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Abstract—Parasite Detection on thick blood smears is a critical step in Malaria diagnosis. Most of the thick blood smear microscopic 
images have the following characteristics: high noise, a similar intensity between background and foreground, and the presence of 
artifacts. This situation makes the detection process becomes complicated. In this paper, we proposed a robust segmentation 
technique for malaria parasite detection of microscopic images obtained from various endemic places in Indonesia. The proposed 
method includes pre-processing, blood component segmentation using intensity slicing and morphological operation, blood 
component classification utilising rule based on properties of parasite candidates, and parasite candidate formation. The performance 
was evaluated on 30 thick blood smear microscopic images. The experimental results showed that the proposed segmentation method 
was robust to the different condition of image and histogram. It reduced the misclassification error and relative foreground error by 
2.6% and 45.5%, respectively. Properties addition to blood component classification increased the system precision. Average of 
precision, recall, and F-measure of the proposed method were all 86%. It is proven that the proposed method is appropriate to be 
used for malaria parasites detection. 
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I. INTRODUCTION 

Malaria is a serious infectious disease caused by a 
peripheral blood parasite of the genus Plasmodium 
transmitted by the bite of an infected female Anopheles 
mosquito. According to World Malaria report 2014, from 
198 million cases of malaria were reported in 2013, recorded 
584,000 deaths [1]. With a high mortality rate, malaria 
should be treated as soon as possible. A rapid and accurate 
diagnosis will facilitate the treatment of the disease with 
appropriate drugs and help to control the spread of the 
disease. 

A proper diagnosis of malaria can be obtained by 
conducting a series of tests on blood samples. According to 
World Health Organization, manual microscopy examination 
of blood smears is the gold standard in the diagnosis of 
malaria. It should be observed at least 100 microscopic fields 

of view with a high magnification [2]–[5]. This process is 
exhausting for health workers and requires special skills. 
Therefore, the accuracy of the observations will be highly 
dependent on the experience and expertise of medical 
personnel.  

Detection and identification of malaria parasites are a 
critical step in the automation process of malaria diagnosis. 
Many studies have been conducted it using thin blood smear 
succeeded in identifying the presence or absence of malaria 
parasite [6]–[12], even some of the research has reached 
identification of malaria parasite stage [13], [14] and Malaria 
detection and enumeration [15]–[17]. Technically, 
processing in a thin blood smear image is easier than a thick 
blood smear image. It is due to a thin blood smear preserves 
RBC shapes and parasites, so it is more suitable for species 
identification and specification. Meanwhile,  a thick smear 
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preparation process destroys RBCs and thus makes the 
identification of species difficult [3], [4], [14]. However, 
detection sensitivity using thin blood smear is not as good as 
using thick blood smear. Examination on a thick blood 
smear is performed on a larger volume of blood. Hence, it is 
more sensitive to detect parasites. It is in line with standard 
practice manual diagnosis, positive or negative-type 
decisions is conducted using a thick blood smears, while 
identifying species and life-stage is undertaken using a thin 
blood smears [3], [14].  

In the detection of malaria parasites, only a few studies 
that use a thick blood smear to the detection process. Those 
studies showed that parasite segmentation played an 
essential role in the process. Kaemkamnerd et al. [18] 
succeeded to detect the malaria parasites using thick blood 
smear. Segmentation was performed using an adaptive 
threshold on the V-Value histogram of the HSV image. The 
used images were good quality because they were generated 
by the image acquisition unit that was designed to be easily 
mounted on most conventional light microscopes and 
automatically controls the movement of the microscope 
stage in 3-directional planes. It makes it easier to separate 
the foreground image component histogram from the 
background components. Elter et al. [19] detected the 
malaria parasites in the case of a low parasite density (fewer 
than six parasites per image). Segmentation was conducted 
using the black-top-hat morphological operator on 
comparisons of green and blue components of the smear. It 
used an initial of 174 features which were pruned to become 
a subset of 60 ones to distinguish the parasite from other 
blood components.  Arco et al. [20] performed automatic 
enumeration of malaria parasites in thick blood smears. This 
study was success calculates the number of parasites with 
high accuracy compared to manual calculation. 
Segmentation was performed using adaptive thresholding on 
the gray level image. Components of thick blood smear were 
assumed only consist of parasites and white blood nucleus, 
so the other blood components, namely platelet and artifact 
considered absent. The used feature was the area of the 
blood component. A parasite core is easily distinguished 
from the white blood core because of its much different size, 
but it is difficult to distinguish it with platelet and especially 
with the artifact that has similar size.  

