

Vol.7 (2017) No. 4-2

ISSN: 2088-5334

Braille2Alpha: Braille Dots Recognition with
Alphanumeric Conversion

Abidah Zainal#, Aida Mustapha#, Mohd Zainuri Saringat#, Pravind Raja#
#Soft Computing and Data Mining Centre, Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
Email: aidam@uthm.edu.my

Abstract— The Braille system is a tactile language where each element is represented by a cell with six dot positions, arranged in three
rows and two columns. Each dot position can be raised or otherwise allowing different configurations which can be felt by trained
fingers. For caregivers with normal sights, training their fingers is not naturally easy. This paper presents an image processing
approach to Braille dots recognition with alphanumeric conversion, whereby a person with normal eyesight is able to translate a raw
Braille image captured by a mobile camera into the corresponding alphanumeric texts. Image pre-processing relies heavily on various
segmentation algorithms in the MATLAB image processing Toolbox. This application is hoped to help the blind and the visually
impaired community as well as their caregivers to translate Braille texts digitally, hence enhancing the communication and
collaboration possibilities.

Keywords— image processing; Canny algorithm; Braille; Android

I. INTRODUCTION

Braille is a system of touch-reading and writing for the
blind or those who are visually impaired. The system
consists of raised dots that represent the letters of each of the
alphabet. Even though most people are blessed with normal
or good eyesight, people tend to take their ability to see for
granted by ignoring the little details in life that truly make a
difference. In reality, blind or visually impaired children
need to learn how to read and write using the Braille
alphabets from a very early age. However, for some children,
the Braille text might not be an immediate choice because
learning Braille takes a long time without the help of the
experts.

The practice of dot-touched communication was first
introduced by Charles Barbier who served in Napoleon
Bonaparte’s French army in the early 1800s [1]. He was the
creator of ‘night writing’ system or the sonography.The
Braille system is a tactile language where each element is
represented by a cell with six dot positions, arranged in three
rows and two columns. Each dot position can be raised or
otherwise allowing different configurations which can be felt
by trained fingers [2], [3]. Fig. 1 shows the Braille dots
coordination and the printed Braille’s dots.

The Braille system had been used widely, and the
mappings or sets of character designations vary from
language to language. By using the Braille alphabet, blind

people or those with visual-impaired as well as normal
persons can review and study the written word. In English
Braille there are three levels; (1) Grade 1 – a letter-by-letter
transcription used for basic literacy, (2) Grade 2 – an
addition of abbreviations and contractions, and (3) Grade 3 –
various non-standardized personal shorthand [4].

Fig. 1 Braille cell and the embossed Braille alphabet

The main challenge within the blind and the visually

impaired community is mastering the Braille text, so they are
able to understand and access information and knowledge in
their early years. However, these configurations need to be
memorized, so it is very difficult to learn especially among
the caregivers. The problem arises because the majority of
the community is unable to understand this medium of
communication.

To address this issue, this project is set to design and
develop an application that is able to convert the image of
Braille texts directly into words. With this application, users

1492

only need to capture the image of Braille texts to get the
result of the corresponding meaning. This application is also
able to teach people with normal vision to understand Braille
texts so that information can be shared and access freely.
However, note that this work will only focus on the object
translation of ‘Uncontracted Braille’ or Grade 1 English
Braille and is targeted for the use of novice Braille users,
The Grade 1 English Braille characters is shown in Fig. 2.

Fig. 2 Grade 1 English Braille characters

The Braille2Alpha application is intended to

automatically convert an image of Braille text into its
corresponding alphanumeric text without the expert
knowledge of the Braille system. The most basic yet
important feature is the capability of detecting the Braille
input captured from a standard mobile phone camera. This is
plausible through the edge detection algorithm in image
processing.

Image processing concerns on operations that manipulate
a digitized image, which can be in the form of a single image,
a series of images extracted from a video or a single video
frame. A digitized image is composed of a finite number of
elements, each of which has a particular location and value
and these elements are referred to as picture elements, image
elements, pels, and pixels. Pixel is the term most widely
used to denote the elements of a digital image [4]. An image
processing system pre-treating images as two-dimensional
signals while applying a set processing method such as
grayscale conversion, binary conversion, filtering, edge
detection, circle detection, image projection and
morphological dilation.

