
itif cn e Ci oc nS fl ea rn eo ni ct ea 2nr 0e 1t 1nI

ISC 2011

Proceeding of the International Conference on Advanced Science,
Engineering and Information Technology 2011

Hotel Equatorial Bangi-Putrajaya, Malaysia, 14 - 15 January 2011

ISBN 978-983-42366-4-9

ISC 2011

International Conference on Advanced Science,
Engineering and Information Technology

ICASEIT 2011

Cutting Edge Sciences for Future Sustainability

Hotel Equatorial Bangi-Putrajaya, Malaysia, 14 - 15 January 2011

SRI EA V IUN

 ITN IES

ED KO
BIN

NR A

GJA

AL SA

AE

N P

M N

AA

LU

AT

YA

SS

AI

R
E

P

NIN
O O

D

I TA EN
I CO AI S

SSA TS N
STNEDU

Organized by
Indonesian Students Association
Universiti Kebangsaan Malaysia

Proceeding of the

The Effect of Adaptive Gain and Adaptive
Momentum in Improving Training Time of Gradient

Descent Back Propagation Algorithm on
Classification Problems

Norhamreeza Abdul Hamid#, Nazri Mohd. Nawi#, Rozaida Ghazali#
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia

P. O. Box 101, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
Tel.:+607-4538003, E-mail: gi090007@siswa.uthm.edu.my, nazri@uthm.edu.my, rozaida@uthm.edu.my

Abstract— The back propagation algorithm has been successfully applied to wide range of practical problems. Since this algorithm
uses a gradient descent method, it has some limitations which are slow learning convergence velocity and easy convergence to local
minima. The convergence behaviour of the back propagation algorithm depends on the choice of initial weights and biases, network
topology, learning rate, momentum, activation function and value for the gain in the activation function. Previous researchers
demonstrated that in ‘feed forward’ algorithm, the slope of the activation function is directly influenced by a parameter referred to as
‘gain’. This research proposed an algorithm for improving the performance of the current working back propagation algorithm
which is Gradien Descent Method with Adaptive Gain by changing the momentum coefficient adaptively for each node. The influence
of the adaptive momentum together with adaptive gain on the learning ability of a neural network is analysed. Multilayer feed
forward neural networks have been assessed. Physical interpretation of the relationship between the momentum value, the learning
rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method
and current Gradient Descent Method with Adaptive Gain was verified by means of simulation on three benchmark problems. In
learning the patterns, the simulations result demonstrate that the proposed algorithm converged faster on Wisconsin breast cancer
with an improvement ratio of nearly 1.8, 6.6 on Mushroom problem and 36% better on Soybean data sets. The results clearly show
that the proposed algorithm significantly improves the learning speed of the current gradient descent back-propagatin algorithm.

Keywords— back propagation algorithm, gain, activation function, adaptive momentum.

I. INTRODUCTION
Artificial Neural Networks (ANN) are modelled on the

human brain and consists of processing units known as
artificial neurons that can be trained to perform complex
calculations like human brain. It had been successfully
implemented in the real world application which are
accounting and finance [1], [2], health and medicine [3], [4],
engineering and manufacturing [5], [6], marketing [7], [8]
and general applications [9], [10], [11]. Multilayer
perceptron is one of the most popular neural network models
due to its clear architecture and comparably algorithm [12].

A standard multilayer perceptron consists of input layer,
hidden layer and output layer. Each of these layers contains
nodes. Each node in a layer is connected to the nodes in the
subsequent layer. The most representative learning model for

multilayer perceptron is back propagation algorithm. This
algorithm has been successfully applied to wide range of
practical problems [1], [13] which uses the gradient descent
method to correct the network weights formula. A back
propagation is a supervised learning technique that uses a
gradient descent rule which attempts to minimize the error of
the network by moving down the gradient of the error curve
[14]. This algorithm is used more than all other combined
and used in many different types of applications [15].
Although this algorithm is used successfully, it has some
limitations. Since back propagation algorithm uses gradient
descent method, the problems include a slow learning
convergence and easily get trapped at local minima.
Furthermore, the convergence behaviour of the back
propagation algorithm depends on the choice of initial
weights and biases, network topology, learning rate,
momentum coefficient, activation function and value for the

178

gain in the activation function. Hence, improving the
application of back propagation algorithm remains an
important research issue.

