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Abstract— This paper presents the results of a comparative analysis between a recursive and an iterative algorithm when generating 
permutation. A number of studies discussing the problem and some methods dealing with its solution are analyzed. Recursion and 
iteration are approaches used in computer programs to implement different algorithms. An iterative approach is the repeated 
execution of the same source code until a certain end condition is met. On the other hand, a recursive approach uses a recursive 
function that repeatedly calls itself. This function contains a source code that must be executed repeatedly. Both algorithms presented 
in this paper can be used to generate permutations of an n element set. The algorithms are modified so that they can be used to solve 
the Travelling Salesman Problem (TSP) with a small number of vertices. Several publications that discuss the TSP and some 
approaches to its solution are also presented. The methodology and the conditions for conducting the experiments are described in 
details. The obtained results have been analyzed; they show that for the same conditions the iterative algorithm works from of 23 to 24 
times faster than the recursive algorithm in all the tested input data. Several approaches to optimize the two algorithms in terms of 
the number of permutations tested when searching a minimal Hamiltonian cycle are presented. 
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I. INTRODUCTION 

The most important components of a computer program 
are the algorithms used. This defines the amount of memory 
used (necessary for storing data structures) as well as the 
programme's performance (i.e., its effectiveness). Therefore, 
when developing computer algorithms, it is important to use 
such methods whereby the memory used is as small as 
possible and the time to perform computational processes is 
as short as possible. Research into the development of 
computer algorithms began many years ago. Exhaustive and 
systematized research in this field are presented in [1] and 
[2]. When creating an algorithm to solve a practical problem, 
first, it is necessary to select a suitable data structure. These 
data will be stored and processed during the computation 
process. The approach that will be chosen for modeling and 
solving the problem will determine how the computation 
process runs, e.g., recursive or iterative. 

A study reveals the preferences of beginner programmers 
when developing computer algorithms in terms of whether to 
be recursive or iterative [3]. The results show that the 
preferences in recent years have been in favor of recursive 
algorithms. These algorithms are more frequently preferred 
than the iterative ones. Another study presented in [4] shows 
that when selecting a relevant approach, the specificity of the 

problem should be taken into account. In [5] a method based 
on incrementalization for transforming the recursion in 
iteration is proposed. The results show that in most 
experiments the iterative algorithms used more memory. On 
the other hand, these algorithms were performed faster. A 
method for recursion removal is proposed in [6]. Different 
methods for optimizing memory usage when using recursion 
are offered in [7]. In addition, similar situations in which 
nested cycles are used have been taken into consideration. 
An approach to transforming iterative cycles in recursive 
methods is presented in [8]. In earlier sources, similar 
approaches for creating a recursive algorithm based on an 
iterative process are also presented [9]. The idea of 
automated transforming of recursive methods in iterative 
loops may also be a subject of a study. 

Iterative and recursive implementations of various 
algorithms are widely used in many fields of science and 
practice, such as those presented in [10]–[12]. An intensively 
investigated field of study is the graph theory. This is a part 
of discrete mathematics, which has undergone great 
development over the last few decades and has a huge 
practical application. In many cases, the description, analysis, 
and research of real systems is accomplished successfully 
and comparatively simply with graphs. A graph contains two 
sets of elements - vertices and edges. Each edge connects a 
pair of vertices. The ordered pair (V, E) is called an 
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undirected graph (G), where: V = {v1, v2, ..., vn} is a set of 
vertices and E = {e1, e2, ..., em} is a set of edges. The V and 
E sets are finite. Each element k ∈ E, (k = 1, 2, .., m) is an 
ordered pair (vi, vj), vi, vj ∈ V, 1 ≤ i, j ≤ n. When the pair of 
vertices (vi, vj) is ordered, the graph is called directed, and 
the edges are called arcs. If a function       f(i, j) is given, 
comparing an integer value to each edge (i, j) ∈ E, f(i, j) = 
f(j, i), the graph is called undirected weighted. If a sequence 
of vertices v1, v2, ..., vk is given, such that for each i = 1, 2, ..., 
k-1  is satisfied (vi, vi+1) ∈ E, then this sequence is called a 
path in a directed graph. In the case of an undirected graph, 
the ordinance of elements in the pair (vi, vi+1) does not matter. 
The path where the start and final vertex coincide is called a 
cycle. A cycle that passes through each edge exactly once is 
called Eulerian, while a cycle that passes through each 
vertex exactly once is called Hamiltonian. A graph is called 
complete when for each pair of vertices there is an edge that 
connects them, i.e., an edge that is incidentally with them. In 
[13] more information related to the graphs theory is given: 
the main ways of presenting these structures in computer 
programs and a wide variety of algorithms to solve particular 
problems. 