Edge detection algorithm is important to significantly
reduce the amount of data in an image while preserving the
structural properties to be used for further image processing.
In this project, three edge detection algorithms will be
reviewed, which are the Canny [5], Sobel [6] and Prewitt [7]
algorithms. The work of Canny algorithm starts by detecting
the probability of real edge points that should be maximized
as well as the probability of falsely detected non-edge points.
This means the detected edges should be as close as possible
to the real edges and one real edge should not result in more
than one detected edge. This essentially corresponds to
maximizing the signal-to-noise ratio.

The Sobel operator is also one of the methods used in
edge detection of image processing. The Sobel operator
works by performing a 2-D spatial gradient measurement on
images. This means the operator finds the approximate
magnitude of the absolute gradient at each point from the

input image in greyscale. Then, the Sobel edge uses a pair of
3x3 convolution masks to perform two things. The first is to
estimate the gradient in the x-direction (columns) while the
second is to estimate the gradient in the y-direction (rows).
Because the convolution mask is much smaller than the
actual image, the mask is slid over the image, focusing on a
block of pixels at a time [8].

The Prewitt operator is also used in the edge detection of
image processing whereby it is able to detect two types of
edges, i.e., horizontal and vertical edges. Edges are
calculated by using the difference between corresponding
pixel intensities of an image. All the masks that are used for
edge detection are also known as derivative masks.

Because an image can be treated as a signal, therefore
changes in a signal may be calculated using differentiation.
This is the reason the Prewitt operator is also known as the
derivative operators or derivative masks. Table 1 shows the
comparison between these algorithms and which ones are the
best algorithms for processing a noisy image and yielding
the best results.

TABLE I
COMPARISONS BETWEEN EDGE DETECTION ALGORITHMS

 Sobel Canny Prewitt
Method for
detecting
horizontal
and vertical
edges

3x3
convolution
kernels

Adapts
Sobel’s 3x3
convolution
mask to find
the edge
strength

Similar to
Sobel’s
operator

Noise
detection

Very sensitive
to noise thus
does not
eliminate
them
completely

Detects,
smoothens the
image and
eliminates
noise in its
entirety

Equally
sensitive to
noise just
like Sobel
and partially
eliminates
them

Accuracy of
image
detection

Quite accurate
given the fact
that it utilizes
simplicity in
detecting
edges and the
orientations

Uses
localization
and improved
signal-to-
noise ratio
hence image
is yielded
with optimal
results

Fairly
accurate and
produce
similar
results like
Sobel’,
operator

Probability
of finding
error rate

Low High Low

In determining the best edge detection algorithm for the

proposed work, the outputs from the three algorithms were
compared based on results generated from the MATLAB
software. Fig. 3 shows the comparative results. The Canny
algorithm produced a better result as this algorithm takes
into account the difference among regions in an image.
Canny produced thin lines for its edges by using non-
maximal suppression. It smoothens and eliminates the noise
thus generating an optimal result.

1493

Fig. 3 Outputs from three edge detection algorithms

II. MATERIAL AND METHOD

This project adopts the Agile development methodology
[9] to integrate the image processing capability on the
mobile-based platform. As shown in Table 4, this model
involves fundamental processes as in any other process
model such as planning, analysis, design, testing, and
implementation. However, the model is particularly useful to
meet the criteria for collection of innovative, user-centered
approaches to system development.

Fig. 4 Agile development methodology [9]

The use case diagram for the Braille2Alpha is shown in

Fig. 5, which are capture image, interpret the image and
display output.

Fig. 5 Use case diagrams for Braille2Alpha

In Fig. 5, the input is in the form of captured images via a
phone camera. However, in order to detect the Braille dot
within the image, it requires a pre-processing algorithm to

convert the RGB-colored image to grayscale, in order to
make further processing easier. Edge detection is part of
image processing techniques that concerns on detecting the
boundaries of objects within images. Braille2Alpha
application requires an image processing algorithm with
edge detection technique in order to detect the dots in a
Braille text so they can be recognized and translated into the
corresponding alphanumeric characters. Fig. 6 shows the
flowchart for Braille2Alpha application development.

