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Abstract— The back propagation algorithm has been successfully applied to wide range of practical problems. Since this algorithm 
uses a gradient descent method, it has some limitations which are slow learning convergence velocity and easy convergence to local 
minima. The convergence behaviour of the back propagation algorithm depends on the choice of initial weights and biases, network 
topology, learning rate, momentum, activation function and value for the gain in the activation function. Previous researchers 
demonstrated that in ‘feed forward’ algorithm, the slope of the activation function is directly influenced by a parameter referred to as 
‘gain’. This research proposed an algorithm for improving the performance of the current working back propagation algorithm 
which is Gradien Descent Method with Adaptive Gain by changing the momentum coefficient adaptively for each node. The influence 
of the adaptive momentum together with adaptive gain on the learning ability of a neural network is analysed. Multilayer feed 
forward neural networks have been assessed. Physical interpretation of the relationship between the momentum value, the learning 
rate and weight values is given. The efficiency of the proposed algorithm is compared with conventional Gradient Descent Method 
and current Gradient Descent Method with Adaptive Gain was verified by means of simulation on three benchmark problems. In 
learning the patterns, the simulations result demonstrate that the proposed algorithm converged faster on Wisconsin breast cancer 
with an improvement ratio of nearly 1.8, 6.6 on Mushroom problem and 36% better on  Soybean data sets. The results clearly show 
that the proposed algorithm significantly improves the learning speed of the current gradient descent back-propagatin algorithm. 
 
Keywords— back propagation algorithm, gain, activation function, adaptive momentum. 
 

I. INTRODUCTION 
Artificial Neural Networks (ANN) are modelled on the 

human brain and consists of processing units known as 
artificial neurons that can be trained to perform complex 
calculations like human brain. It had been successfully 
implemented in the real world application which are 
accounting and finance [1], [2], health and medicine [3], [4], 
engineering and manufacturing [5], [6], marketing [7], [8] 
and general applications [9], [10], [11]. Multilayer 
perceptron is one of the most popular neural network models 
due to its clear architecture and comparably algorithm [12]. 

A standard multilayer perceptron consists of input layer, 
hidden layer and output layer. Each of these layers contains 
nodes. Each node in a layer is connected to the nodes in the 
subsequent layer. The most representative learning model for 

multilayer perceptron is back propagation algorithm. This 
algorithm has been successfully applied to wide range of 
practical problems [1], [13] which uses the gradient descent 
method to correct the network weights formula. A back 
propagation is a supervised learning technique that uses a 
gradient descent rule which attempts to minimize the error of 
the network by moving down the gradient of the error curve 
[14]. This algorithm is used more than all other combined 
and used in many different types of applications [15]. 
Although this algorithm is used successfully, it has some 
limitations. Since back propagation algorithm uses gradient 
descent method, the problems include a slow learning 
convergence and easily get trapped at local minima. 
Furthermore, the convergence behaviour of the back 
propagation algorithm depends on the choice of initial 
weights and biases, network topology, learning rate, 
momentum coefficient, activation function and value for the 
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gain in the activation function. Hence, improving the 
application of back propagation algorithm remains an 
important research issue. 

In recent years, a number of research studies have 
attempted to overcome these problems. These involved the 
development of heuristic techniques, based on studies of 
properties of the conventional back propagation algorithm. 
These techniques include such idea as varying the learning 
rate, using momentum and gain tuning of activation function. 
In [16] some convergence results are given where the 
learning fashion of training examples is batch learning. 
These results are of global nature in that they are valid for 
any arbitrarily given initial value of weights. The key for the 
convergence analysis is monotonicity of the error function 
during the learning procedure, which is proved under the 
uniformly boundedness assumption of activation function 
and its derivatives. However, in order to obtain strong 
convergence, we assume the error function is equivalently 
convex, which is little intense. Kamarthi and Pittner [17] 
presented a universal acceleration technique for the back 
propagation algorithm based on extrapolation of each 
individual interconnection weight. This requires the error 
surface to have a smooth variation along the respective axes, 
therefore extrapolation is possible. For performing 
extrapolation, at the end of each epoch, the converge 
behaviour of each network weight in back propagation 
algorithm is individually examined. They also focused on 
the use of standard numerical optimization techniques. 
Though, this technique often must be tuned to fit a particular 
application. Møller [18] explained how conjugate gradient 
algorithm could be used to train multilayer feed forward 
neural networks. In this algorithm, a search is performed 
along conjugate directions, which generally leads to faster 
convergence than steepest gradient descent directions. The 
error function is guaranteed not to increase consequently of 
the weights update. However, if it reaches a local minimum, 
it remains forever, as there is no mechanism for this 
algorithm to escape. Lera et al. [19] described the use of 
Levenberg-Marquardt algorithm for training multi-layer feed 
forward neural networks. Though, the training times 
required strongly depend on neighbourhood size.  