The graphs provide opportunities to formulate and solve 
complex practical problems effectively in a natural way and 
in an accessible language. Numerous problems in different 
fields, both in science and in practice (for example, transport 
problems, resource allocation problems, search for optimal 
routes and the location of service centers, problems related 
to optimal schedules and timetables and many others), can 
be modeled with  graphs and solved with appropriate 
algorithms [13]. In many cases these problems are linear, 
which means that they are solved with linear optimization 
methods. For some problems with large input data, it is 
necessary to look for efficient algorithms (usually 
approximated) so that they can be solved for a reasonable 
time. Solving these problems without a computer and a 
suitable application would be very difficult except for some 
cases in which the input data are very small. But even with a 
computer and appropriate application software, solving some 
problems would be impossible, or theoretically, it would 
take a long time, for example years, to find an exact solution 
[14]. Such are all NP-hard problems in which a solution 
cannot be found in polynomial time. The methods based on 
the "backtracking" approach yield good ressults but only for 
problems with small input data. For instance, in a complete 
undirected graph with 25 vertices and 25 * (25-1) / 2 = 300 
edges, the number of all Hamiltonian cycles (if necessary to 
be checked) is very large, respectively: (25-1)! / 2 = 310 224 
200 866 620 000 000 000. With the capabilities of modern 
computers, this approach, though possible, is practically 
inapplicable. Therefore, the interest in developing new or 
modifying the existing heuristic or approximate algorithms 
(not only for graphs) is explicable. This helps to find a 
solution to some "hard" problems for a reasonable time. 

The number of practical problems that can be modeled by 
graphs is big. A problem to find a minimal Hamiltonian 
cycle in a complete undirected weighted graph will be 
selected for the present study. This is a combinatorial 
optimization problem that has been researched very actively 
in recent years. A detailed description of the Travelling 
Salesman Problem (TSP) is presented in [15]. Moreover, in 

[16] different variants of it are presented. Due to the great 
practical application of this problem, many algorithms have 
been created for it. There are two main approaches on the 
basis of which all algorithms for solving the TSP are 
developed. The first approach is based on the creation of 
exact algorithms. These algorithms always find the exact 
solution, but a lot of computing time is required for their 
execution. It is recommended that these algorithms be used 
in small input data (in this case, a small number of vertices 
in a graph, for instance, up to 20). Examples of such 
algorithms are presented in [17]–[19]. The second approach 
is based on the creation of approximate or heuristic 
algorithms. These algorithms find solutions that are close to 
optimal or optimal, but this cannot be proven. Most of the 
developed algorithms for solving TSP are in this category. 
Examples of such algorithms are presented in [20]–[24]. 

II. MATERIAL AND METHOD 

This paper presents the results from an experimental study 
of two algorithms for generating permutations, respectively 
recursive and iterative [2]. Both algorithms have been 
modified to be used to search for an exact TSP solution. The 
analysis of the results aims at determining the way the 
algorithmic implementation influences on the computation 
process. For this purpose, both algorithms need to generate 
the same solutions. The main metrics that will be analyzed 
are the quality of the solutions found (minimum length of the 
Hamiltonian cycle) and the execution time (the time required 
to check all possible Hamiltonian cycles). 

