdjacencyMatrix[ 
13 │ │   Population[Individual,Index], 
14 │ │   Population[Individual,Index+1]]); 
15 │ end; 
16 end; 

Fig. 13  Code of the CalculateScore fucntion 
 
The method for generating the initial population is 

GenerateRandomIndividuals (Fig. 14). This procedure 
generates random Hamiltonian cycles to fill the initial 
population (lines 7-19). The computational complexity of 
this method is Θ(n.m), where n is the number of individuals 
in the population, and m is vertices in the graph. All 
generated Hamilton cycles are evaluated with the fitness 
function – CalculateScore (lines 20-21). 
 
01 procedure GenerateRandomIndividuals; 
02 var 
03 │ Individual, Gene, Value, T: Integer; 
04 begin 
05 │ for Individual := 1 to Individuals do 
06 │ begin 
07 │ │ for Gene := 1 to VertexCount do 
08 │ │ begin 
09 │ │ │ MarkedArray[Gene] := False; 
10 │ │ │ Value := Random(VertexCount-Gene); 
11 │ │ │ T := 0; 
12 │ │ │ repeat 
13 │ │ │ │ while MarkedArray[T] do Inc(T); 
14 │ │ │ │ Dec(Value); Inc(T); 
15 │ │ │ until (Value = 0); 
16 │ │ │ Dec(T); 
17 │ │ │ Population[Individual,Gene] := T; 
18 │ │ │ MarkedArray[T] := True; 
19 │ │ end; 
20 │ │ ScoreArray[Individual] := 
21 │ │ CalculateScore(Individual); 
22 │ end; 
23 end; 

Fig. 14  Code of the GenerateRandomIndividuals procedure 
 
The OrderIndividualsByScore method performs ordering 

of individuals in the population depending on their scores, 
i.e., depending on the lengths of the formed Hamiltonian 
cycles (Fig. 15). The computational complexity of this 
method is Θ(m.n2), where n is the number of individuals in 
the population, and m is vertices in the graph. When 
changing the order of the individuals in the population (lines 
5 and 7), all elements of the solution are also copied (lines 
11-13). After that, the scores of the solutions also exchanged 
(line 14). 

The Swap procedure is pre-declared. It gets two 
parameters that are passed by address and then exchanging 
their values. Since the computational complexity of this 
method is determined by the population size (rather than by 
the number of the vertices in the graph) when the number of 
individuals is large, it is better to replace selection sort 
method by another one, such as a quick sort or merge sort. 
 

01 procedure OrderIndividualsByScore; 
02 var 
03 │ Index, T, V: Integer; 
04 begin 
05 │ for Index := 1 to (Individuals-1) do 
06 │ begin 
07 │ │ for T := (Index+1) to Individuals do 
08 │ │ begin 
09 │ │ │ if (ScoreArray[T]< ScoreArray[Index]) then 
10 │ │ │ begin 
11 │ │ │ │ for V := 1 to VertexCount do 
12 │ │ │ │ │ Swap(Population[Index,V], 
13 │ │ │ │ │      Population[T,V]); 
14 │ │ │ │ Swap(ScoreArray[Index], ScoreArray[T]); 
15 │ │ │ end; 
16 │ │ end; 
17 │ end; 
18 end; 

Fig. 15  Code of the OrderIndividualsByScore procedure 
 
One of the essential methods of GA is the one that 

performs the genetic crossover operator. This method has 
been implemented in the DoCrossover procedure (Fig. 16).  
 