In the studies above, they were obtained high 
segmentation accuracy because the used images have high 
quality too. Unfortunately, they did not publish the test 
results using a low quality of thick blood smear. It has 
following characteristics: high noise, foreground intensity 
which is similar to the background, and the possibility of the 
presence of artifacts. Also, the use of a large number of 
features is suitable to be applied to smear with low parasite 
density, but it will take a lot of time for the detection process 
in a smear with high parasite density. Hence, the results 
cannot be used as a basis for determining whether an object 
is a parasite or not. We need a detection method that has 
segmentation technique to handle the high noise and low 
difference intensity between background and foreground. 

In this paper, we proposed a robust segmentation 
technique for detection of the malaria parasite from 
microscopic images obtained from various endemic places in 
Indonesia. This technique is expected to overcome enormous 

noise on the detection process of thick blood smear. The 
result of this study will be used to support the diagnosis of 
malaria in Indonesia, especially in eastern Indonesia that has 
a high prevalence of the disease. 

II. MATERIALS AND METHOD 

This chapter describes the related work, the materials, and 
the proposed methods of this paper. 

A. Related Work 

Arco et al. [20] detected parasite on thick blood smears 
using a method that consists of four main parts: pre-
processing, segmentation, morphological operations, and 
connected component analysis. In the pre-processing stage, 
Gaussian low-pass filter, adaptive histogram equalisation, 
and h-minima transform were applied sequentially to get a 
clearer image. Segmentation stage utilised local 
characteristics of the image called adaptive thresholding 
where the segmented image was produced from two 
processes: calculated the average image using convolved 
with a mean filter (15×15 mask) and compared the average 
image with the value of each pixel in the input image. A 
pixel in the original image was considered as the background 
if the value was higher than T% of the pixels in the average 
image. Conversely, it was considered an object. In the 
morphological operation stage, dilation, erosion, and holes 
filling were applied to extract the desired components of an 
image. In the connected component analysis stage, there 
were labeling process of a formed connected components 
and measuring the size. A connected component which had 
smaller size than the average size of white blood nucleus 
was a parasites nucleus. 

B. Materials 

Microscopic images of the blood smears were prepared in 
Eijkman Institute for Molecular Biology, Indonesia. There 
were 30 microscopic images of thick blood smear from 
malaria patient on ring or trophozoite stage. In this study, the 
images were generated using 1.2-megapixel resolution with 
10×100 magnifications. The size of images were 1280 x 960 
pixels in the JPEG format. An example of data is presented 
in Fig. 1. 

 

 
Fig. 1 A specimen of thick blood smear microscopic image 

C. Method 

The proposed method includes pre-processing, blood 
component segmentation, blood component classification, 
and parasite candidate formation (Fig. 2). 
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Fig. 4 Result of intensity slicing transformation 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Schematic diagram of malaria parasite detection method 

1)  Pre-processing: A digital image is a two-dimensional 
array or a matrix whose elements are expressed the intensity 
level of picture elements or pixels. Pixel intensities on low-
contrast image gather in one area, so it has low-intensity 
range. Conversely, pixels intensities on a high-contrast 
image spread all over the area, so it has high-intensity range. 
On malaria detection, a high-contrast condition is 
indispensable because it can highlight the parasite from the 
background. Microscopic image of a thick blood smear used 
in this study is an image that has been converted into gray 
level image. Each smear had varying intensity, so the 
intensity range is also different. To facilitate the process of 
determining the threshold of the system, we need to equalize 
the intensity range. Therefore, the image is enhanced by 
contrast stretching to raise the contrast and equalize the 
intensity range of the used data. The form of contrast 
stretching [21] is defined as 
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where I’ (i,k) and I(i,k) is the intensity of the output and input 
pixels,  Imax and Imin are the maximum and minimum 
intensity of input image, max and min are the maximum and 
minimum intensity that is desired respectively. This step 
purpose is to map the minimum of the array to 0 and the 
maximum of the array to 255. Moreover, it can decrease the 
effect of differences in illumination. The output of this phase 
is indicated by using image histogram before and after pre-
processing (Fig. 3). 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Histogram image before and after pre-processing 

2)  Blood Component Segmentation: The first step is to 
highlight the location of parasite candidates. In the thick 
blood smear microscopic image, parasites are shown with an 
object whose intensity is darker than its surroundings. 