Let a set A = {a1, a2, ..., an} with n elements be given. 
Each sequence (or order) of these elements (without 
repetition) is called permutation. The set of all possible 
permutations is denoted with Pn and its power is marked 
with |Pn|, which is equal to n!. The following recursive 
relationship can be used to generate permutations: after 
placing a particular element in position k, the sequential 
generation of all possible permutations of the remaining n-k 
elements follows. After generating each permutation, the 
length of a Hamiltonian cycle formed by the sequence of the 
vertices defined in the current permutation will be calculated. 

When executing the algorithms, some global arrays and 
variables will be used. They need to be pre-declared, as 
shown in Fig. 1 (in Delphi language). 
 
01 │ AdjacencyMatrix: array of array of Integer; 
02 │ MarkedVertices: array of Boolean; 
03 │ HamiltonianCycle: array of Integer; 
04 │ MinimumHamiltonianCycle: array of Integer; 
05 │ CycleLength: Integer; 
06 │ MinimumCycleLength: Integer; 
07 │ Counter: Int64; 
08 │ CounterCycles: Int64; 
09 │ CounterBetterCycles: Int64; 
10 │ BestCycleIndex: Int64; 
11 │ StartTickCount: Cardinal; 
12 │ FinishTickCount: Cardinal; 

Fig. 1  Source code of the global declarations 
 
A recursive algorithm used to search for a minimal 

Hamiltonian cycle is presented in Fig. 2. This algorithm is 
based on the generation of permutations and uses the 
"backtracking" method. 
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01 procedure HamiltonianCycleByRecursion 
02 │ (Iteration, Position, VertexCount: Integer); 
03 var 
04 │ J: Integer; 
05 begin 
06 │ Inc(Counter); 
07 │ if ((Iteration = 1) and (Position > 1)) then 
08 │ begin 
09 │ │ if (Position = VertexCount+1) then 
10 │ │ begin 
11 │ │ │ Inc(CounterCycles); 
12 │ │ │ CycleLength := 0; 
13 │ │ │ for J := 0 to VertexCount-1 do 
14 │ │ │ │ CycleLength := CycleLength + 
15 │ │ │ │ AdjacencyMatrix[HamiltonianCycle[J]] 
16 │ │ │ │                [HamiltonianCycle[J+1]]; 
17 │ │ │ if (MinimumCycleLength > CycleLength) then 
18 │ │ │ begin 
19 │ │ │ │ BestCycleIndex := CounterCycles; 
20 │ │ │ │ Inc(CounterBetterCycles); 
21 │ │ │ │ MinimumCycleLength := CycleLength; 
22 │ │ │ │ for J := 1 to VertexCount do 
23 │ │ │ │ │ MinimumHamiltonianCycle[J] := 
24 │ │ │ │ │   HamiltonianCycle[J]; 
25 │ │ │ end; 
26 │ │ end; 
27 │ │ Exit; 
28 │ end; 
29 │ if (MarkedVertices[Iteration]=True) then Exit; 
30 │ MarkedVertices[Iteration] := True; 
31 │ for J := 1 to VertexCount do 
32 │ begin 
33 │ │ if ((AdjacencyMatrix[Iteration][J] > 0) and 
34 │ │ │   (J <> Iteration)) then 
35 │ │ begin 
36 │ │ │ HamiltonianCycle[Position] := J; 
37 │ │ │ HamiltonianCycleByRecursion 
38 │ │ │   (J, Position+1, VertexCount); 
39 │ │ end; 
40 │ end; 
41 │ MarkedVertices[Iteration] := False; 
42 end; 

Fig. 2  Source code of the recursion based algorithm 
 
This algorithm uses a modification of the Depth-first 

search (DFS) method. The HamiltonianCycleByRecursion 
procedure is called recursively (lines 37 and 38) until all 
Hamiltonian paths starting from a first vertex and passing 
through all other vertices are generated. Finally, the edge 
that connects the end with the first vertex is added to this 
path to form a Hamiltonian cycle. This is done when the 
condition of line 9 is true. The length of the new 
Hamiltonian cycle is calculated on lines 13–16. Then, 
whether this cycle is shorter than the shortest one that has 
been found so far (line 17) is checked. If this proves true, the 
current cycle is stored as the shortest one (lines 19–24). The 
complexity of the algorithm is exponential because it 
generates all (VertexCount-1)! Hamiltonian cycles 
(including those in the opposite direction). 