Using a momentum coefficient is the simplest method to 
avoid oscillation problems during the search for the 
minimum value on the error surface [13]. The addition of 
momentum coefficient can help smooth out the descent path 
by preventing extreme changes in the gradient due to local 
anomalies [20]. Consequently, it is liable to suppress any 
oscillation that result from changes in the slope of the error 
surface. The momentum coefficient is typically chosen to be 
constant in the conventional back propagation algorithm 
with momentum. However, such a momentum with a fixed 
coefficient seems to speed up learning only when the current 
downhill gradient of the error function and the last change in 
weight have a similar direction, while the current negative 
gradient is in an opposing direction to the previous update, 
the momentum may cause the weight to be adjusted up the 
slope of the error surface instead of down the slope as 
desired [21]. In order to make learning more effective, it is 
necessary that the momentum should be varied adaptively 
rather than being fixed throughout the training process. 

Nazri et al. [22] demonstrated that changing the ‘gain’ 
value adaptively for each node can significantly reduce the 
training time. Based on [22], this paper proposed a further 
improvement on the current algorithm that will change the 
momentum value adaptively which significantly improve the 
performance of the gradient descent back propagation 
algorithm. In order to verify the efficiency of the proposed 
algorithm, the performance of the proposed algorithm will 
be compare with the conventional gradient descent method 
(GDM) and gradient descent algorithm with adaptive gain 
(GDM/AG) proposed by Nazri et al. [22], some simulation 
experiments was performed on three classification problems 
including Wisconsin breast cancer [23], mushroom [24] and 
soybean [25]. 

The paper is organized as follows. In Section II, effect of 
the gain parameter on the performance of neural network is 
reviewed. While in section III presents the proposed 
algorithm. The performance of the proposed algorithm is 
tested on classification problems conducted in Section IV. 
This paper is concluded in the final section. 

II. THE EFFECT OF THE GAIN PARAMETER ON THE 
PERFORMANCE OF BACK PROPAGATION ALGORITHM 

An activation function is a key factor in the artificial 
neural network structure. It is used for limiting the amplitude 
of the output of neuron and generates an output value for a 
node in a predefined range as the closed unit interval  1,0  or 
alternatively  1,1 . This value is a function of the weighted 
inputs of the corresponding node. Back propagation 
algorithm supports a wide range of activation functions such 
as logistic sigmoid, linear, hyperbolic tangent, step 
activation function and etc. The most commonly used 
activation function is the logistic sigmoid activation function. 
For the thj  node, a logistic sigmoid activation function 
which has a range of  1,0  is a function of the following 
variables, viz 
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output of the thj  unit.
 

io  output of the thi  unit. 

ijw
 

weight of the link from unit i  to unit j.  

jneta ,  net input activation function for the thj  unit.  

j  bias for the thj  unit. 

jc  gain of the activation function. 

i       momentum coefficient for the thi  unit 
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The value of the gain parameter, jc , and momentum 
coefficient i  directly influence the slope of the activation 
function. For large gain values  1c , the activation 
function approaches a ‘step function’ whereas for small gain 
values  10  c  the output values change from zero to 
unity over a large range of the weighted sum of the input 
values and the sigmoid function approximates a linear 
function. 