Intensity slicing is carried out with a certain threshold, so 
objects with pixel intensity below the threshold can be 
obtained. This method is defined by, 

 ( )
( ) ( )

( )



>
≤

=
ThI

ThII
I

ki

kiki

ki

,

,,

,    ,255

,
'   (2) 

where I’ (i,k) and I(i,k)  are output and input pixel intensity, 
respectively, and Th is given threshold.  

The result of intensity slicing transformation forms areas 
with a white background (Fig. 4). These areas are formed 
because the image is transformed using a certain threshold 
so that the pixels with intensity below the threshold value 
forming area or object, otherwise it will be the white 
background. With this process, objects becomes more 
obvious. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The second step, the initial segmentation was conducted 

using canny edge detection to detect the edge of formed 
contour. Further, it performed a morphological closing 
operation: dilation to clarify the contour obtained, holes 
filling to eliminate little holes and fills the gaps in the 
contour, and erosion to remove the noise resulting from 
thresholding and the canny edge detection steps. The form of 
dilation and erosion [20] respectively are given by 

 ( ){ }AABzBA z ⊆∩=⊕ |  (3) 

 A ⊖ B = {z  | (B), z ⊆ A}  (4) 

where A is input image and B is a structuring element. The 
dilation of A and B is the set of all displacements, z, such 
that B and A overlap in at least one element. The erosion of 
A and B is the set of all the pixels z such that B has to be 
contained in A. In this study, the dilation uses two flat linear 
structuring element with 3 in length and angles are 90° and 
0°. This composition of two flat structuring elements is 
conducted by dilating the scalar value 1 with both 
structuring elements in sequence. The erosion uses a flat 
diamond-shaped structuring element with r, distance from 
the structuring element origin to the points of the diamond, 
is 1. 

The segmentation processes form connected components 
which are blood components in thick blood smear, i.e. white 
blood nucleus, parasite nucleus, platelet, and artifact (Fig. 5). 
It can be seen that the size of white blood nucleus are very 
distinct from the other blood components, while there is a 
partly parasite nucleus sized similarly to platelet and artifact. 
Therefore in the parasite detection process, classification is 
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Fig. 7 A connected component and the properties 

 

 
Fig. 6  Thick film malaria parasite in trophozoite stage [4] 

necessary to distinguish the parasite with other blood 
components. 

 

 
Fig. 5 Result of segmentation: 1. white blood nucleus, 2. parasite nucleus, 3. 
platelet, 4. artifact. 

3)  Blood Components Classification: A parasite nucleus 
is described as chromatin dot because normally the shape is 
round. In fact, the shape is not too round. Moreover, the 
thick blood smear preparation process often destroys red 
blood cells, so more precise shape is oval with a certain 
degree. As shown in Fig. 6, the nucleus area is characterised 
by red area.  

 
 
 
 
 
 
 
 
In several studies [18], [20], the classification of blood 

component are based only on its area. A malaria parasite 
would be easily distinguished by the white blood nucleus or 
platelet because its area is different. However, recognizing 
the parasites and artifacts are not easy because an artifact can 
be derived from mould, dirt that occurs in the process of 
manufacture/storage smears, and other bacteria that vary in 
size and may have an area equal to the parasite. So, some 
properties of the connected component that can distinguish a 
parasite with the artifact should be added. 

The classification stage starts by labeling the connected 
component produced in the previous process and specify 
some properties that are Area, Maximum Axis Length 
(MaxAxis), Minimum Axis Length (MinAxis) as in Fig. 7, 
the proportion between the maximum and minimum axis 
length (Ovalness), the distance between the center of the 
ellipse and its maximum axis length (Eccentricity), the 
proportion of actual cell area to convex hull area (Solidity), 
Maximum of Intensity (Max_I), Minimum of Intensity 
(Min_I), and Mean of Intensity (Mean_I).  