Fig. 6 Process flowchart for Braille2Alpha application

From the figure, the entire application was built on a

client-server image processing system. The user captures the
input image via the mobile phone camera, which is an
Android client. Next, the image is sent to the server via
HTTP Internet protocol. On the server, the image is sent to
the Android Studio IDE through ASyncTask process and
gets converted. Then, A PHP script on the server invokes the
server-side application to compute Scale-Invariant Feature
Transform (SIFT) in the image [10]. After code computation
in the MATLAB software has been completed, the patch
image of the Braille alphabet will be translated into
alphanumeric alphabet on the mobile device.

The image processing capability was implemented using
the MATLAB software with a plug-in library called VLFeat.
The input of Braille images was processed using the Canny
edge detection algorithm, and the radius was calculated
using circle detection, generating an equivalent area of
Braille templates to match with the alphabet dictionary. Fig.
7 shows the folder directory that links the sub-functions to
the main function of MATLAB® in order to run the script
which performs the translation of Braille letter to alphabets.

The inheritance diagram shows the clear picture on how
the function script works. In the main Braille.m code, all
these sub-functions are called into this single script file via
the concept of the data structure. It is also known as passing
arguments through function names. This argument will store
the function name and the image path. Thus, the code will
first access the image path and then call the necessary
function needed to translate the Braille script. If the call-
back of all functions are done according to the inheritance
diagram mentioned earlier, then the execution of the .m code
will run without any errors.

Input
captures

image using
mobile
camera

Mobile
Edge Detection

Radius
Histogram

Find Areas of
Braille

Create Patch

Create
Dictionary

Letter Matching

Generate
translated

Braille alpha-
numerics

Mobile

Planning

Analysis

Design

Planning

System

1494

Fig. 7 Inheritance diagram that links the subfunctions to the main MATLAB function

III. RESULTS AND DISCUSSION

The Braille2Alpha was developed using Android Studio
Integrated Development Environment (IDE), and testing was
carried out in each iteration for all modules; capture image,
interpret the image, and display output. However, for the
sake of brevity, only the final and enhanced iteration’s test is
discussed.

A. Capture Image

The system begins with a Launcher Activity that will start
directly on the startup application logo and proceed to the
front page that consists of camera option which given the
user a choice to capture the image directly after launch the
application. When the user executes the application for the
first time, it redirects to camera features as shown in Fig. 8.

Fig. 8 Capture image interface

When the user clicks on the Capture Image button, the

camera feature is activated and the user is allowed to capture
the image of Braille to be translated into the next process.
The first user must capture the image of Braille script in the
distance limit and second flash camera is optional for a

better lighting intensity. Fig. 9 shows the camera interface
when capturing the Braille image.

Fig. 9 Camera interface to capture Braille image

Next, the user will be prompted to upload the image to the

server for the dots recognition process as shown in Fig. 10.
In order for the image to be successfully uploaded, a PHP
script called computeBraille.php is implemented inside the
system. This PHP script allows a client to upload a captured
image by accessing the image path of the previously
uploaded image and storing is inside an associative array.

Fig. 10 The upload interface

Table 2 shows the test cases were used to test the Capture

Image module. The test results showed that the module
passed the tests on capturing the image and uploading to the
server.

1495

TABLE II
TEST CASE FOR CAPTURE IMAGE

ID Requirements Description Status
STD_T
EST_10
0_101

SRS_REQ_101 The application shall
allow the user to
capture the image of
braille.

PASS

STD_T
EST_10
0_102

SRS_REQ_102 The image that is
being captured must
not exceed more than
the distance limit
between the camera
and the Braille script

PASS

STD_T
EST_10
0_103

SRS_REQ_103 The image captured
must be under good
lighting intensity for a
better result

PASS

STD_T
EST_10
0_104

SRS_REQ_104 The application shall
allow the user to
upload the image to
the server.

PASS

B. Interpret Image

The image will then be processed using the MATLAB®
codes. The function Braille.m as shown in Fig. 7 works to
produce input and output of the image path. Braille.m
function is considered as the core process to call other
related function as it calls the related parameter codes in
MATLAB that calculates the entire algorithms to translate
the Braille features in the image. The function for
translate_from_braille.m in which it adapts canny algorithm
as edge detection and circle detection via Hough Transform
calculate and translate the braille image to alphabets or
simple letters.

Next, the equivalent letter (alphanumeric text) is matched
with the detected Braille cell based on the position and
coordinate of the dot placement. A dictionary was built
based on the common radius size and patch dimension used.
This is important in order to keep the system robust to scale
changes. Table 3 shows the test cases were used to test the
Interpret Image module. The test results showed that the
module passed the tests on initiating the MATLAB® codes,
interpreting the image, and using the algorithm to translate
the image.