Another algorithm used to search for a minimal 
Hamiltonian cycle is presented in Fig. 3. This algorithm, 
however, is based on the generation of permutations using an 
iterative approach. 

This algorithm generates iteratively all permutations of 
(VertexCount-1) elements – formed by the vertex indexes, 
respectively, 2, 3, ..., VertexCount. After generating the next 
Hamiltonian path (composed of vertices 1, 2, ..., 
VertexCount), the edge (VertexCount, 1) is added to it. 
Since the explored graphs are complete, such an edge 
certainly exists. 

01 procedure HamiltonianCycleByIteration 
02 │ (VertexCount: Integer); 
03 var 
04 │ LeftPos, RightPos, Temp: Integer; 
05 │ Terminated, NewPermutation: Boolean; 
06 begin 
07 │ for Temp := 0 to VertexCount-1 do 
08 │ │ HamiltonianCycle[Temp] := Temp + 1; 
09 │ HamiltonianCycle[VertexCount] := 1; 
10 │ CounterCycles := 1; 
11 │ MinimumCycleLength := 0; 
12 │ for Temp := 0 to VertexCount-1 do 
13 │ │ MinimumCycleLength := MinimumCycleLength + 
14 │ │ AdjacencyMatrix[HamiltonianCycle[Temp]] 
15 │ │                [HamiltonianCycle[Temp+1]]; 
16 │ BestCycleIndex := 1; 
17 │ CounterBetterCycles := 1; 
18 │ for Temp := 0 to VertexCount do 
19 │ │ MinimumHamiltonianCycle[Temp] := 
20 │ │   HamiltonianCycle[Temp]; 
21 │ Terminated := False; 
22 │ repeat 
23 │ │ Inc(Counter); 
24 │ │ NewPermutation := False; 
25 │ │ LeftPos := VertexCount; 
26 │ │ while (LeftPos > 0) do 
27 │ │ begin 
28 │ │ │ Inc(Counter); Dec(LeftPos); 
29 │ │ │ RightPos := VertexCount; 
30 │ │ │ while (RightPos > LeftPos) do 
31 │ │ │ begin 
32 │ │ │ │ Inc(Counter); Dec(RightPos); 
33 │ │ │ │ if (HamiltonianCycle[LeftPos] < 
34 │ │ │ │ │ HamiltonianCycle[RightPos]) then 
35 │ │ │ │ begin 
36 │ │ │ │ │ Temp := HamiltonianCycle[LeftPos]; 
37 │ │ │ │ │ HamiltonianCycle[LeftPos] := 
38 │ │ │ │ │   HamiltonianCycle[RightPos]; 
39 │ │ │ │ │ HamiltonianCycle[RightPos] := Temp; 
40 │ │ │ │ │ Inc(LeftPos); 
41 │ │ │ │ │ RightPos := VertexCount - 1; 
42 │ │ │ │ │ while (LeftPos < RightPos) do 
43 │ │ │ │ │ begin 
44 │ │ │ │ │ │ Inc(Counter); 
45 │ │ │ │ │ │ Temp := HamiltonianCycle[LeftPos]; 
46 │ │ │ │ │ │ HamiltonianCycle[LeftPos] := 
47 │ │ │ │ │ │   HamiltonianCycle[RightPos]; 
48 │ │ │ │ │ │ HamiltonianCycle[RightPos] := Temp; 
49 │ │ │ │ │ │ Inc(LeftPos); 
50 │ │ │ │ │ │ Dec(RightPos); 
51 │ │ │ │ │ end; 
52 │ │ │ │ │ Inc(CounterCycles); 
53 │ │ │ │ │ CycleLength := 0; 
54 │ │ │ │ │ for Temp := 0 to VertexCount-1 do 
55 │ │ │ │ │ │ CycleLength := CycleLength + 
56 │ │ │ │ │ │   AdjacencyMatrix 
57 │ │ │ │ │ │     [HamiltonianCycle[Temp]] 
58 │ │ │ │ │ │     [HamiltonianCycle[Temp+1]]; 
59 │ │ │ │ │ if(MinimumCycleLength>CycleLength)then 
60 │ │ │ │ │ begin 
61 │ │ │ │ │ │ BestCycleIndex := CounterCycles; 
62 │ │ │ │ │ │ Inc(CounterBetterCycles); 
63 │ │ │ │ │ │ MinimumCycleLength := CycleLength; 
64 │ │ │ │ │ │ for Temp := 1 to VertexCount do 
65 │ │ │ │ │ │ │ MinimumHamiltonianCycle[Temp] := 
66 │ │ │ │ │ │ │   HamiltonianCycle[Temp]; 
67 │ │ │ │ │ end; 
68 │ │ │ │ │ NewPermutation := True; Break; 
69 │ │ │ │ end; 
70 │ │ │ end; 
71 │ │ │ if ((LeftPos=1) and (RightPos=1)) then 
72 │ │ │ begin Terminated := True; Break; end; 
73 │ │ │ if NewPermutation then Break; 
74 │ │ end; 
75 │ until (Terminated); 
76 end; 