In recent years, a number of research studies have
attempted to overcome these problems. These involved the
development of heuristic techniques, based on studies of
properties of the conventional back propagation algorithm.
These techniques include such idea as varying the learning
rate, using momentum and gain tuning of activation function.
In [16] some convergence results are given where the
learning fashion of training examples is batch learning.
These results are of global nature in that they are valid for
any arbitrarily given initial value of weights. The key for the
convergence analysis is monotonicity of the error function
during the learning procedure, which is proved under the
uniformly boundedness assumption of activation function
and its derivatives. However, in order to obtain strong
convergence, we assume the error function is equivalently
convex, which is little intense. Kamarthi and Pittner [17]
presented a universal acceleration technique for the back
propagation algorithm based on extrapolation of each
individual interconnection weight. This requires the error
surface to have a smooth variation along the respective axes,
therefore extrapolation is possible. For performing
extrapolation, at the end of each epoch, the converge
behaviour of each network weight in back propagation
algorithm is individually examined. They also focused on
the use of standard numerical optimization techniques.
Though, this technique often must be tuned to fit a particular
application. Møller [18] explained how conjugate gradient
algorithm could be used to train multilayer feed forward
neural networks. In this algorithm, a search is performed
along conjugate directions, which generally leads to faster
convergence than steepest gradient descent directions. The
error function is guaranteed not to increase consequently of
the weights update. However, if it reaches a local minimum,
it remains forever, as there is no mechanism for this
algorithm to escape. Lera et al. [19] described the use of
Levenberg-Marquardt algorithm for training multi-layer feed
forward neural networks. Though, the training times
required strongly depend on neighbourhood size.

Using a momentum coefficient is the simplest method to
avoid oscillation problems during the search for the
minimum value on the error surface [13]. The addition of
momentum coefficient can help smooth out the descent path
by preventing extreme changes in the gradient due to local
anomalies [20]. Consequently, it is liable to suppress any
oscillation that result from changes in the slope of the error
surface. The momentum coefficient is typically chosen to be
constant in the conventional back propagation algorithm
with momentum. However, such a momentum with a fixed
coefficient seems to speed up learning only when the current
downhill gradient of the error function and the last change in
weight have a similar direction, while the current negative
gradient is in an opposing direction to the previous update,
the momentum may cause the weight to be adjusted up the
slope of the error surface instead of down the slope as
desired [21]. In order to make learning more effective, it is
necessary that the momentum should be varied adaptively
rather than being fixed throughout the training process.

Nazri et al. [22] demonstrated that changing the ‘gain’
value adaptively for each node can significantly reduce the
training time. Based on [22], this paper proposed a further
improvement on the current algorithm that will change the
momentum value adaptively which significantly improve the
performance of the gradient descent back propagation
algorithm. In order to verify the efficiency of the proposed
algorithm, the performance of the proposed algorithm will
be compare with the conventional gradient descent method
(GDM) and gradient descent algorithm with adaptive gain
(GDM/AG) proposed by Nazri et al. [22], some simulation
experiments was performed on three classification problems
including Wisconsin breast cancer [23], mushroom [24] and
soybean [25].

The paper is organized as follows. In Section II, effect of
the gain parameter on the performance of neural network is
reviewed. While in section III presents the proposed
algorithm. The performance of the proposed algorithm is
tested on classification problems conducted in Section IV.
This paper is concluded in the final section.