01 procedure DoCrossover(P1, P2, F1, F2: Integer); 
02 var 
03 │ Index, Left, Right: Integer; 
04 begin 
05 │ Left := Random(VertexCount); 
06 │ repeat 
07 │ │ Right := Random(VertexCount); 
08 │ until (Right <> Left); 
09 │ if Left > Right then Swap(Left, Right); 
10 │ for Index := 1 to Left-1 do 
11 │ begin 
12 │ │ Population[F1,Index]:= Population[P1,Index]; 
13 │ │ Population[F2,Index]:= Population[P2,Index]; 
14 │ end; 
15 │ for Index := Left to Right-1 do 
16 │ begin 
17 │ │ Population[F1,Index]:= Population[P2,Index]; 
18 │ │ Population[F2,Index]:= Population[P1,Index]; 
19 │ end; 
20 │ for Index := Right to VertexCount do 
21 │ begin 
22 │ │ Population[F1,Index]:= Population[P1,Index]; 
23 │ │ Population[F2,Index]:= Population[P2,Index]; 
24 │ end; 
25 │ ScoreArray[F1] := CalculateScore(F1); 
26 │ ScoreArray[F2] := CalculateScore(F2); 
27 end; 

Fig. 16  Code of the DoCrossover procedure 
 
The parameters P1 and P2 are the indices of solutions 

from the current population that are selected for parents. The 
other two parameters, F1 and F2, are indexes of solutions 
from the second half of the current population that will be 
replaced by the generated descendants. The individuals in 
the population are ordered by their score, which means that 
the worst solutions are in the second half of the population. 
The crossing points are determined by the values of the Left 
and Right variables (set in lines 5-9). These values are 
generated in such a way that they are random, different, and 
Left is less than Right. The new solutions are obtained by 
copying different sections of genes from both parents, then 
combining them. In this way of crossing it is possible in 
some of the new solutions to appear repetitive and 
respectively missing vertices. This problem is solved by 
repeating vertices being replaced by missing ones. After 
generating new solutions, their scores are calculated using 
the CalculateScore function (lines 25-26). The complexity of 
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this method is Θ(m2), where m is the number of vertices in 
the graph. 

Another important method of GA is the one that performs 
the genetic mutation operator. This method is implemented 
in the DoMutate procedure (Fig. 17). This procedure obtains 
the index of a particular solution as an input parameter. The 
exchange positions (genes) are determined by the values of 
two variables - LeftGene and RightGene (lines 5-8). These 
values are generated in a similar way as in the DoCrossover 
procedure, i.e., they are random and different, but the value 
of LeftGene is not obligatorily smaller than the value of 
RightGene. The new solution is obtained after the values of 
these two positions are exchanged through the Swap 
procedure (lines 9-11). After generating the new solution, its 
score is calculated using the CalculateScore function (lines 
12-13). The computational complexity of this method is a 
constant because only one individual of the population and 
two of its genes are changed (i.e., only two vertices are 
counted in the graph, not all of them). 
 
01 procedure DoMutate(Individual: Integer); 
02 var 
03 │ LeftGene, RightGene: Integer; 
04 begin 
05 │ LeftGene := Random(VertexCount); 
06 │ repeat 
07 │ │ RightGene := Random(VertexCount); 
08 │ until (RightGene <> LeftGene); 
09 │ Swap( 
10 │   Population[Individual,LeftGene], 
11 │   Population[Individual,RightGene]); 
12 │ ScoreArray[Individual] := 
13 │ CalculateScore(Individual); 

Fig. 17  Code of the DoMutate procedure 
 
In the present study, two variants of the reproduction 

generation procedure will be used and analyzed. In the first 
variant, the standard steps of the GA, which were presented 
in the previous section, are implemented. The code of the 
StandardReproduce procedure is presented in Fig. 18.  
 
01 procedure StandardReproduce; 
02 var 
03 │ Generation, Individual, I: Integer; 
04 │ IsEqual: Boolean; 
05 begin 
06 │ GenerateRandomIndividuals; 
07 │ for Generation := 1 to Generations do 
08 │ begin 
09 │ │ OrderIndividualsByScore; 
10 │ │ Individual := 1; 
11 │ │ while (Individual < (Individuals div 2)) do 
12 │ │ begin 
13 │ │ │ DoCrossover(Individual, Individual+1, 
14 │ │ │   Individuals-Individual, 
15 │ │ │   Individuals-(Individual-1)); 
16 │ │ │ Inc(Individual,2); 
17 │ │ end; 
18 │ │ for I := 1 to Round(Individuals*0.1) do 
19 │ │ begin 
20 │ │ │ DoMutate(Individuals –   
21 │ │ │   Random((Individuals div 2))); 
22 │ │ end; 
23 │ end; 
24 end; 