Fig. 3  Source code of the iterative based algorithm 
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In lines 7–9, an initialization Hamiltonian cycle is 
generated. This cycle contains the following sequence of 
vertices: 1, 2, ..., VertexCount, 1. In lines 12–15, the length 
of the generated Hamiltonian cycle is calculated using the 
adjacency matrix. The lengths of all edges are stored in this 
matrix. At this point only this cycle is generated, this is why 
it is stored as a minimum (lines 18–20). 

The iterative generation of permutations is performed by 
three nested loops (while –– do). These loops begin at lines 
26, 30 and 42, respectively. From the right to the left, each 
subsequent number of the current series is permutated 
sequentially. When this is done (line 51), a new permutation 
is already generated. Based on this permutation, the next 
Hamiltonian cycle is formed and its length is calculated 
(lines 54–58). If the length of the last generated Hamiltonian 
cycle is shorter than the smallest length found so far, the 
length is stored as the smallest one (line 63) and the 
corresponding cycle is stored as the shortest one (lines 64–
66). The generation process is repeated until the left and 
right positions of the indexes of the elements become equal 
to 1. Since the next permutations, starting with the vertex 
numbers 2, 3, ..., VertexCount, respectively, are already 
checked for previous generations, they are not considered. 
These are identical cycles where the starting vertex is 
different from 1. 

This iterative algorithm initially generates a Hamiltonian 
cycle, respectively: 1, 2, ..., VertexCount, 1, and calculates 
its length. The first order of the vertices is used as the 
initialization permutation from which all the next ones are 
generated. In the recursive algorithm, this initial permutation 
occurs when the recursive procedure is called 
(VertexCount+1) times to form this first cycle. Therefore, 
chronometers that report the execution time of the two 
algorithms are started before the initialization process. A 
variant of the procedure for starting the two algorithms is 
shown in Fig. 4. 

 
01 procedure Run; 
02 begin 
03 │ SetLength(MarkedVertices, VCount+1); 
04 │ SetLength(MinimumHamiltonianCycle, VCount+1); 
05 │ SetLength(HamiltonianCycle, VCount+1); 
06 │ MinimumCycleLength := MaxInt; 
07 │ CycleLength := 0; 
08 │ HamiltonianCycle[0] := 1; 
09 │ MinimumHamiltonianCycle[0] := 1; 
10 │ CounterCycles := 0; 
11 │ CounterBetterCycles := 0; 
12 │ BestCycleIndex := 0; 
13 │ Counter := 0; 
14 │ StartTickCount := GetTickCount(); 
15 │ HamiltonianCycleByRecursion(1,1,VCount); 
16 │ // HamiltonianCycleByIteration(VCount); 
17 │ FinishTickCount := GetTickCount(); 
18 │ ShowHamiltonianCycleInformation; 
19 end; 

Fig. 4  Source code of the run method 
 
Both algorithms can be run by calling the Run procedure. 