II. THE EFFECT OF THE GAIN PARAMETER ON THE
PERFORMANCE OF BACK PROPAGATION ALGORITHM

An activation function is a key factor in the artificial
neural network structure. It is used for limiting the amplitude
of the output of neuron and generates an output value for a
node in a predefined range as the closed unit interval  1,0 or
alternatively  1,1 . This value is a function of the weighted
inputs of the corresponding node. Back propagation
algorithm supports a wide range of activation functions such
as logistic sigmoid, linear, hyperbolic tangent, step
activation function and etc. The most commonly used
activation function is the logistic sigmoid activation function.
For the thj node, a logistic sigmoid activation function
which has a range of  1,0 is a function of the following
variables, viz

jnetjacj
e

o
,1

1


 (1)

where,

j

l

i
iiijjnet owa  





 

1
, (2)

where,

jo

output of the thj unit.

io output of the thi unit.

ijw

weight of the link from unit i to unit j.

jneta , net input activation function for the thj unit.

j bias for the thj unit.

jc gain of the activation function.

i momentum coefficient for the thi unit

179

The value of the gain parameter, jc , and momentum
coefficient i directly influence the slope of the activation
function. For large gain values  1c , the activation
function approaches a ‘step function’ whereas for small gain
values  10  c the output values change from zero to
unity over a large range of the weighted sum of the input
values and the sigmoid function approximates a linear
function.

Most of the application oriented papers on neural
networks tend to agree that neural networks operate like a
‘magic black box’, which can simulate the “learning from
example” ability of our brain with the help of network
parameters such as weights, biases, gain, momentum
coefficient, hidden nodes, etc. Also, a unit value for gain and
momentum coefficient have generally been used for most of
the research reported in the literature but a few authors have
researched the relationship of the gain parameter and
momentum coefficient with other parameters which used in
back propagation algorithms. The recent results [27] show
that learning rate, momentum coefficient and gain of the
activation function have a significant impact on training
speed. Unfortunately, higher values of learning rate and/or
gain cause instability [28].. Thimm et al. [29] also proved
that a relationship between the gain value, a set of initial
weight values, and a learning rate value exists. Looney [30]
suggested to adjust the gain value in small increments during
the early iterations and to keep it fixed somewhere around
halfway through the learning. Eom et al. [31] proposed a
method for automatic gain tuning using a fuzzy logic system.
Nazri et al. [22] proposed a method to change adaptively
gain value on other optimisation method such as conjugate
gradient.

III. THE PROPOSED ALGORITHM
In this section, a further improvement on the current

working algorithm proposed by Nazri [22] for improving the
training efficiency of back propagation is proposed. The
following subsection describes the proposed algorithm. The
proposed algorithm adaptively changed the gain and
momentum value for each node of training. The gradient
descent can be implemented in two different ways which are
incremental mode and batch mode. In this paper, batch mode
was chosen to be implemented for training process. In the
batch mode training weights, biases, gains and momentum
terms are updated after one complete presentation of the
entire training set. An epoch is defined as one complete
presentation of the training set. A sum squared error value is
calculated after the presentation of the training set and
compared with the target error. Training is done on an
epoch-by-epoch basis until the sum squared error falls below
the desired target value.

A. Algorithm
The following iterative algorithm is proposed for the batch

mode of training. The weights, biases, gains and momentum
terms are calculated and update for the entire training set
which is being presented to the network.

For a given epoch,

For each input vector,
Step 1.
Calculate the weight and bias values using
the previously converged gain value and
momentum coefficient.
Step 2.
Use the weight and bias value calculated in
Step (1) to calculate the new gain value and
momentum coefficient.

Repeat Step (1) and Step (2) for each input
vector and sum all the weights, biases,
momentum and gain updating terms.