Fig. 18  Code of the StandardReproduce procedure 
 
Initially, steps 1 and 2 (combined in the GenerateRandom 

Individuals method, line 6) are performed. This method 

generates the initial population, while also invoking the 
CalculateScore function to evaluate each generated solution. 
The reproduction generation process begins at line 7. The 
number of these reproductions is determined by the value of 
the Generations variable, which is initialized at the 
beginning of the program. Creating a new population starts 
with the implementation of step 3 on line 9. Then (combined) 
steps 4, 5, 6, 8 and 9 (lines 10-17) are performed. After the 
execution of the crossover operator, 20% of the new 
solutions mutate. This is equivalent to 10% (0.1) of the 
population size. This is done on lines 18-22 and corresponds 
to a combined execution of steps 7, 8 and 9. Checking for 
the end of the process of generating new reproductions is 
done at line 22 (corresponds to step 10 of the GA). If the 
specified number of reproductions (the value of the 
Generations variable) is reached, the transition to step 3 (line 
9) is not done. Otherwise the process of generating the next 
reproduction will continue. The computational complexity of 
this procedure is quadratic, depending on the number of 
vertices in the graph and the number of individuals in the 
population (the values of the VertexCount and Individuals 
variables). In the analysis of the computational complexity, 
the value of the Generations variable can also be included as 
the overall complexity of the program depends linearly on 
the number of generated reproductions. 

A modified reproduction generation procedure that is 
different from the standard one will be presented (Fig. 19).  
 
01 procedure ModifiedReproduce; 
02 var 
03 │ Generation, Individual, I, Gene: Integer; 
04 │ IsEqual: Boolean; 
05 begin 
06 │ GenerateRandomIndividuals; 
07 │ for Generation := 1 to Generations do 
08 │ begin 
09 │ │ OrderIndividualsByScore; 
10 │ │ Individual := 1; 
11 │ │ while (Individual < (Individuals div 2)) do 
12 │ │ begin 
13 │ │ │ DoCrossover(Individual, Individual+1, 
14 │ │ │   Individuals-Individual, 
15 │ │ │   Individuals-(Individual-1)); 
16 │ │ │ Inc(Individual,2); 
17 │ │ end; 
18 │ │ for Individual := 1 to Individuals - 1 do 
19 │ │ begin 
20 │ │ │ for I := Individual + 1 to Individuals do 
21 │ │ │ begin 
22 │ │ │ │ IsEqual := True; 
23 │ │ │ │ for Gene := 1 to VertexCount do 
24 │ │ │ │ │ if(Population[Individual, Gene] <> 
25 │ │ │ │ │ │  Population[I, Gene]) then 
26 │ │ │ │ │ │  begin IsEqual:= False; Break; end; 
27 │ │ │ │ if IsEqual then DoMutate(I); 
28 │ │ │ end; 
29 │ │ end; 
30 │ end; 
31 end; 

Fig. 19  Code of the ModifiedReproduce procedure 
 
The difference is when using the genetic mutation 

operator. After the process of generating new solutions (lines 
11-17) is completed, it is checked whether there are same 
solutions among them. When two identical solutions are 
found, the second one mutates (lines 18-29). This leads to an 
increase in the computational complexity of the whole 
procedure, which is already cubic and depends both on the 
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number of vertices in the graph and the number of 
individuals in the population, along with the number of 
reproductions generated. 

The experiments showed that with a large number of 
individuals in the population (many times higher than the 
number of vertices in the graph), a large percentage (in some 
cases more than 50%) of the generated solutions are 
identical. 

III.  RESULTS AND DISCUSSION 

Two experiments will be conducted in this study. First, it 
will be checked experimentally for which graphs and with 
how many vertices (respectively edges), the recursive 
algorithm (using the backtracking and branch-and-bound 
methods), can be used to find a minimal Hamiltonian cycle 
for a reasonable time. Second, a comparative analysis 
between the two GA variants will be made, analyzing the 
quality of the found solutions, the time to find them, and the 
effect of the use of the genetic mutation operator. 