Most of the application oriented papers on neural 
networks tend to agree that neural networks operate like a 
‘magic black box’, which can simulate the “learning from 
example” ability of our brain with the help of network 
parameters such as weights, biases, gain, momentum 
coefficient, hidden nodes, etc. Also, a unit value for gain and 
momentum coefficient have generally been used for most of 
the research reported in the literature but a few authors have 
researched the relationship of the gain parameter and 
momentum coefficient with other parameters which used in 
back propagation algorithms. The recent results [27] show 
that learning rate, momentum coefficient and gain of the 
activation function have a significant impact on training 
speed. Unfortunately, higher values of learning rate and/or 
gain cause instability [28].. Thimm et al. [29] also proved 
that a relationship between the gain value, a set of initial 
weight values, and a learning rate value exists. Looney [30] 
suggested to adjust the gain value in small increments during 
the early iterations and to keep it fixed somewhere around 
halfway through the learning. Eom et al. [31] proposed a 
method for automatic gain tuning using a fuzzy logic system. 
Nazri et al. [22] proposed a method to change adaptively 
gain value on other optimisation method such as conjugate 
gradient. 

III. THE PROPOSED ALGORITHM 
In this section, a further improvement on the current 

working algorithm proposed by Nazri [22] for improving the 
training efficiency of back propagation is proposed. The 
following subsection describes the proposed algorithm. The 
proposed algorithm adaptively changed the gain and 
momentum value for each node of training. The gradient 
descent can be implemented in two different ways which are 
incremental mode and batch mode. In this paper, batch mode 
was chosen to be implemented for training process. In the 
batch mode training weights, biases, gains and momentum 
terms are updated after one complete presentation of the 
entire training set. An epoch is defined as one complete 
presentation of the training set. A sum squared error value is 
calculated after the presentation of the training set and 
compared with the target error. Training is done on an 
epoch-by-epoch basis until the sum squared error falls below 
the desired target value.  

A. Algorithm 
The following iterative algorithm is proposed for the batch 

mode of training. The weights, biases, gains and momentum 
terms are calculated and update for the entire training set 
which is being presented to the network. 

 
 

 

 
For a given epoch, 

For each input vector, 
Step 1. 
Calculate the weight and bias values using 
the previously converged gain value and 
momentum coefficient. 
Step 2. 
Use the weight and bias value calculated in 
Step (1) to calculate the new gain value and 
momentum coefficient.  

Repeat Step (1) and Step (2) for each input 
vector and sum all the weights, biases, 
momentum and gain updating terms.  

Update the weights, biases, gains and momentum 
coefficient using the summed updating terms and 
repeat this procedure on an epoch-by-epoch 
basis until the error on the entire training data 
set reduces to a predefined value 
 
 

The gain and momentum update expression for a gradient 
descent method are calculated by differentiating the 
following error term E with respect to the corresponding 
gain parameter. The network error E is defined as follows 
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momentum values would then be updated with the following 
equations. 
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Therefore, the momentum update expression for links 
connecting to output nodes is: 
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and the momentum update expression for the links 
connecting hidden nodes is 
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IV. RESULTS AND DISCUSSIONS 
The performance criterion used in this research focuses on 

the speed of convergence, measured in number of iterations 
and CPU time. The benchmark problems used to verify our 
algorithm are taken from the open literature. Three 
classification problems have been tested including 
Wisconsin breast cancer [23],  mushroom [24] and soybean 
[25]. The simulations have been carried out on a Pentium IV 
with 2 GHz HP Workstation, 3.25 GB RAM and using 
MATLAB version 7.0 (R14). 

On each problem, the following three algorithms were 
analysed and simulated. 

 The conventional Gradient Descent with Momentum 
(GDM)  

 The Gradient Descent Method with Adaptive Gain 
(GDM/AG) [22] 

 The proposed Gradient Descent Method with 
Adaptive Gain and Adaptive Momentum 
(GDM/AGAM)  

To compare the performance of the proposed algorithm 
with conventional GDM and GDM/AG [22], network 
parameters such as network size and architecture (number of 
nodes, hidden layers etc), values for the initial weights and 
gain parameters were kept the same. For all problems the 
neural network had one hidden layer with five hidden nodes 
and sigmoid activation function was used for all nodes. All 
algorithms were tested using the same initial weights, 
initialized randomly from range  1,0  and received the input 
patterns for training in the same sequence. 