 
 
 
 
 
 
 
The feature selection process uses 280 connected 

components in the form of parasites and non-parasites 
derived from 15 samples. The class label of connected 
components is given by experts. Some studies used 
correlation measure for feature selection [22], [23]. In this 
paper, we use the algorithm from Jiang and Wang [23] as 
follows. 
a. Compute correlation between every input features with 

the class label.  
b. Select significant features using the t-test. Order features 

in descending correlation value and select its value > t. 
c. Compute the correlation between input features. 
d. Remove redundant features that the correlation value > α. 

Selected features are features that have no remove status.  
 
From Two-tail test of Pearson correlation table with a 

significant level of 0.05 for 280 data, the t value is 0.087. 
Selected features are features that have correlation values 
with class label greater than 0.087 (Fig. 8a). The next 
processes are calculate the correlation between the input 
features (Fig. 8a b) and remove the redundant feature by 
comparing it with α. In this paper, the used α values are 0.4, 
0.5, and 0.6. One example of removal process was shown in 
Fig. 8c that uses α = 0.4. 

 

 
Fig. 8  Selection features process: a. select significant features, b. correlation between input features, c. removing process of redundant feature with α=0.4 
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Fig. 9 Rule-based of the classification process 

Based on Fig. 8c and removing process with α=0.5 and 
α=0.6, three features were selected, i.e. Area, Solidity, and 
Ovalness. These features have no remove status (Rem). 
Further, the classification of the blood components is based 
on the rule of properties of the connected component (Fig. 9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The value limits for selected features are based on data of 

connected component that parasite labelled. As 
consideration, the average size of a white blood nucleus in 
this study was 2260 pixels. 

4)  Parasite Candidate Formation 

Malaria parasite in the thick blood smear is characterised 
by the presence of parasites nucleus followed by cytoplasm 
[3], [4]. The previous process only produces nucleus of 
parasites candidates with the position. All parts of a parasite 
candidate are obtained by crop thick blood smear in a small 
area of size 35 × 35 based on centroid of the connected 
components (Fig. 10).  

 
Fig. 10 Parasite candidate formation 

 

This measure is obtained by taking four times of the 
average parasite nucleus diameter to the up, the down, the 
right, and the left of the parasite's nucleus. The addition of 
area around the nucleus aims to ensure the cytoplasm of 
parasite exists in the area to be cropped. 

D. Performance Measurement 

Performance measurement of detection is conducted by 
comparing the ground truth and the result of detection. 
Ground truth was created manually based on instructions 
that are given by experts, and the results have been validated 
by a microscopist. From the process described in the 
methodologies, the system only determines whether an 
object in the thick blood smear is a parasite candidate or not. 
The result is called  true positive (TP) if the system predicts 
as parasites and ground truth is also expressed as a parasite, 
false positive (FP) if the system predicts as parasites were 
ground truth stated as not parasites, and false negatives (FN) 
if the system predicts as not parasites were ground truth 
expressed as parasites. Performance measurement utilising 
these values are recall (R) or true positive rate, precision (P) 
or positive predictive value, and F-measure (F). The form of 
the performances are given by 

 
TPFP

TP
P

+
=    (5) 

 
TPFN

TP
R

+
=   (6) 

 
PR

RP
F

+
= 2

   (7) 

The performance measure of the segmentation uses 
misclassification error (ME) that calculates the proportion of 
object pixels that misclassified as background, and vice 
versa. Moreover, it also uses relative foreground area error 
(RAE) that calculates the proportion of the difference 
between the object’s area in ground truth image and the 
segmentation result. Assume, FT and FR are the object pixels 
in the ground truth image and the segmentation result. BT 
and BR are the background pixels in the ground truth image 
and the segmentation result. AT and AR are area of the object 
in the ground truth image and segmentation result. ME and 
RAE can define as Equation (8) and Equation (9), 
respectively.  
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The range of ME and RAE values are [0, 1]. If the value 
of ME is 0, then the segmentation result is exactly the same 
as the ground truth image. If the value of RAE is 0, then the 
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(a) 

 
(b) 

 
Fig. 13 Optimal threshold per microscopic image 

 

Fig. 14 Average F measure per Threshold 

object in ground truth image has same area with an object in 
the segmentation result. 