Update the weights, biases, gains and momentum
coefficient using the summed updating terms and
repeat this procedure on an epoch-by-epoch
basis until the error on the entire training data
set reduces to a predefined value

The gain and momentum update expression for a gradient
descent method are calculated by differentiating the
following error term E with respect to the corresponding
gain parameter. The network error E is defined as follows

  2
,,

2
1  ikjkk cootE  (3)

For output unit,
kc

E

 needs to be calculated whereas for

hidden units.
jc

E

 is also required. The respective

momentum values would then be updated with the following
equations.

)(
k

k

E






 (4)

)(
j

j

E




 (5)

     kjjkkkkk
k

owoootE






 1 (6)

Therefore, the momentum update expression for links
connecting to output nodes is:

         kjjkkkkkk owoootnc  11 (7)

      






















 


  j

j
iijjj

k
kkkkjkk

j

owoootoowE



11 (8)

and the momentum update expression for the links
connecting hidden nodes is

        























   j
j

iijjj
k

kkkkjkkj owoootoown  111

(9)

180

IV. RESULTS AND DISCUSSIONS
The performance criterion used in this research focuses on

the speed of convergence, measured in number of iterations
and CPU time. The benchmark problems used to verify our
algorithm are taken from the open literature. Three
classification problems have been tested including
Wisconsin breast cancer [23], mushroom [24] and soybean
[25]. The simulations have been carried out on a Pentium IV
with 2 GHz HP Workstation, 3.25 GB RAM and using
MATLAB version 7.0 (R14).

On each problem, the following three algorithms were
analysed and simulated.

 The conventional Gradient Descent with Momentum
(GDM)

 The Gradient Descent Method with Adaptive Gain
(GDM/AG) [22]

 The proposed Gradient Descent Method with
Adaptive Gain and Adaptive Momentum
(GDM/AGAM)

To compare the performance of the proposed algorithm
with conventional GDM and GDM/AG [22], network
parameters such as network size and architecture (number of
nodes, hidden layers etc), values for the initial weights and
gain parameters were kept the same. For all problems the
neural network had one hidden layer with five hidden nodes
and sigmoid activation function was used for all nodes. All
algorithms were tested using the same initial weights,
initialized randomly from range  1,0 and received the input
patterns for training in the same sequence.

For all training algorithms, the learning rate is fixed to be
0.3 which is interpreted as the global learning rate of the
network. However, as the gain value was modified, the
weights and biases were updated using the new value of gain.
This resulted in higher values of gain which caused
instability [29]. To avoid oscillations during training and to
achieve convergence, an upper limit of 2.0 is set for the gain
value. The initial value used for the gain parameter is one.
The momentum term is randomly generated from range
 1,0 by using trial and error method. The best momentum
term value is selected. For each run, the numerical data is
stored in two files - the results file, and the summary file.
The result file lists data about each network. The number of
iterations until convergence is accumulated for each
algorithm from which the mean, the standard deviation and
the number of failures are calculated. The networks that fail
to converge are obviously excluded from the calculations of
the mean and standard deviation but are reported as failures.
For each problem, 100 different trials were run, each with
different initial random set of weights. For each run, the
number of iterations required for convergence is reported.
For an experiment of 100 runs, the mean of the number of
iterations (mean), the standard deviation (SD), and the
number of failures are collected. A failure occurs when the
network exceeds the maximum iteration limit; Wisconsin
breast cancer [23] is run to 5000 iterations, mushroom [24]
is run to 1000 iterations and soybean [25] is run to 3000
iterations; otherwise, it is halted and the run is reported as a
failure. Convergence is achieved when the outputs of the
network conform to the error criterion as compared to the
desired outputs.

A. Breast Cancer Classification Problem
This dataset was created based on the ‘Breast Cancer
Wisconsin’ problem dataset from UCI repository of machine
learning databases from Dr. William H. Wolberg [23]. This
problem tries to diagnosis of breast cancer by trying to
classify a tumor as either benign or malignant based on cell
descriptions gathered by microscopic examination. The
selected architecture of the Feed-forward Neural Network is
9-5-2. The target error is set as to 0.001. The best
momentum term value for conventional GDM and GDM/AG
for the Wisconsin breast cancer is 0.4 while GDM/AGAM is
initialized randomly from range  5.0,1.0 .