For all training algorithms, the learning rate is fixed to be 
0.3 which is interpreted as the global learning rate of the 
network. However, as the gain value was modified, the 
weights and biases were updated using the new value of gain. 
This resulted in higher values of gain which caused 
instability [29]. To avoid oscillations during training and to 
achieve convergence, an upper limit of 2.0 is set for the gain 
value. The initial value used for the gain parameter is one. 
The momentum term is randomly generated from range 
 1,0 by using trial and error method. The best momentum 
term value is selected. For each run, the numerical data is 
stored in two files - the results file, and the summary file. 
The result file lists data about each network.  The number of 
iterations until convergence is accumulated for each 
algorithm from which the mean, the standard deviation and 
the number of failures are calculated. The networks that fail 
to converge are obviously excluded from the calculations of 
the mean and standard deviation but are reported as failures. 
For each problem, 100 different trials were run, each with 
different initial random set of weights.  For each run, the 
number of iterations required for convergence is reported. 
For an experiment of 100 runs, the mean of the number of 
iterations (mean), the standard deviation (SD), and the 
number of failures are collected.  A failure occurs when the 
network exceeds the maximum iteration limit; Wisconsin 
breast cancer [23] is run to 5000 iterations, mushroom [24] 
is run to 1000 iterations and soybean [25] is run to 3000 
iterations; otherwise, it is halted and the run is reported as a 
failure. Convergence is achieved when the outputs of the 
network conform to the error criterion as compared to the 
desired outputs. 

A. Breast Cancer  Classification Problem 
This dataset was created based on the ‘Breast Cancer 
Wisconsin’ problem dataset from UCI repository of machine 
learning databases from Dr. William H. Wolberg [23]. This 
problem tries to diagnosis of breast cancer by trying to 
classify a tumor as either benign or malignant based on cell 
descriptions gathered by microscopic examination. The 
selected architecture of the Feed-forward Neural Network is 
9-5-2. The target error is set as to 0.001. The best 
momentum term value for conventional GDM and GDM/AG 
for the Wisconsin breast cancer is 0.4 while GDM/AGAM is 
initialized randomly from range  5.0,1.0 . 

 
TABLE I 

ALGORITHM PERFORMANCE FOR BREAST CANCER PROBLEM [23] 

Breast Cancer Problem, Target Error = 
0.001 

 

GDM GDM/AG GDM/AGAM 
Mean 1356 1165 783 
Total CPU time(s) 
of converge 24.9664 22.4136 13.7313 

CPU 
time(s)/Epoch 1.84 x 10-2 1.92 x 10-2 1.75 x 10-2 

SD 5.76 x 102 8.12 x 102 7.09 x 102 
Failures 0 0 0 
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Fig. 1  Performance comparison of GDM/AGAM with GDM/AG and 
conventional GDM for Breast Cancer Classification Problem 

 
Table I shows that the proposed algorithm 

(GDM/AGAM) exhibit very good average performance in 
order to reach target error. The proposed algorithm 
(GDM/AGAM) needs only 783 epochs to converge as 
opposed to the conventional GDM at about 1356 epochs 
while GDM/AG needs 1165 epochs to converge. Apart from 
speed of convergence, the time required for training the 
classification problem is another important factor when 
analyzing the performance. For numerous models, training 
process may suppose a very important time consuming 
process. The results in Fig. 1 clearly show that the proposed 
algorithm (GDM/AGAM) outperform conventional GDM 
with an improvement ratio, 1.8 seconds for the total time of 
converge. 
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B. Mushroom  Classification Problem 
This data set includes descriptions of hypothetical samples 
corresponding to 23 species of gilled mushrooms in the 
Agaricus and Lepiota Family. Each species is identified as 
definitely edible, definitely poisonous, or of unknown 
edibility and not recommended. This latter class was 
combined with the poisonous one. The selected architecture 
of the Feed-forward Neural Network is 125-5-2. The target 
error is set as to 0.001. The best momentum term value for 
conventional GDM and GDM/AG for the Mushroom 
problem is 0.2 while GDM/AGAM is initialized randomly 
from range  9.0,1.0 . 