III.  RESULTS AND DISCUSSION 

In this study, we used 30 samples of thick blood smear 
microscopic image. Fifteen samples were used to parameter 
estimation. The proposed method was evaluated on the rest 
of thick blood smear microscopic images. The experiment 
results were described in detail as follows. 

Experiments were conducted using variations of threshold 
55 to 75 at 15 thick blood smear microscopic images. Fig. 
11a was a result of system detection on sample No. 8 with a 
threshold intensity slicing value of 57 that compared to the 
ground truth (Fig. 11b). The thick blood smears condition in 
the experimental in Fig. 11 is a case where a thick smear has 
similar intensity between the background and blood 
components. False positives occur due to the formation of a 
contour from the background that the intensity value is 
below the threshold (candidate 9th, 11th, and 15th) or the 
presence of artifacts (candidate 16th) that the area and 
features are matching to the parasite. False negatives occur 
because the intensity of parasite candidate is still above the 
threshold or because of the parasite candidates located 
around the background that have similar intensity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 Comparison of the system result and the ground truth: a. system 
result, b. groundtruth 

 
The values of TP, FP, and FN in the experiment (Fig. 11a) 

are 12, 4, and 3, respectively. Using (5), (6), and (7), the 
value precision = 0.75 and recall = 0.8, so the F-measure is 
0.774. The overall performance measures of sample no. 8 
with threshold variation from 55 to 75 are presented in Fig. 
12. 

 

The determination threshold value of intensity slicing 
highly affects the value of precision and recall. Improper 
threshold determination could increase the error detection of 
parasite candidates. An optimal threshold value is required 
to obtain proper parasite (TP) as much as possible and error 
detection (FP) to a minimum. In other words, it achieves the 
highest F-measure. For example, the optimal threshold of 
sample No. 8 is obtained at 55, 56, and 57. The optimal 
threshold for other microscopic image samples is presented 
in Fig. 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen from Fig. 13 that the optimal threshold 

indicates the different values for each image microscopic 
samples and do not form a pattern. The use of each optimal 
threshold is not possible on a system. It is necessary to set a 
fixed threshold to provide the best results. Average F-
measure per threshold recalculates to all testing data (Fig. 
14). The best average F-measure value is met at given 
threshold 71 with a value of 0.86. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12 Precision and Recall graph of sample No. 8 
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1 2 3 4 

Fig. 15 Result of segmentation: 1. graylevel image, 2. ground truth, 3. segmentation result with Arco's Method, 4. segmentation result with the 
proposed method 

Evaluation is conducted by comparing the proposed 
method with Arco’s method [20]. There are differences in 
assumptions related components on the thick blood smear of 
the two methods.  Arco et al. determining thick blood 
components are white blood nucleus and parasites. While, 

the proposed method uses whole blood components that are 
white blood nucleus, parasites, platelets, and the possibility 
of artifacts. So, this paper will compare the results of both 
methods just up the process of image segmentation as shown 
in Figure 15.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The used data comparisons (Fig. 15.1) is obtained from 

the Muwardi Surakarta Hospital, Karanganyar District 
Hospital, and the Eijkman Institute for Molecular Biology. 
The data show several images of blood smear containing 
parasites or nucleated cells in several diseases. Fig. 15a–d 
are images of thin blood smear on iron deficiency diseases, 
Leukemia, and Malaria. Fig. 15e and 15f are images of thick 
blood smear on Malaria. The aim of the experiment is 
extracting the parasite nucleus and another nucleus of blood 
components from the smear image.  

There are three conditions of smear image from Fig. 15.1. 
Firstly (Fig. 15a–b), components nucleus are visible than the 
background. Secondly (Fig. 15c–d), component nucleus are 
visible, but the intensity is similar to the surrounding 
intensity. The thirdly (Fig. 15e–f), component nucleus are 
camouflaged among the blood artifacts.  