TABLE I

ALGORITHM PERFORMANCE FOR BREAST CANCER PROBLEM [23]

Breast Cancer Problem, Target Error =
0.001

GDM GDM/AG GDM/AGAM
Mean 1356 1165 783
Total CPU time(s)
of converge 24.9664 22.4136 13.7313

CPU
time(s)/Epoch 1.84 x 10-2 1.92 x 10-2 1.75 x 10-2

SD 5.76 x 102 8.12 x 102 7.09 x 102
Failures 0 0 0

1356
1165

783

24.9664
22.4136

13.7313

0

200

400

600

800

1000

1200

1400

1600

GDM GDM/AG GDM/AGAM
Methods

Ep
oc

hs

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

C
PU

 ti
m

e(
se

co
nd

s)
)

Epochs CPU time(seconds)
Fig. 1 Performance comparison of GDM/AGAM with GDM/AG and
conventional GDM for Breast Cancer Classification Problem

Table I shows that the proposed algorithm

(GDM/AGAM) exhibit very good average performance in
order to reach target error. The proposed algorithm
(GDM/AGAM) needs only 783 epochs to converge as
opposed to the conventional GDM at about 1356 epochs
while GDM/AG needs 1165 epochs to converge. Apart from
speed of convergence, the time required for training the
classification problem is another important factor when
analyzing the performance. For numerous models, training
process may suppose a very important time consuming
process. The results in Fig. 1 clearly show that the proposed
algorithm (GDM/AGAM) outperform conventional GDM
with an improvement ratio, 1.8 seconds for the total time of
converge.

181

B. Mushroom Classification Problem
This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the
Agaricus and Lepiota Family. Each species is identified as
definitely edible, definitely poisonous, or of unknown
edibility and not recommended. This latter class was
combined with the poisonous one. The selected architecture
of the Feed-forward Neural Network is 125-5-2. The target
error is set as to 0.001. The best momentum term value for
conventional GDM and GDM/AG for the Mushroom
problem is 0.2 while GDM/AGAM is initialized randomly
from range  9.0,1.0 .

TABLE II

ALGORITHM PERFORMANCE FOR MUSHROOM PROBLEM [24]

Mushroom Problem, Target Error =
0.001

GDM GDM/AG GDM/AGAM
Mean 997 414 146
Total CPU time(s)
of converge 104.7044 44.4598 15.8311

CPU
time(s)/Epoch 1.05 x 10-1 1.07 x 10-1 1.08 x 10-1

SD 3.21 x 101 4.09 x 102 1.21 x 102
Failures 1 32 99

997

414

146

104.7044

44.4598

15.8311

0

200

400

600

800

1000

1200

GDM GDM/AG GDM/AGAM
Methods

E
po

ch
s

0

20

40

60

80

100

120

C
PU

tim
e(

se
co

nd
s)

)

Epochs CPU time(seconds)

Fig. 2 Performance comparison of GDM/AGAM with GDM/AG and
conventional GDM for Mushroom Classification Problem

Fig. 2 shows that the proposed algorithm (GDM/AGAM)

still outperforms with other algorithms in terms of CPU time
and number of epochs. The proposed algorithm
(GDM/AGAM) only required 146 epochs in 15.8311
seconds CPU times to achieve the target error, whereas
GDM/AG required 414 epochs in 44.4598 seconds CPU
times and GDM required 997 epochs in 104.7044 seconds to
achieve the target error. As we can see in the Table II, the
number of success rate for the proposed algorithm
(GDM/AGAM) was 99% as compared to GDM in learning
the patterns. Besides, the conventional GDM did not perform
well in this dataset since 99% of the simulation results failed
in learning the patterns. While the average number of
learning iterations for the proposed algorithm

(GDM/AGAM) was reduced up to 6.6 times faster as
compared to GDM. The result shown that the GDM/AGAM
perform better as compared to GDM and GDM/AG.