Memory allocation for the dynamic arrays where the 
required information will be stored is performed on lines 3–5. 
The initialization values of the global variables are set on 
lines 6–12. Since a similar initialization is performed before 
the iteration algorithm is executed, the source code of these 
lines may not be executed. Before the iterative algorithm can 

be started, lines 6–12 and 15 may be commenting out and 
line 16 to be uncommenting. The runtime of both algorithms 
is counted using the GetTickCount function. The result after 
performing this function is the elapsed time (in milliseconds) 
from the start of the operating system (at the current work 
session). The first call to the function is before the start of 
both algorithms, and the second call is after the completion 
of their execution. To count the elapsed time, the first value 
is subtracted from the second value. Typically, the operating 
systems use a multi-tasking mode. This means that more 
work is simulated at the same time. During the operation of 
the operating system, different processes are executed. In 
order to accurately measure the runtime of both algorithms, 
they are run 10 times. Then an average runtime is calculated. 

The presentation of algorithms with pseudo-codes or 
block diagrams does not guarantee that their implementation 
will be correct. In order to verify the results obtained, it is 
necessary to implement the presented algorithms correctly. 
Therefore, the complete source codes of both algorithms are 
presented in this paper. In this way, it is easier (and safer) for 
both algorithms to be implemented in another programming 
language.  Also, by compiling into a suitable development 
environment, these algorithms can be executed immediately. 

III.  RESULTS AND DISCUSSION 

The aim of the experiments is to determine the behavior 
of both algorithms with the same input data. For this reason 
it is necessary to make a comparative analysis between these 
algorithms in order to determine for what graphs (with how 
many vertices and edges) they will be able to generate 
optimal solutions (in terms of the length of the Hamiltonian 
cycles) but for a reasonable time. 

A. Methodology of the experiment 

Six complete and weighted graphs were created for the 
experiments, respectively with 10÷15 vertices. Each graph 
(except K10) was created by adding a new vertex (n) and n-1 
edges. These edges connect the new vertex with all other 
vertices. K15 graph is presented in Fig. 5. 

 

 
Fig. 5   K15 graph (with 15 vertices and 105 edges) 
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The coordinates of the vertices are shown in Table I. 
These are the screen coordinates of the centers of the 
vertices. The abbreviations of the columns in Table I are as 
follows: V – vertex number; X – the x coordinate of the 
vertex, and Y – the y coordinate of the vertex. 

TABLE I 
THE COORDINATES OF THE VERTICES OF THE K15 GRAPH  

V X Y V X Y V X Y 
1 100 143 6 196 23 11 210 331 

2 41 31 7 96 325 12 85 81 

3 44 261 8 300 232 13 324 78 

4 246 139 9 255 73 14 320 301 

5 249 275 10 141 265 15 165 80 

 
Both algorithms use an adjacency matrix – 

A[VertexCount] [VertexCount]. When there is an edge (u, v) 
between two vertices, for example u and v, then A[u][v] > 0, 
or, otherwise, A[u][v] = 0. Each element A[u][v] > 0 is equal 
to the length of the edge (u, v). The adjacency matrix of the 
K15 graph is shown in Table II. 