A. The methodology of the experiments 

Twelve complete and weighted graphs were created for 
the experiments, respectively with 15÷26 vertices. Each 
graph (except K15) was created by adding a new vertex (n) 
and n-1 edges. These edges connect the new vertex with all 
other vertices. The coordinates of the vertices are shown in 
Table I. These are the screen coordinates of the centers of 
the vertices. 

TABLE I 
THE COORDINATES OF THE VERTICES OF THE K26 GRAPH  

V X Y  V X Y  V X Y 
1 178 499  10 261 509  19 159 156 

2 99 515  11 307 419  20 83 139 

3 258 227  12 320 171  21 48 251 

4 34 184  13 117 433  22 248 28 

5 110 245  14 49 437  23 22 326 

6 127 300  15 232 435  24 85 367 

7 126 84  16 301 275  25 60 35 

8 234 317  17 235 137  26 35 93 

9 286 78  18 207 75     
 
All three algorithms use an adjacency matrix – A[|V|,|V|]. 

Each item A[i,j] is greater than 0, for ∀ i ≠ j, and is equal to 
the length of the edge (i,j). These values are equal to the 
Euclidean distance between each pair of vertices. Since the 
tested graphs are undirected and have no loops, the elements 
in the matrix below and above the main diagonal are equal 
(i.e., the matrix A is symmetrical), and those on the main 
diagonal - A [i,i] have values equal to 0. 

B. Experimental Conditions 

The experimental conditions are the following: PC with 
64–bit Operating System Windows 10, x64–based processor 
and hardware configuration: Processor: Intel (R) Core (TM) 
i7–4712MQ CPU at 2.30 GHz; RAM: 8GB DDR3. 

C. Experimental results 

The results of the recursion based algorithm for K15 ÷ K26 
graphs are shown in Table II. 

TABLE II 
THE RESULTS OF THE RECURSION BASED ALGORITHM 

G Length Imp Recursive Calls Time (in ms) Rcpms 
K15 1 450 21 407 554 47 8 671 

K16 1 569 24 1 593 906 188 8 478 

K17 1 612 27 7 980 375 953 8 374 

K18 1 696 35 27 655 276 3 390 8 158 

K19 1 746 37 125 799 721 16 257 7 738 

K20 1 755 43 680 150 761 90 625 7 505 

K21 1 777 47 2 317 052 334 327 547 7 074 

K22 1 780 37 7 051 026 768 1 087 625 6 483 

K23 1 853 40 51 144 113 151 10 154 156 5 037 

K24 1 871 43 180 806 431 928 42 860 625 4 218 

K25 1 898 41 814 421 034 545 258 414 656 3 152 

K26 2 002 58 6 583 890 702 285 2 312 113 594 2 848 

 
The minimum Hamiltonian cycles that were generated by 

the recursive based algorithm for the K26 graph is shown in 
Fig. 20. 

 

 
Fig. 20  K26 minimal Hamiltonian cycle 

 
Table II shows that with the addition of a new vertex n 

(and n-1 edges), the time to find the minimal Hamiltonian 
cycle increases exponentially. In order to accurately measure 
this time, ten program runs for the K15÷K23 graphs, five runs 
for the K24 and K25 graphs, and one run for the K26 graph 
were made. For all graphs, the values in the Time (in ms) 
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column, except for the K26, are calculated in arithmetic mean 
from all runs. The results show that when using the recursive 
algorithm to find the minimal Hamiltonian cycle for the K26 
graph, the program ran for 26 days, 18 hours and 15 minutes.  

Two other factors also need to be analyzed when 
interpreting the time to execute the recursive algorithm. 
These are the number of recursive calls made for 1 ms and 
the number of improvements found in the search process. 
These dependencies and their trends are shown in Fig. 21. 