C. Soybean Classification Problem
Soybean is a well known propositional data set. This

dataset contains 82 inputs, 19 outputs, and 683 examples
[26]. The selected architecture of the Feed-forward Neural
Network is 82-5-19. The target error is set as to 0.001. The
best momentum term value for conventional GDM and
GDM/AG for the Soybean problem is 0.3 while
GDM/AGAM is initialized randomly from range  8.0,0.0 .

TABLE III

ALGORITHM PERFORMANCE FOR SOYBEAN PROBLEM [25]

Soybean Problem, Target Error = 0.001
GDM GDM/AG GDM/AGAM

Mean 1837 1381 1081
Total CPU time(s)
of converge 65.57456 56.6430 42.40813

CPU
time(s)/Epoch 3.57 x10-2 4.10 x 10-2 3.92 x 10-2

SD 1.10 x 103 1.32 x 103 9.84 x 102
Failures 0 2 35

1837

1381
1081

65.5746

56.6430

42.4081

0

200

400

600

800

1000

1200

1400

1600

1800

2000

GDM GDM/AG GDM/AGAM
Methods

Ep
oc

hs

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

C
P

U
 ti

m
e(

se
co

nd
s)

)

Epochs CPU time(seconds)

Fig. 3 Performance comparison of GDM/AGAM with GDM/AG and
conventional GDM for Soybean Classification Problem

Table III reveal that GDM needs 65.5746 seconds with

1837 epochs to converge. Whereas GDM/AG needs 56.6430
seconds and 1381 epochs to converge. Conversely, the
proposed algorithm (GDM/AGAM) performed significantly
better with only needs 42.4081 seconds with 1081 epochs to
converge. From Fig. 3, it is worth noticing that the
performance of the GDM/AGAM is almost 1.55 faster than
GDM. Still the proposed algorithm (GDM/AGAM) performs
better as compared to GDM and GDM/AGM.

The simulation results from three classification problems
allow to compares the proposed algorithm (GDM/AGAM)
with conventional GDM and algorithm which proposed by
Nazri et al. [22] (GDM/AG) in terms of CPU time, speed of
convergence and measured in number of iterations.
Consequently, we can claim that, the proposed algorithm

182

(GDM/AGAM) presents better performance than other
algorithm which are conventional GDM and GDM/AG. This
conclusion enforces the usage of proposed algorithm as
alternative training algorithm of gradient descent back
propagation algorithm.

V. CONCLUSIONS
Although back propagation algorithm is widely

implemented in the most practical neural networks
applications and performed relatively well, this algorithm
still needs some improvements. We have proposed a further
improvement on the current working algorithm proposed by
Nazri [22]. The proposed algorithm adaptively change the
gain parameter of the activation function together with
momentum coefficient to improve the learning speed. The
effectiveness of the proposed algorithm has been compared
with the conventional Gradient Descent Method (GDM) and
Gradient Descent Method with Adaptive Gain (GDM/AG)
[22], verified by means of simulation on three classification
problems including Wisconsin breast cancer with an
improvement ratio nearly 1.8 for the total time of converge,
mushroom almost 6.6 faster respectively and soybean took
almost 36% less time to converge by using batch mode
training. The result shows that the proposed algorithm
(GDM/AGAM) has a better convergence rate and learning
efficiency as compared to conventional Gradient Descent
Method (GDM) and Gradient Descent Method with
Adaptive Gain (GDM/AG) [22].

ACKNOWLEDGMENT
The authors would like to thank Universiti Tun Hussein

Onn Malaysia for supporting this research under the
Postgraduate Incentive Research Grant (Vote 0682).