TABLE II 
THE ADJACENCY MATRIX OF K15 GRAPH 

V\V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 127 131 146 199 154 182 219 170 129 218 64 233 271 91 

2 127 0 230 232 321 155 299 328 218 254 344 67 287 388 133 

3 131 230 0 236 205 282 82 258 283 97 180 185 334 279 218 

4 146 232 236 0 136 126 239 108 67 164 195 171 99 178 100 

5 199 321 205 136 0 258 161 67 202 108 68 254 211 76 212 

6 154 155 282 126 258 0 318 233 77 248 308 125 139 304 65 

7 182 299 82 239 161 318 0 224 298 75 114 244 336 225 255 

8 219 328 258 108 67 233 224 0 165 162 134 263 156 72 203 

9 170 218 283 67 202 77 298 165 0 223 262 170 69 237 90 

10 129 254 97 164 108 248 75 162 223 0 95 192 262 183 187 

11 218 344 180 195 68 308 114 134 262 95 0 280 277 114 255 

12 64 67 185 171 254 125 244 263 170 192 280 0 239 322 80 

13 233 287 334 99 211 139 336 156 69 262 277 239 0 223 159 

14 271 388 279 178 76 304 225 72 237 183 114 322 223 0 270 

15 91 133 218 100 212 65 255 203 90 187 255 80 159 270 0 

 
All elements in the matrix (except those in the main 

diagonal) have a value other than 0 because the graphs under 
consideration are complete. Also, the adjacency matrix is 
symmetrical (relative to its main diagonal) in these graphs. 
The element values are calculated from the coordinates of 
each pair of vertices and are equal to the Euclidean distance 
between these vertices.  

B. Experimental Conditions 

The experimental conditions are the following: PC with 
64–bit Operating System Windows 10 Pro, x64–based 
processor and hardware configuration: Processor: Intel (R) 
Core (TM) i7–4712MQ CPU at 2.30 GHz; RAM: 8GB 
DDR3. 

C. Experimental results 

In Table III, the main properties of the studied graphs are 
shown. These properties are as follows: the graph 

abbreviation – G, the number of the vertices – |V|, the 
number of the edges – |E|, the number of the Hamiltonian 
cycles – (|V|-1)!/2, and the number of the cycles that are to 
be verified – (|V|-1)!. 

TABLE III 
THE MAIN PROPERTIES OF THE GRAPHS 

G |V| |E| (|V|-1)!/2 (|V|-1)! 
K10 10 45 181 440 362 880 
K11 11 55 1 814 400 3 628 800 
K12 12 66 19 958 400 39 916 800 
K13 13 78 239 500 800 479 001 600 
K14 14 91 3 113 510 400 6 227 020 800 
K15 15 105 43 589 145 600 87 178 291 200 

 
The minimum Hamiltonian cycles that were generated by 

both algorithms for all studied graphs are shown in Fig. 6 ÷ 
Fig. 11. 

 

 
Fig. 6  K10 minimal Hamiltonian cycle 

 

 
Fig. 7  K11 minimal Hamiltonian cycle 
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Fig. 8  K12 minimal Hamiltonian cycle 

 

 
Fig. 9  K13 minimal Hamiltonian cycle 

 

 
Fig. 10  K14 minimal Hamiltonian cycle 

 
Fig. 11  K15 minimal Hamiltonian cycle 

 
The results of the recursion based algorithm for input data 

K10 – K15 are shown in Table IV. 

TABLE IV 
THE RESULTS OF THE RECURSION BASED ALGORITHM 

G Better 
Cycles Recursive Calls Time (ms) Cycle 

Length 
K10 23 8 877 691 219 997 

K11 34 98 641 011 2 281 1 052 

K12 37 1 193 556 233 27 938 1 056 

K13 42 15 624 736 141 356 672 1 157 

K14 47 220 048 367 319 5 215 391 1 238 

K15 52 3 312 775 065 600 79 940 943 1 281 

 
Table V shows the results from the iterative based 

algorithm for input data K10 – K15. 

TABLE V 
THE RESULTS OF THE ITERATIVE BASED ALGORITHM 

G Better 
Cycles 

Iterations by 
Loops 

Time (ms) Cycle 
Length 

K10 23 3 025 967 31 997 

K11 34 30 259 771 250 1 052 

K12 37 332 857 608 2 797 1 056 

K13 42 3 994 291 441 35 031 1 157 

K14 47 51 925 788 909 467 781 1 238 

K15 52 726 961 044 923 6 762 694 1 281 

 
Table IV and Table V show the results of both algorithms. 