 

 
Fig. 21  Influence of the number of vertices (the x-axis) on the recursive 
calls per millisecond (the left y-axis) and on the improvements (the right y-
axis) for recursive algorithms (for all tested graphs) 

 
The number of recursive calls per millisecond (Rcpms) is 

calculated by dividing the values in the Recursive Calls 
column by those in the Time (in ms) column (Table II). The 
recursive algorithm accumulates the number of 
improvements during the minimal Hamiltonian cycle search 
process. 

Fig. 21 shows that when increasing the execution time, 
the number of recursive calls per millisecond decreases. This 
is because the operating system dynamically changes the 
priority of the programs (and processes) that run for a longer 
time. In addition, when increasing the number of vertices in 
the graph, the improvements (when looking for better 
Hamiltonian cycles) are also increased. 

In the second experiment, the two variants of GA will be 
analyzed by comparing the quality of the solutions found, 
the time for their generation, and the startup number where 
the best solution is found. The number of reproductions for 
all tested graphs will be set to 1 000. The population size 
will be calculated by multiplying the number of vertices in 
the graph by 10. If the resulting number is not exactly 
divisible to 4 (necessary to form the parent pairs), it will be 
equal to the closest integer that fulfills this requirement. For 
example, for graph K15, this value will be 152. 

The SGA results for all graphs K15-K26 are presented in 
Table III. The abbreviations of the columns in Table III are 
as follows: "G" – the abbreviation of the graph; "P Size" – 
the population size; "Cycle Length" – the length of the 
minimal Hamiltonian cycle (in pixels); "B/S" – the best 
result of total runs; "Generated" – the number of all 
generated individuals (including mutated); "Mutated" – the 
number of mutated individuals only; "Time (ms)" – the 
execution time (in milliseconds) of the algorithm. 

TABLE III 
THE RESULTS OF THE STANDARD GENETIC ALGORITHM 

G P Size Cycle 
Length B/S 

Individuals Time 
(in ms) Generated Mutated 

K15 152 1 476 6/10 91 152 15 000 328 

K16 160 1 595 3/10 96 160 16 000 344 

K17 172 1 612 8/8 103 172 17 000 390 

K18 180 1 696 4/4 108 180 18 000 406 

K19 192 1 772 5/10 115 192 19 000 422 

K20 200 1 755 3/3 120 200 20 000 438 

K21 212 1 814 7/10 127 212 21 000 469 

K22 220 1 780 6/6 132 220 22 000 484 

K23 232 1 872 4/10 139 232 23 000 516 

K24 240 1 997 2/10 144 240 24 000 563 

K25 252 1 898 8/10 151 252 25 000 578 

K26 260 2 052 5/10 156 260 26 000 625 

 
The number of all generated solutions (the "Generated" 

column) can be easily calculated. For example, for K26, with 
a population size of 260 individuals, the new solutions that 
will be generated at each reproduction are exactly half of this 
value, i.e., 260 / 2 = 130. For 1 000 reproductions, the total 
number of generated solutions will be 1 000 x 130 = 130 000. 
When performing the mutation operator, 20% of the new 
solutions mutate, i.e., 130 x 0.2 = 26. In this way, the total 
number of mutated solutions for all reproductions is 26 x     
1 000 = 26 000. These solutions are summed up with the 
other solutions, which are generated by the crossover 
operator, i.e., the total number of all solutions is 130 000 + 
26 000 = 156 000. A further 260 solutions from the initial 
population must be added to them, with the final number of 
all generated solutions being 152 000 + 260 = 152 260. 

The MGA results for all graphs K15-K26 are presented in 
Table IV. The column names in Table IV are the same as 
those in Table III. 