TABLE III
TEST CASE FOR INTERPRET IMAGE

ID Requirements Description Status
STD_T
EST_20
0_101

SRS_REQ_201 MATLAB® system
shall be able to startup
as soon as the image is
successfully uploaded
to the server.

PASS

STD_T
EST_20
0_102

SRS_REQ_202 MATLAB® system
shall be able to
translate the image of
braille.

PASS

STD_T
EST_20
0_103

SRS_REQ_203 MATLAB® system
shall able to calculate
the image using the
algorithms
implemented in the
custom codes.

PASS

C. Display Output

The output of Braille2Alpha application will be displayed
on the PC as the main core operation is run in MATLAB®
and directly generate the mapping image of alphabet patched
on the image of Braille uploaded. The image uploaded took
about 21-30 seconds of time elapsed to finally translate and
generate the output. Fig. 11 shows the output from the
Braille2Alpha application. The output page shows actual
input Braille text that has been captured by the camera in
given template followed by the result of alphabet patch on
top of the image. The accuracy of translating the image
depends on the quality of the image taken. If the image is not
clear, then the user is prompted to recapture a clearer image.

Fig. 11 Output image of Braille script to alphabet

Table 4 shows the test cases were used to test the Display

Output module. The test results showed that the module
passed the tests on returning the results for user views.

TABLE IV

TEST CASE FOR DISPLAY OUTPUT

ID Requirements Description Status
STD_T
EST_30
0_101

SRS_REQ_301 The system shall allow
the user to view the
output via MATLAB®

PASS

Overall tests result showed that the system passed all the

test cases successfully.

IV. CONCLUSIONS

The Braille2Alpha application comprises of these three
core elements such as capture, view, and translates the input
Braille image. With the combination of these three elements,
this system is capable of helping the users to understand the
fundamental of Braille especially the caregivers to translate
any Braille script. Based on the testing, the primary benefits
of the system are as follows:

• The system provides facilities for visually impaired
people and their guardian to translate the Braille in
just a few seconds.

• The system is catered to the community to appreciate
the contribution of Braille towards individuals with
special needs.

• The system is fully automated to translate the Braille
image after hitting the translate button.

1496

Nonetheless, Braille2Alpha can be improved in many
ways to further enhance its functionality. Some of the
identified possibilities for improvement include improving
the flexibility of the circle detection algorithm by detecting
the dots of Braille without referring to the template provided
during testing the prototype. Further, the elapsed time of
translating the images as well as the algorithm to detect the
actual embossed Braille image can be improved by
implementing more specific image integral formula. Finally,
the accuracy of the Braille detection capability should be at
least maintained even under low light intensity. It is hoped
that the application is able to cater the community to
appreciate the contribution of Braille towards individuals
with special needs.

ACKNOWLEDGMENT

This project is sponsored by Universiti Tun Hussein Onn
Malaysia and partially supported by Research Gates IT
Solution Sdn. Bhd.

REFERENCES
[1] Mellor, C. M., “Louis Braille: A Touch of Genius”, National Braille

Press, 2006.
[2] Braille Resources and Information: Braille History. (2016). Retrieved

from Braille Works Web site: https://brailleworks.com/braille-
resources/history-of-braille/

[3] Louis Braille Biography. (2014). Retrieved from American
Foundation for the Blind Web Site:
http://braillebug.afb.org/louis_braille_bio.asp

[4] Gonzalez R. C., & Woods, R. E., “Image Processing”, Digital Image
Processing, 2, 2007.

[5] Canny, J., “A Computational Approach to Edge Detection”, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

[6] Sobel, I., “History and Definition of the Sobel Operator”, 2014.
[7] Prewitt, J.M.S., “Object Enhancement and Extraction in Picture

Processing and Psychopictorics”, Academic Press,1970.
[8] Pitas, I., “Digital Image Processing Algorithms”, Hertfordshire:

Prentice Hall Europe, 1995.
[9] Kendall. K. E., Kendall, J. E., “System Analysis and Design”, Ninth

Edition, Harlow: Pearson Education, 2014.
[10] Lowe, D. G., “Distinctive Image Features from Scale-Invariant

Keypoints”, International Journal of Computer Vision, 60(2): 91-110,
2004.

1497