Results of the segmentation process of both methods are 
shown in Fig. 15.3 and Fig. 15.4. Threshold segmentation of 
the two methods is adapted to each condition image to obtain 
the best possible result that can extract blood components 
nucleus on the image. The threshold of Arco's Method and 
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Fig. 16 Graylevel image before and after the process of adaptive equalisation histogram: a. before, b. after, c. histogram before and 

after the process 

proposed methods are ThA and Th, respectively. ThA is a 
percentage of the pixels in the average image with a mean 
filter (15×15 mask), while Th is intensity value from 0 to 
255. 

From Fig. 15.3 and Fig. 15.4 are seen that proposed 
method successfully extract the blood components nucleus 
of the smears image on all conditions (Fig. 15a-f). While, 
Arco's Method also successfully extract the blood 
components nucleus on the first condition (Fig 15a). On the 
second sample (Fig. 15b), there are many extracted non-
nucleus object. In the second condition (Fig 15c–d), not all 
the nucleus are extracted, and many non-nucleus objects are 
extracted. In the third condition (Fig. 15e–f), objects that are 
non-nucleus are extracted more. 

In the second condition image, the threshold required to 
extract the nucleus of Arco's method is high that are 0.9 and 
0.75. It means that the intensity of the nucleus is not too 
different than the surrounding intensity with similarity 90% 
and 75%. The number of a non-nucleus object extracted can 
be reduced by decreasing the segmentation threshold, but it 
has resulted in extracted part of nucleus reduced too. If the 
segmentation threshold is increased, part of the nucleus will 
be more extracted but non-nucleus object more extracted too. 
Failure Arco's method in the third condition, mainly due to 
the use of adaptive histogram equalisation in pre-processing.  
In the first condition image, the process can increase the 
contrast of the image, so difference of the object from the 
background is more prominent. (Fig 16.1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, in the third condition image, the process makes 

many pixels move to low intensity, i.e. intensity 
corresponding to the blood components intensity (marked 
with red circles on the histogram in Fig 16.2.c). The images 
are darker than previous and many nucleuses are missing 
because they are covered by the blood artifacts, especially 
the small nucleus. (Fig. 16.2.b). 

The result of the experiment in Fig. 15 shows that the 
proposed segmentation method is visually more robust with 

different condition's image and histogram than Arco's 
method. The performance of these methods was measured 
using number of misclassification pixel (MP), ME, and RAE 
and it was summarised on Table I. The results indicated that 
the proposed method outperformed in all performance of all 
images compared Arco's result. The use of the proposed 
method reduce ME and RAE significantly. The average 
reduction of ME and RAE are 2.6% and 45.5%, respectively. 

 
 

 
 

TABLE I   
COMPARISON RESULT WITH ARCO’S METHOD 

Image 
Image 

Dimension 
Arco’s Method Proposed Method 

MP ME (%) RAE (%) MP ME (%) RAE (%) 
a 560×450 3,384 1.34 30.58 555 0.22 9.19 
b 560×450 11,185 4.44 75.48 849 0.34 12.29 
c 2560×1920 85,684 3.49 12.72 19,279 0.05 4.22 
d 1280×960 42,939 1.74 97.16 637 0.39 42.47 
e 1280×960 53,276 4.34 92.96 932 0.08 9.31 
f 1280×960 18,503 1.51 57.52 2,681 0.22 15.90 

Average 35,829 2.81 61.07 4,156 0.22 15.56 
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(a) (b) 

Fig. 17  Comparison system results: a. classification process use area, ovalness, and solidity, b. classification process uses area 

Here would be seen the effect of adding ovalness and 
solidity in the classification process of the connected 
component. Experiments are conducted on sample No. 8 by 

comparing the two conditions, which are utilising area, 
ovalness, and solidity (Fig. 17a) and only area (Fig. 17b). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The result system utilised the area, ovalness, and solidity 
had similar results to systems that only used area. The 
different result was marked with a blue rectangle. There are 
additional results whose values were false positive (FP) at 
the system that only used area. It means that systems utilised 
area, ovalness, and solidity can reduce false positive results 
from the system. Conversely, false negative results are not 

reduced. It means that the addition of properties can improve 
the precision system, but it does not change the recall system. 

