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Abstract— Since advent of information revolution, there have been a lot of interest at big data analytics as well as big data. In the big 
data analytics, it is essential that not only extracting valuable information from the big data but also processing the data rapidly. 
Therefore, the distributed computing systems which process the analytics concurrently with parallel programming model based 
distributed processing framework as well as provide data analytics related libraries get attention of researchers. Several big data 
analytics programming models are studied that implemented for processing and generating huge data sets. However, developing the 
big data analytics in the distributed computing systems with utilizing parallel processing framework needs expertise in each area. In 
this paper, we demonstrate there is huge gap among usages of processing units if the big data analytics are naively executed at the 
distributed system. And we also prove that applying proper parallelism of those methods results in 1.5 to 3.3 times improvement of 
execution time compared to default parallelism. 
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I. INTRODUCTION 

Recently, since there has been huge interest in big data, 
researchers are getting more interest in big data analytics and 
systems for executing those analytics. Also, as the volume of 
the data is sharply increased, enhancing processing 
performance of existing big data analytics and systems 
which process them is highly issued by researchers [1]. For 
processing the data rapidly, distributed computing systems 
[2,3,4,5] that support distributed parallel processing at 
multiple computing nodes cluster and Distributed processing 
frameworks [2,5] that support implement of big data 
analytics at the systems are widely used. 

The distributed processing frameworks provides 
programmers to high level interfaces in the distributed 
computing systems for taking advantage of multiple 
computing nodes of the systems and multicore processor at 
each computing node. The distributed computing systems 
manages necessary resources for executing a program as 
well as supports fault tolerance for making a program be 
processed normally. The systems also provide built in 
libraries for developers to implement programs more easily. 
However, developing the big data analytics in the distributed 
computing systems with utilizing parallel processing 

framework needs expertise in each area. Because it requires 
designing programs with concerning available resources of 
the systems, parallelizing the program with programming 
model and related tools of the framework, and reflecting 
characteristics of the data such as volume and structures. 

Several big data analytics programming models are 
studied that implemented for processing and generating huge 
data sets. Mapreduce is one of them that has been 
successfully implemented for large-scale data-intensive 
applications on commodity clusters. Mapreduce consists of 
two functions. The map function processes a key/value pair 
to create a set of intermediate key/value pairs, and the reduce 
function merges all intermediate values. However, most of 
big data analytics programming models such as Mapreduce 
are built around an acyclic data flow model. It’s is not 
suitable for other popular applications. Spark [2] is new 
cluster computing framework, that supports applications 
while retaining the scalability and fault tolerance of 
MapReduce. 

In this paper, we conduct a research on enhancing 
performance of multiple big data analytics by optimizing 
parallelism of those techniques at Spark which is one of the 
most famous distributed computing systems. The first result 
of our research demonstrates that default implementations of 
the big data analytics cannot fully utilize processing resource 
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of the system. The amount of every core’s utilization which 
process partitions of the analytics is different from the 
amounts of others. And then we found there can be at least 
1.56 to at most 3.3 times reduction in execution time of 
those techniques if proper parallelism is applied to the 
implementations.  

II. MATERIAL AND METHOD 

A. Related Works 

For implementing the big data analytics and executing 
them concurrently, the distributed processing framework and 
the distributed computing system should be needed. The 
distributed systems not only support the resources for 
executing the analytics but also provide various libraries for 
convenient development of those techniques. The distributed 
processing framework provides high level programming 
interface for implementing the general parallel programming 
models which are based on concurrent parallel processing in 
the distributed systems. However, the components which 
constitute the system are too complex to optimize 
performance of those techniques at the distributed systems. 

There are many big data analytics and they have a very 
wide range of execution performance difference. If input 
data of them are too large or computation resources are not 
appropriately utilized some of which have really higher 
computation complexity can largely be reduced by those 
factors. Others may also get affected by those reasons which 
could result in significant difference between the expected 
execution performance and the real execution performance 
of them. Therefore, when the big data analytics are 
implemented at the distributed systems, optimization of 
execution performance is required for not being largely 
affected by the size of the data but also scale of the system’s 
available computing resources. 

MapReduce programming model[6] is an algorithm for 
distributed parallel execution of big data analytics. It 
consisted of map and reduce procedures. The map procedure 
performs distributed filtering and sorting and the reduce 
procedure performs a combine operation as a summary. The 
model also has redundancy and fault tolerance so that it is 
commonly used to implement big data analytics. However, if 
the appropriate number of task partitions is not applied to the 
implementations, efficiency of the system’s resources and 
execution performance of the implementations can be 
severely degraded.  