The columns are as follows: "G" – the abbreviation of the 
graph; "Better Cycles" – the number of the better cycles 
found in the search process; "Recursive Calls" – the number 
of recursive calls; "Iterations by Loops" – the number of 
iterations made by the iterative algorithm; "Time (ms)" – the 
execution time (in milliseconds) of the corresponding 
algorithm; "Cycle Length" – the length of the minimal 
Hamiltonian cycle (in pixels). 

The results show that the found minimal Hamiltonian 
cycles are the same for both algorithms. This provides 
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grounds to analyze the values in the column "Time (ms)" 
that shows the execution time of both algorithms. 

The influence of the number of vertices on the execution 
time for both algorithms is shown in Fig. 12. 

 

 
Fig. 12  Influence of the number of vertices (the x-axis) on the execution 
time (the y-axis in milliseconds) for both algorithms (for all input data) 

 
Fig. 12 shows that the execution time of both algorithms 

increases exponentially with the increase of the number of 
the vertices. Additionally, the execution time of the recursive 
algorithm is significantly longer than the iterative algorithm 
(for the same input data). 

Fig. 13 shows a chart of the data versus the execution 
time for both algorithms (the y-axis is transformed into a 
logarithmic one with base 2). 

 

 
Fig. 13  Influence of the number of vertices (the x-axis) on the execution 
time (the y-axis in a logarithmic scale with base 2) for both algorithms 

 
After transforming the y scale into a logarithmic one (with 

base 2), it can be seen that the delay of the recursive 
algorithm compared to that of the iterative one is within the 
range of 23 to 24 times (in milliseconds). This ratio is kept 
almost constant for all input data sets. The results show that 
under the same conditions (identical input data and 
operations), the iterative variant of this process compared to 
the recursive one is executed several times faster. This gives 
some idea of the nature of the computation process when it 
is modeled recursively or iteratively. The extra time for 
executing the recursive algorithm is due to the fact that 
additional computer instructions are executed at each 
recursive call. These instructions allocate and release 

additional memory for the new copies of all local variables 
(which are used by the recursive function). In the iterative 
algorithm, this process is executed by a counter and a 
transition instruction (to organize a cyclic process). This 
peculiarity in the realization of the two processes leads to the 
great difference in their execution time. 

IV.  CONCLUSION 

In this paper, a comparative analysis between two 
algorithms for generating permutations but modified to find 
a minimal Hamiltonian cycle in complete undirected 
weighted graph was made. Both algorithms (respectively 
recursive and iterative) generate all permutations of n 
numbers, where n equals to the number of vertices in a given 
graph. For each generated permutation the Hamiltonian 
cycle length is calculated. This cycle is obtained after 
passing through each vertex of a graph in a sequence 
determined by the order of the numbers in the current 
permutation. The results obtained from both algorithms are 
identical both for the generated permutations and for the 
formed Hamiltonian cycles with minimum length. The 
difference between the two algorithms is the time for their 
execution. It was experimentally found out that the recursive 
algorithm is executed several times more slowly (in the 
order of 23 to 24 times) than the iterative algorithm. 

In this study, TSP results are used to analyze the 
performance of both algorithms. Moreover, these results 
reveal that the solution to the TSP with exact methods 
(although it is possible) is not applicable for graphs with 
many vertices. There are approaches, such as branch-and-
bound and others, that can reduce the number of the 
Hamiltonian cycles that are formed. However, for complete 
undirected weighted graphs with more than 50 vertices these 
approaches are not applicable. Therefore, for TSP with large 
complete graphs (e.g., with thousands of vertices) 
approximate methods should be used. Taking into 
consideration the results obtained in this study, one can 
suggest that if these methods can be implemented 
algorithmically by an iterative process, then, it must be 
chosen leaving aside the recursive one. 
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