The threshold is increased from 55 to 75, and the effect of 
these properties on sample No.8 was shown at Fig. 18. It 
appears that the additional properties increase F-measure 
(Fig. 18c). However, the effect only occurs in the precision 
(Fig. 18a) while the recall unchanged (Fig. 18b). It means 
that the recall depends on the determination of the intensity 
slicing threshold, while the addition of properties reduces 
error detection (FP) but does not improve the correct 
detection of the parasite (TP). 

CONCLUSION 

In this study, we develop malaria parasite detection from 
thick blood smear microscopic images obtained from various 
endemic places in Indonesia. The detection is performed on 
data containing the actual peripheral blood that is white 
blood, platelet, parasite, and artifact. The process includes 
pre-processing, segmentation using blood component 
intensity slicing and morphological operation, blood 
component classification utilising rule based on properties of 
parasite candidates, and parasite candidate formation. 
Experiments were conducted by varying the threshold from 
55 to 75 using 15 examples of each training and testing data. 
We also investigate the effect of adding properties during the 
classification process. The result shows that the proposed 
method is effective to detect malaria parasite from the thick 
blood smear microscopic image. The segmentation method 
is robust to the different condition of image and histogram. It 
reduced the misclassification error and relative foreground 
error by 2.6% and 45.5%, respectively. The addition of 
ovalness and solidity properties during the classification 
process improve precision of the system. From used sample 
data and given threshold intensity slicing 71, average 
precision, recall, and F measure are all 86%. 

The future works of this study is modelling an automatic 
intensity slicing threshold that produces appropriate 
threshold with the condition of each thick blood smear 

 
 

Fig. 18 Comparation of system performance: a. precision, b. recall, c. F-
measure 

  = the classification use area, ovalness, and solidity 

  = the classification uses area 
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image to improve the recall of the system. Futhermore, 
advanced identification of the obtained parasite candidates 
will be conduct to reduce false positives of the system result. 
So, it can improve the precision value. 

ACKNOWLEDGMENT 

Datasets of this research are supported by Eijkman 
Institute of Molecular Biology Indonesia and Miss. Esti 
Suryani. This research is a part of research collaboration 
among Universitas Sebelas Maret, Center for Information 
and Communication Technology Agency for the Assessment 
and Application of Technology (PTIK-BPPT), and Eijkman 
Institute for Molecular Biology. 

REFERENCES 
[1] WHO (2014) World Malaria Report 2014. [Online]. Available: 

http://www.who.int/malaria/publications/world_malaria_report_2014
/en/ 

[2] I. Hammami, A. Garcia, and G. Nuel, “Evidence for overdispersion 
in the distribution of malaria parasites and leukocytes in thick blood 
smears,” Malaria Journal, vol. 12, pp. 1–15, 2013. 

[3] D. Syafruddin, P. B. Asih, I. E. Rozi, K. Chand, and S. Wangsamuda, 
Diagnosis mikroskopik malaria, 1st ed. Lembaga Biologi Molekuler 
Eijkman, 2010. 

[4] WHO, Basic Malaria Microscopy, 2nd ed. Switzerland: WHO Press, 
2010. 

[5] N. Linder, R. Turkki, M. Williander, A. Mårtensson, V. Diwan, E. 
Rahtu, M. Pletikäinen, M. Lundin, J. Lundin, “A Malaria Diagnostic 
Tool Based on Computer Vision Screening and Visualization of 
Plasmodium falciparum Candidate Areas in Digitized Blood 
Smears,” PLOS ONE, vol. 9, no. 8, pp. 1–12, 2014. 

[6] D. Anggraini, A. S. Nugroho, C. Pratama, I. E. Rozi, V. Pragesjvara, 
and M. Gunawan, “Automated status identification of microscopic 
images obtained from malaria thin blood smears using bayes decision: 
A study case in plasmodium falciparum,” in Proc. International 
Conference on Advanced Computer Science and Information 
Systems, 2011, pp. 347–352. 

[7] D. K. Das, M. Ghosh, M. Pal, A. K. Maiti, and C. Chakraborty, 
“Machine learning approach for automated screening of malaria 
parasite using light microscopic images,” Micron, vol. 45, pp. 97–
106, 2013. 