Most of MapReduce systems are built around an acyclic 
data flow model which is not suitable to some cases of 
applications. To overcome such flaw, [2] introduced Spark. 
Spark is in-memory based framework which is suitable to 
cyclic data flow model especially machine learning 
algorithm. In the experiment, it outperforms Hadoop by 10x. 
To process iterative jobs resiliently, Spark use resilient 
distributed datasets (RDDs) which is a read-only collection 
of objects partitioned across a set of machines that can be 
rebuilt if a partition is lost. 

In [8], ‘CHOPPER’ is proposed which dynamically 
optimize the number of parameters and partition scheme in 
the middle of execution. In general, the performance of in-
memory based framework is affected by the method of data 
partition because it is subordinated to the memory 

performance. In its experiment, it boosts up to 1.35x as 
compared with the default option of Spark. One of the 
reasons why it is faster than the baseline is it minimizes the 
stage execution time and shuffle traffic. However, it is 
training-based model that when the available resources are 
changed, it needs re-training. Therefore, it is not appropriate 
to adapting cloud-based system. 

Marcu [9] compares two of the most famous and fast big 
data analytics frameworks: Spark vs Flink. In the experiment, 
Spark is about 1.7x faster than Flink for large graph 
processing, while the latter outperforms Spark up to 1.5x for 
batch and small graph workloads using sensitively less 
resources and being less tedious to configure. The difference 
of the performance is derived from design choices like 
memory management, optimizations and parameter 
configuration. 

There are representative two workloads were developed to 
enhance the batch-oriented Hadoop with iterative support.  

▪Batch workloads: Word count, grep and sort are used in 
various real applications such as LHC[10], google[11], 
amazon[12], and so on.  

▪ Iterative workloads: K-Means, Page Rank and 
Connected Components are frequent in machine learning 
algorithms [13,19,20]  and social graphs processing (at 
Facebook [14] or Twitter [15]). 

 

TABLE I 
OPERATORS USED IN EACH WORKLOAD 

 
 
Table I shows the most important operators’ usage by 

each workload. These operators have basic core and specific 
modules by the libraries of each framework. 
▪Word Count(WC): a simple metric for measuring article 

quality by counting the total number of occurrence of each 
word.  
▪Grep(G): a common command for searching test data 

sets.  
▪Sort(S): a sorting algorithm suitable for measuring the 

I/O and the communication performance of the two engines. 
▪K-Means(KM): an unsupervised method used in data 

mining to group data elements with a high similarity. 
▪Page Rank(PR): an unsupervised method used in data 

mining to group data elements with a high similarity. 
▪ Connected Components(CC): an important topological 

invariant of a graph  
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B. Optimizing Parallelism of Big Data Analytics at 
Distributed System  

In this section, we describe execution procedure of big 
data analytics and optimizing big data analytics’ parallelism. 
We focused on how to optimize big data analytics’ 
parallelism on general execution procedure of big data 
analytics at distributed system.  

1) Execution procedure of big data analytics  

Distributed computing system[2] consists of a master 
node which manages overall processing procedure of a 
program and multiple computing nodes which compute 
small, partitioned tasks in parallel. Developers take 
advantage of parallel programming model based distributed 
processing framework to implement the big data analytics. 
Fig. 1 shows the general execution procedure of big data 
analytics at distributed system. 

 

 
 
Fig. 1 General execution procedure of big data analytics at distributed 
system 

 
The execution procedure detail of the analytics is given as 

follow. The input data which is required for each analytic is 
partitioned to small data partitions and the number of them is 
decided by the framework’s parallelism policy. Then, the 
partitioned data is allocated into Computing Nodes(CN) by 
Master Node(MN)’s scheduler(In spark, the default policy is 
FIFO). The real data is transferred to CNs by distributed file 
system manager(e.g. HDFS) and the manager sometimes 
replicate the whole data into the CNs for enhancing 
processing performance of the system. After that, CNs 
process transferred data in parallel with multiple cores and 
merge the outputs of the processes when results should be 
synchronized. Finally, the analytic is terminated with 
returning the merged outputs of CNs. 

TABLE II 
AN IMPLEMENTATION EXAMPLE OF ‘WORD COUNT’  AT SPARK 

lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0]) 
counts = lines.flatMap(lambda x: x.split(' ' )) \ 
              .map(lambda x: (x, 1)) \ 
              .reduceByKey(add) 
output = counts.collect() 

 
We show a specific example ‘Word count’ which is one 

of the most common data analytics in table II. The system 
proceeds the analytics’ tasks related to map procedure with 
‘map’ and ‘flatMap’ API supported by the framework and 
reduce procedure with ‘reduceByKey’ and ‘collect’ API [16].  