 
TABLE II 

ALGORITHM PERFORMANCE FOR MUSHROOM PROBLEM [24] 

Mushroom Problem, Target Error = 
0.001 

 

GDM GDM/AG GDM/AGAM 
Mean 997 414 146 
Total CPU time(s) 
of converge 104.7044 44.4598 15.8311 

CPU 
time(s)/Epoch 1.05 x 10-1 1.07 x 10-1 1.08 x 10-1 

SD 3.21 x 101 4.09 x 102 1.21 x 102 
Failures 1 32 99 
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Fig. 2  Performance comparison of GDM/AGAM with GDM/AG and 
conventional GDM for Mushroom Classification Problem 

 
Fig. 2 shows that the proposed algorithm (GDM/AGAM) 

still outperforms with other algorithms in terms of CPU time 
and number of epochs. The proposed algorithm 
(GDM/AGAM) only required 146 epochs in 15.8311 
seconds CPU times to achieve the target error, whereas 
GDM/AG required 414 epochs in 44.4598 seconds CPU 
times and GDM required 997 epochs in 104.7044 seconds to 
achieve the target error. As we can see in the Table II, the 
number of success rate for the proposed algorithm 
(GDM/AGAM) was 99% as compared to GDM in learning 
the patterns. Besides, the conventional GDM did not perform 
well in this dataset since 99% of the simulation results failed 
in learning the patterns. While the average number of 
learning iterations for the proposed algorithm 

(GDM/AGAM) was reduced up to 6.6 times faster as 
compared to GDM. The result shown that the GDM/AGAM 
perform better as compared to GDM and GDM/AG. 

C. Soybean  Classification Problem 
Soybean is a well known propositional data set. This 

dataset contains 82 inputs, 19 outputs, and 683 examples 
[26]. The selected architecture of the Feed-forward Neural 
Network is 82-5-19. The target error is set as to 0.001. The 
best momentum term value for conventional GDM and 
GDM/AG for the Soybean problem is 0.3 while 
GDM/AGAM is initialized randomly from range  8.0,0.0 . 

 
TABLE III 

ALGORITHM PERFORMANCE FOR SOYBEAN PROBLEM [25] 

Soybean Problem, Target Error = 0.001  
GDM GDM/AG GDM/AGAM 

Mean 1837 1381 1081 
Total CPU time(s) 
of converge 65.57456 56.6430 42.40813 

CPU 
time(s)/Epoch 3.57 x10-2 4.10 x 10-2 3.92 x 10-2 

SD 1.10 x 103 1.32 x 103 9.84 x 102 
Failures 0 2 35 
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Fig. 3  Performance comparison of GDM/AGAM with GDM/AG and 
conventional GDM for Soybean Classification Problem 

 
Table III reveal that GDM needs 65.5746 seconds with 

1837 epochs to converge. Whereas GDM/AG needs 56.6430 
seconds and 1381 epochs to converge. Conversely, the 
proposed algorithm (GDM/AGAM) performed significantly 
better with only needs 42.4081 seconds with 1081 epochs to 
converge. From Fig. 3, it is worth noticing that the 
performance of the GDM/AGAM is almost 1.55 faster than 
GDM. Still the proposed algorithm (GDM/AGAM) performs 
better as compared to GDM and GDM/AGM. 

The simulation results from three classification problems 
allow to compares the proposed algorithm (GDM/AGAM) 
with conventional GDM and algorithm which proposed by 
Nazri et al. [22] (GDM/AG) in terms of CPU time, speed of 
convergence and measured in number of iterations. 
Consequently, we can claim that, the proposed algorithm 
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(GDM/AGAM) presents better performance than other 
algorithm which are conventional GDM and GDM/AG. This 
conclusion enforces the usage of proposed algorithm as 
alternative training algorithm of gradient descent back 
propagation algorithm. 

V. CONCLUSIONS 
Although back propagation algorithm is widely 

implemented in the most practical neural networks 
applications and performed relatively well, this algorithm 
still needs some improvements. We have proposed a further 
improvement on the current working algorithm proposed by 
Nazri [22]. The proposed algorithm adaptively change the 
gain parameter of the activation function together with 
momentum coefficient to improve the learning speed. The 
effectiveness of the proposed algorithm has been compared 
with the conventional Gradient Descent Method (GDM) and 
Gradient Descent Method with Adaptive Gain (GDM/AG) 
[22], verified by means of simulation on three classification 
problems including Wisconsin breast cancer with an 
improvement ratio nearly 1.8 for the total time of converge, 
mushroom almost 6.6 faster respectively and soybean took 
almost 36% less time to converge by using batch mode 
training. The result shows that the proposed algorithm 
(GDM/AGAM) has a better convergence rate and learning 
efficiency as compared to conventional Gradient Descent 
Method (GDM) and Gradient Descent Method with 
Adaptive Gain (GDM/AG) [22]. 
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