TABLE IV 
THE RESULTS OF THE MODIFIED GENETIC ALGORITHM 

G P Size Cycle 
Length B/S 

Individuals Time 
(in ms) Generated Mutated 

K15 152 1 450 2/2 132 485 56 333 688 

K16 160 1 569 1/1 133 964 53 804 766 

K17 172 1 612 2/2 146 534 60 362 875 

K18 180 1 696 1/1 154 116 63 936 968 

K19 192 1 746 1/1 157 427 61 235 1 046 

K20 200 1 755 1/1 169 285 69 085 1 250 

K21 212 1 777 1/1 164 820 58 608 1 156 

K22 220 1 780 1/1 158 503 48 283 1 266 

K23 232 1 853 2/2 191 205 74 973 1 547 

K24 240 1 871 4/4 194 526 74 286 1 734 

K25 252 1 898 5/5 185 679 59 427 1 578 

K26 260 2 002 2/2 200 880 70 620 1 969 

 
The number of all generated solutions (the "Generated" 

column) can be calculated in a similar way to SGA. For 
example, for graph K26 with a population size of 260 
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individuals, the new solutions that are generated by the 
genetic crossover operator will also be 130 000. However, 
when performing the genetic mutation operator, the number 
of mutated solutions depends on the number of the identical 
ones among them. For graph K26, the total number of 
mutated solutions is 70 620. These solutions are summed up 
with the other solutions that are generated by the crossover 
operator, so the total number of all solutions is 130 000 +   
70 620 = 200 620. A further 260 solutions from the initial 
population must be added to them, with the final number of 
all generated solutions being 200 620 + 260 = 200 880. 

 

 
Fig. 22  Results of the SGA and MGA 

 
Tables III and IV, and Fig. 22 indicate that the MGA has 

found optimal solutions for all tested columns. In 6 out of 10 
cases, this happened with the first run. Unlike the MGA, 
SGA has found optimal solutions only in 5 out of 12 cases. 
The solutions in the other 7 cases are not optimal, but they 
are close to them. Typical of SGAs is that more runs were 
needed to find the best solutions (including the optimal ones). 
This means that a larger total number of solutions has been 
generated from all runs compared to the MGA. Another 
important result is that in the MGA, the average percentage 
of mutated solutions (in all 12 cases) is 62%, while at the 
SGA this percentage was fixed at 20%. However, the MGA 
execution time is 2.61 times higher than the SGA. This is 
understandable because the computational complexity of the 
MGA is greater than that of the SGA. This influences the 
time to generate each solution and accordingly the time to 
generate all solutions. Despite this time difference (of about 
2 seconds), the MGA gives better results than the SGA in all 
cases. 

IV.  CONCLUSION 

This paper has shown an analysis of three algorithms for 
the TSP. The main steps of genetic algorithms and their 
benefits in solving combinatorial optimization problems 
were presented. Furthermore, a number of studies analyzing 
the TSP and some approaches for its solution were discussed 
as well. An optimized version of the standard recursive 
algorithm for TSP which uses the backtracking method was 
introduced. This algorithm does not generate all solutions, 
but only those that are closest to the optimal. Also, a 
standard genetic algorithm for TSP and one of its 

modification were presented. Modification itself is the use of 
the genetic mutation operator. The results showed that the 
recursive algorithm can be used to solve the TSP for graphs 
with a small number of peaks 20-25. The results of GAs 
have shown that the MGA finds optimal solutions in all 
cases, and SGA in only 40% of them. Both algorithms are 
executed for a reasonable time (up to 2 seconds). Also, it 
was found that GAs finds optimal solutions only if 
appropriate values of their parameters – population size and 
number of reproductions are set. In addition, the genetic 
mutation operator performs better if it is used to change the 
identical solutions in the population instead of changing a 
predefined number of solutions. However, the more the 
number of vertices in the graph, the more difficult it 
becomes for the MGA to find the best solution, i.e., more 
runs (and therefore, more generated solutions) are needed to 
find a better solution. 

Future guidelines for research include conducting 
additional experiments to study the impact of population size 
on the quality of GA solutions. This parameter must be set to 
match the optimal relationship between the number of 
vertices in the graph and the population size. Besides this 
parameter, there is another one that needs to be analyzed - 
this is the number of reproductions. This parameter must be 
set so that the population can reach a convergence state. This 
is the state where the population contains identical solutions, 
and further improvement cannot be achieved. 
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