REFERENCES
[1] Lee, K., Booth, D., and Alam, P. A., “Comparison of Supervised and

Unsupervised Neural Networks in Predicting Bankruptcy of Korean
Firms,” Expert Systems with Applications, vol. 29, no. 1, pp.1–16,
2005.

[2] Landajo, M., Andres, J. D., and Lorca, P., “Robust Neural Modeling
for the Cross-Sectional Analysis of Accounting Information,”
European Journal of Operational Research, vol. 177. no. 2, pp. 1232–
1252, 2007.

[3] Razi, M. A., and Athappily, K., “A Comparative Predictive Analysis
of Neural Networks (NNs), Nonlinear Regression and Classification
and Regression Tree (CART) Models,” Expert Systems with
Applications, vol. 2, no. 1, pp. 65–74, 2005.

[4] Behrman, M., Linder, R., Assadi, A. H., Stacey, B. R., and Backonja,
M. M., “Classification of Patients with Pain Based on Neuropathic
Pain Symptoms: Comparison of an Artificial Neural Network against
an Established Scoring System,” European Journal of Pain, vol. 11,
no. 4, pp. 370–376, 2007.

[5] Yesilnacar, E., and Topal, T., “Landslide Susceptibility Mapping: A
Comparison of Logistic Regression and Neural Networks Methods in
a Medium Scale Study, Hendek region (Turkey),” Engineering
Geology, vol. 79 no. 3–4, pp. 251–266, 2005.

[6] Dvir, D., Ben-Davidb, A., Sadehb, A., and Shenhar, A. J., “Critical
Managerial Factors Affecting Defense Projects Success: A
Comparison between Neural Network and Regression Analysis,”
Engineering Applications of Artificial Intelligence, vol. 19, pp. 535–
543, 2006.

[7] Gan, C., Limsombunchai, V., Clemes, M., and Weng, A., “Consumer
Choice Prediction: Artificial Neural Networks versus Logistic
Models,” Journal of Social Sciences, vol. 1, no. 4, pp. 211–219, 2005.

[8] Chiang, W. K., Zhang, D., and Zhou, L., “Predicting and Explaining
Patronage Behavior toward Web and Traditional Stores Using Neural
Networks: A Comparative Analysis with Logistic Regression,”
Decision Support Systems, vol. 41, pp. 514–53, 2006.

[9] Chang, L. Y., “Analysis of Freeway Accident Frequencies: Negative
Binomial Regression versus Artificial Neural Network. Safety
Science,” vol. 43, pp. 541–557, 2005.

[10] Sharda, R., and Delen, D., “Predicting box-office success of motion
pictures with neural networks,” Expert Systems with Applications, vol.
30, pp. 243–254, 2006.

[11] Nikolopoulos, K., Goodwin, P., Patelis, A., and Assimakopoulos, V.,
“Forecasting with cue information: A comparison of multiple
regression with alternative forecasting approaches,” European Journal
of Operational Research, vol. 180, no. 1, pp. 354–368, 2007.

[12] H. Yan, Y. Jiang, J. Zheng, C. Peng and Q. Li, “A Multilayer
Perceptron-Based Medical Decision Support System for Heart Disease
Diagnosis, ” Expert Systems with Applications, vol. 30, no. 2, pp.
272281, 2006.

[13] Zou, H., Xia, G., Yang, F. and Yang, H., “A Neural Network Model
Based On The Multi-Stage Optimization Approach For Short-Term
Food Price Forecasting In China.” Expert Systems with Applications,
vol. 33, no. 2, pp. 347-356, 2007.

[14] Mutasem, K. S. A., Khairuddin, O. and Shahrul, A. N., “Back
Propagation Algorithm: The Best Algorithm among the Multi-layer
Perceptron Algorithm,” International Journal of Computer Science
and Network Security, vol. 9, no. 4, pp. 378 – 383, 2009.