[8] E. Dekel, A. Rivkin, M. Heidenreich, Y. Nadav, Y. Ofir-Birin, Z. 
Porat, N. Regev-Rudzki, “Identification and classification of the 
malaria parasite blood developmental stages, using imaging flow 
cytometry,” Methods, vol 112, pp. 157-166, 2016. 

[9] G. Díaz, F. A. González, and E. Romero, “A semi-automatic method 
for quantification and classification of erythrocytes infected with 
malaria parasites in microscopic images,” Journal of Biomedical 
Informatics, vol. 42, no. 2, pp. 296–307, 2009. 

[10] Z. May and M. Aziz, “Automated quantification and classification of 
malaria parasites in thin blood smears,” in Proc. International 
Conference on Signal and Image Processing Applications, 2013, pp. 
369–373. 

[11] M. I. Razzak, “Automatic Detection and Classification of Malarial 
Parasite,” International Journal of Biometrics and Bioinformatics, vol. 
9, pp. 1–12, 2015. 

[12] S. S. Savkare and S. P. Narote, “Automatic System for Classification 
of Erythrocytes Infected,” in Proc. 2nd International Conference on 
Communication, Computing & Security, 2012, vol. 6, pp. 405–410. 

[13] V. V. Makkapati and R. M. Rao, “Ontology-based malaria parasite 
stage and species identification from peripheral blood smear images,” 
in Proc. International Conference of the IEEE Engineering in 
Medicine and Biology Society, pp. 6138–6141, 2011. 

[14] F. B. Tek, A. G. Dempster, and I. Kale, “Parasite detection and 
identification for automated thin blood film malaria diagnosis,” 
Computer Vision and Image Understanding, vol. 114, pp. 21–32, 
2010. 

[15] K. Bhowmik and P. Rakshit, “Detection of the presence of Parasites 
in Human RBC In Case of Diagnosing Malaria,” in Proc. Second 
International Conference on Image Information Processing, 2013, pp. 
329–334. 

[16] D. Mas, B. Ferrer, D. Cojoc, S. Finaurini, V. Mico, and J. Garcia, 
“Novel image processing approach to detect malaria,” Optics 
Communications, vol. 350, pp. 13–18, 2015. 

[17] M. Le, T. R. Bretschneider, C. Kuss, and P. R. Preiser, “A Novel 
semi-automatic image processing approach to Determine 
Plasmodium falciparum parasitemia in Giemsa-stained thin blood 
smears,” BMC Cell Biology, vol. 12, pp. 1–12, 2008. 

[18] S. Kaewkamnerd, A. Intarapanich, M. Pannarat, S. Chaotheing, C. 
Uthaipibull, and S. Tongsima, “Detection and Classification Device 
for Malaria Parasites in Thick-Blood Films,” in Proc. The 6th IEEE 
International Conference on Intelligent Data Acquisition and 
Advanced Computing Systems: Technology and Applications, 2011, 
pp. 435–438. 

[19] M. Elter, E. Haßlmeyer, and T. Zerfaß, “Detection of malaria 
parasites in thick blood films,” in Proc. 33rd Annual International 
Conference of the IEEE EMBS, 2011, pp. 5140–5144. 

[20] J. E. Arco, J. M. Górriz, J. Ramírez, I. Álvarez, and C. G. Puntonet, 
“Digital image analysis for automatic enumeration of malaria 
parasites using morphological operations,” Expert Systems with 
Applications, vol. 42, no. 6, pp. 3041–3047, 2015. 

[21] J. Kaur and A. Choudhary, “Comparison of Several Contrast 
Stretching Techniques on Acute Leukemia Images,” International 
Journal Engineering Innovation Technology, vol. 2, pp. 332–335, 
2012. 

[22] R. E. Putri, A. Yahya, N. M. Adam, and S. A. Aziz, “Correlation of 
Moisture Content to Selected Mechanical Properties of Rice Grain 
Sample,” International Journal on Advanced Science, Engineering & 
Information Technology, vol. 5, no. 5, pp. 264–267, 2015. 

[23] S. Y. Jiang and L. X. Wang, “Efficient feature selection based on 
correlation measure between continuous and discrete features,” 
Information Processing Letters, vol. 116, no. 2, pp. 203–215, 2016. 

 

1459