 

TABLE III 
AN IMPLEMENTATION EXAMPLE OF ‘K- MEANS’  AT SPARK 

from numpy import array 
from math import sqrt 
 
from pyspark.mllib.clustering import KMeans, KMeansModel 
 
# Load and parse the data 
data = sc.textFile("data/mllib/kmeans_data.txt") 
parsedData = data.map(lambda line: array([float(x) for x in 
line.split(' ')])) 
 
# Build the model (cluster the data) 
clusters = KMeans.train(parsedData, 2, maxIterations=10, 
initializationMode="random") 
 
# Evaluate clustering by computing Within Set Sum of Squared 
Errors 
def error(point): 
    center = clusters.centers[clusters.predict(point)] 
    return sqrt(sum([x**2 for x in (point - center)])) 
 
WSSSE = parsedData.map(lambda point: error(point)) 
.reduce(lambda x, y: x + y) 
print("Within Set Sum of Squared Error = " + str(WSSSE)) 
 
# Save and load model 
clusters.save(sc,"target/org/apache/spark/PythonKMeans 
Example/KMeansModel") 
sameModel = KMeansModel.load(sc, "target/org/apache/spark/ 
PythonKMeansExample/KMeansModel") 

 
Table III shows an example ‘K-means’ which is more 

complex than ‘Word count’. After loading and parsing data, 
this example use the K-means object to cluster the data into 
two clusters. The number of supposed clusters is passed to 
the algorithm. Then, this example computes within set sum 
of squared error (WSSSE). By increasing k, we can reduce 
this error measure. Usually, the optimal k is one in the 
WSSSE graph.  

2) Optimizing big data analytics’ parallelism  

A minimum processing unit of the CN is a task partition. 
An implementation of single data analytic is divided into 
multiple task partitions and processed at multiple CNs in 
parallel. However, if the number of task partition is 
improperly decided, execution time deviation of each CN is 
extremely large. There are 3 case of processing.  
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TABLE IV 
TOTAL EXECUTION TIME OF ALL CNS IN CASE OF PROCESSING ‘WORD 

COUNT’,  ‘K- MEANS CLUSTERING’,  AND ‘SORT’ 

Time unit: 
minute 

CN 1 CN 2 CN 3 CN 4 

Word count 

5GB 15 14 23 14 

10GB 34 29 37 27 

15GB 52 50 50 44 

K-means 
clustering 

10GB 80.9 81.4 115 81.4 

15GB 163 157 231 169 

Sort 

0.01GB 0.68 0.72 0.75 0.77 

0.05GB 1.91 2.43 1.83 2.32 

0.1GB 4.45 4.07 3.7 4.2 

 
Table IV shows that in case of ‘K-means clustering’ 

which handles 15GB, CN 2 processed it 157 minutes while 
CN 3 processed it 231 minutes which is 74 minutes longer 
than that of CN 2. As a result, the parallelism of the 
analytics’ implementation so severely affects the usage of 
CNs that usage of CNs can be extremely different. 

We linearly increased the total number of partitions for 
optimizing execution performance of the implementations 
and found the lowest bound of execution time for each case. 
Moreover, we verified each analytic has different 
appropriate number of task partitions and the optimal 
number of every analytics’ task partitions is different if input 
data of them vary in size. We also recognized that after the 
point which has minimum execution time, there is almost no 
difference whether the number of task partitions is increased. 
And there is large performance decrease when the number of 
task partitions is increased too much. 

It means that although increasing the number of task 
partitions makes usage of the system resources high, there is 
also additional overheads such as scheduler delay of task 
partitions and context switching overhead as more number of 
task partitions are uploaded to cores. In our future work, we 
will analysis factors which are closely related to 
performance of processing task partitions and find the 
optimal number of task partitions which makes execution 
time minimized after only one execution of specific 
implementation. We also have plan to research scheduler of 
task partitions in the distributed computing system for 
promoting efficiency of CNs. 

III.  RESULT AND DISCUSSION 

The experiment environment of our research is progressed 
with single cluster with 4 desktops. Each one consists of 
Intel i7 8 cores(4 hyperthread cores included) 3.4GHz 
processor, 16GB memory, 256GB SSD. And we used 
Ubuntu 14.04 as OS, Spark 2.0.2, Java 1.7, Python 2.7, and 
Scala 2.11 for our experiment. The Spark consists of 1 MN 
and 4 CNs and we added 8GB memory to the desktop which 
has the MN. In this experiment, we are focused on total 
execution time.  For the batch workloads, our goal was to 
validate strong and weak scalability. We further analyze the 
resource usage that focused on scalability, caching and 
pipelining performance. 