[15] A. Majdi and M. Beiki, “Evolving Neural Network Using Genetic
Algorithm for Predicting the Deformation Modulus of Rock Masses,”
International Journal of Rock Mechanics and Mining Science, vol. 47,
no. 2, pp. 246253, 2010.

[16] N. M. Zhang, W, Wu, G. F. Zheng, “Deterministic Convergence of
Gradient Method with Momentum for Two-layer Feed Forward
Neural Networks,”IEEE Transactions on Neural Networks, vol. 17, no.
2, pp. 522525, 2006.

[17] Kamarthi S. V., Pittner S., “Accelerating Neural Network Training
using Weight Extrapolations,” Neural Networks, vol. 12, pp.
12851299, 1999.

[18] Møller M. F., “A Scaled Conjugate Gradient Algorithm for Fast
Supervised Learning,” Neural Networks, vol. 6, no. 4, pp. 525533,
1993.

[19] Lera G., Pinzolas M., “Neighborhood based Levenberg-Marquardt
Algorithm for Neural Network Training,” IEEE Transaction on
Neural Networks, vol. 13, no. 5, pp. 12001203, 2002.

[20] Sun, Y. J, Zhang, S. Miao, C.X. and Li, J. M., “Improved BP Neural
Network for Transformer Fault Diagnosis,” Journal of China
University of Mning Technology, vol. 17, no. 1, pp. 138142, 2007.

[21] H. Shao, G. Zheng, “A New BP Algorithm with Adaptive Momentum
for FNNs Training,” Intelligent Systems, WRI Global Congress on, pp.
1620, 2009 WRI Global Congress on Intelligent Systems, 2009.

[22] Nazri Mohd Nawi, M. R. Ransing, R. S. Ransing, “An Improved
Conjugate Gradient Based Learning Algorithm for Back Propagation
Neural Networks. International Journal of Computational
Intelligence,” vol. 4, no. 1, pp. 4655, 2007.

[23] Mangasarian O. L., Wolberg W. H., “Cancer Diagnosis via Linear
Programming,” SIAM News, vol. 23(5), pp. 118, 1990.

[24] UCI Machine Learning Repository [Online]. Available:
ftp://ftp.ics.uci.edu/pub/ machine-learning-databases/mushroom/.

[25] R.S. Michalski and R.L. Chilausky , “Learning by Being Told and
Learning from Examples: An Experimental Comparison of the Two
Methods of Knowledge Acquisition in the Context of Developing an
Expert System for Soybean Disease Diagnosis”, International
Journal of Policy Analysis and Information Systems, vol. 4, No. 2, pp.
125-160, 1980.

[26] D.B. Leake and D.C. Wilson, Remembering why to remember:
performance-guided case-base maintenance, ser. Lecture Notes in
Computer Science, Berlin, Germany: Springer, 2000, vol. 1898.

[27] Holger R. M., Graeme C. D., “The Effect of Internal Parameters and
Geometry on the Performance of Back propagation Neural Networks,”
Environmental Modeling and Software, vol. 13, no. 1, pp. 193209,
1998.

[28] Hollis P. W., Harper J. S., Paulos J. J., “The Effects of Precision
Constraints in a Backpropagation Learning Network,” Neural
Computation, vol. 2, no. 3, pp. 363373, 1990.

[29] Thimm G., Moerland F., Fiesler E., “The Interchangeability of
Learning Rate and Gain in Backpropagation Neural Networks,”
Neural Computation, vol. 8, no. 2, pp. 451460, 1996.

183

[30] Looney C. G., “Stabilization and Speedup of Convergence in Training
Feed Forward Neural Networks,” Neurocomputing, vol. 10, no. 1, pp.
731, 1996.

[31] Eom K., Jung K., Sirisena H., “Performance Improvement of
Backpropagation Algorithm by Automatic Activation Function Gain
Tuning Using Fuzzy Logic,” Neurocomputing, vol. 50, pp. 439460,
2003.

184