 

 
Fig. 2 Execution time curves of the big data analytics as the number of word 
count is increased  

 
Fig. 2 shows execution time curves of each method as the 

number of word count is increased when the size of input 
data varies. The ‘word count’ 5gb, 10gb, 15gb has minimum 
execution time when the number of task partitions are 400, 
600, 900 and the execution time of them is increased after 
the number of task partitions becomes 2000. This means that 
even though the input data is increased, increasing the 
number of task partitions not always decreases the 
executions time of the method. 

 

 
Fig. 3 Execution time curves of the big data analytics as the number of K-
means clustering is increased  

 
Fig. 3 shows execution time curves of each method as the 

number of K-means clustering is increased when the size of 
input data varies. The ‘K-means’ 5gb, 10gb, 15gb has 
minimum execution time when the number of task partitions 
are 700, 1000, 300 and the average execution time of them is 
9.12, 18.70, and 27.93. Each of them is generally over each 
average after the number of task partitions becomes 1200. 
This also shows the input data is increased, increasing the 
number of task partitions not always decreases the 
executions time of the method. 
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Fig. 4 Execution time curves of the big data analytics as the number of sort 
is increased  

 
Fig. 4 shows execution time curves of each method as the 

number of sort clustering is increased when the size of input 
data varies. The ‘sort’ 0.05gb, 0.10gb, 0.15gb has minimum 
execution time when the number of task partitions are 224, 
224, 320 and the execution time of them is increased after 
the number of task partitions becomes 500. This means that 
reordering the operators drastically reduces the execution 
time and enables more efficient resource usage.  

 

 

 

 
Fig. 5 Standard deviation rate of optimized and default implementations’ 
processing time for all CNs  
 

Fig. 5 shows standard deviation(stdev) rate of optimized 
and default implementations’ processing time for all CNs 
when the input size of the data varies. In case of optimized 
ones, all the implementations has relatively low processing 
time to that of default ones. Specially, ‘Wordcount’ 5gb, 
15gb, and ‘K-means’ 5gb, 10gb have nearly 0 when they are 
compared to default ones. It means that if proper parallelism 
is applied, usage of the system resource would be higher 
than when it is not applied. 

 

 

 
Fig. 6 Improvement rate of optimized and default implementations’ 
processing time for all CNs  

 
Fig. 6 shows improvement rate of optimized and default 

implementations’ processing time when the input size of the 
data varies. In case of wordcount, there is at most 3.33 times 
higher than execution performance of the default with 5gb 
input data and at least 2.29 times performance improvement 
of the default with 15gb input data. Although kmeans with 
15gb has 1.04 times performance enhancement, but most 
cases have been improved more than 1.5 times execution 
performance of the default. 

IV.  CONCLUSION 

Nowadays, by information has increased explosively, 
enhancing processing performance of big data analytics and 
systems is highly issued by researchers. Several big data 
analytics programming models are studied that implemented 
for processing and generating huge data sets. However, 
developing the big data analytics in the distributed 
computing systems with utilizing parallel processing 
framework needs expertise in each area.  

In this paper, we researched on enhancing performance of 
processing time by applying parallelism optimization when 
implementing big data analytics with parallel programming 
model based distributed processing framework at distributed 
computing system. Our study proved that if the optimization 
of parallelism is not applied, the implementations of the 
methods cannot fully utilize resources of the system. And we 
also demonstrated if proper parallelism is applied to the 
implementations, there can be at least 1.5 to at most 3.3 
times performance enhancement. 

In this paper, we only focused on optimizing parallelism 
of spark by configuring partitioning parameter. However, 
there is plentiful parameters that have close relationship on 
optimizing overall performance of spark. Since parameters 
have dependency among them, simple idea or single 
heuristic which tunes all of them is almost impossible as 
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well as inefficient at the aspect of executing performance. In 
our future works we will deal with more parameters such as 
network shuffle parameters, system resource utilization 
parameters, etc which can seriously impact on the Spark. We 
will also tune those parameters taking advantage of the latest 
machine learning techniques which are variety of deep 
learning models: “Deep Belief Network”, “Convolutional 
Neural Network”, and “Recurrent Neural Network”. 
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