

Vol.7 (2017) No. 5

ISSN: 2088-5334

Optimizing Parallelism of Big Data Analytics
at Distributed Computing System
Rohyoung Myung#, Heonchang Yu#, Daewon Lee*

Dept. Computer Science & Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
 E-mail: {mry1811, yuhc}@korea.ac.kr

*Dept. of Computer Engineering, Seokyeong University, 124 Seogyeong-ro Seongbuk-gu, Seoul, 02173, Korea

E-mail: daelee@skuniv.ac.kr

Abstract— Since advent of information revolution, there have been a lot of interest at big data analytics as well as big data. In the big
data analytics, it is essential that not only extracting valuable information from the big data but also processing the data rapidly.
Therefore, the distributed computing systems which process the analytics concurrently with parallel programming model based
distributed processing framework as well as provide data analytics related libraries get attention of researchers. Several big data
analytics programming models are studied that implemented for processing and generating huge data sets. However, developing the
big data analytics in the distributed computing systems with utilizing parallel processing framework needs expertise in each area. In
this paper, we demonstrate there is huge gap among usages of processing units if the big data analytics are naively executed at the
distributed system. And we also prove that applying proper parallelism of those methods results in 1.5 to 3.3 times improvement of
execution time compared to default parallelism.

Keywords— big data analytics; distributed computing system; distributed processing framework; parallel programming model

I. INTRODUCTION

Recently, since there has been huge interest in big data,
researchers are getting more interest in big data analytics and
systems for executing those analytics. Also, as the volume of
the data is sharply increased, enhancing processing
performance of existing big data analytics and systems
which process them is highly issued by researchers [1]. For
processing the data rapidly, distributed computing systems
[2,3,4,5] that support distributed parallel processing at
multiple computing nodes cluster and Distributed processing
frameworks [2,5] that support implement of big data
analytics at the systems are widely used.

The distributed processing frameworks provides
programmers to high level interfaces in the distributed
computing systems for taking advantage of multiple
computing nodes of the systems and multicore processor at
each computing node. The distributed computing systems
manages necessary resources for executing a program as
well as supports fault tolerance for making a program be
processed normally. The systems also provide built in
libraries for developers to implement programs more easily.
However, developing the big data analytics in the distributed
computing systems with utilizing parallel processing

framework needs expertise in each area. Because it requires
designing programs with concerning available resources of
the systems, parallelizing the program with programming
model and related tools of the framework, and reflecting
characteristics of the data such as volume and structures.

Several big data analytics programming models are
studied that implemented for processing and generating huge
data sets. Mapreduce is one of them that has been
successfully implemented for large-scale data-intensive
applications on commodity clusters. Mapreduce consists of
two functions. The map function processes a key/value pair
to create a set of intermediate key/value pairs, and the reduce
function merges all intermediate values. However, most of
big data analytics programming models such as Mapreduce
are built around an acyclic data flow model. It’s is not
suitable for other popular applications. Spark [2] is new
cluster computing framework, that supports applications
while retaining the scalability and fault tolerance of
MapReduce.

In this paper, we conduct a research on enhancing
performance of multiple big data analytics by optimizing
parallelism of those techniques at Spark which is one of the
most famous distributed computing systems. The first result
of our research demonstrates that default implementations of
the big data analytics cannot fully utilize processing resource

1716

of the system. The amount of every core’s utilization which
process partitions of the analytics is different from the
amounts of others. And then we found there can be at least
1.56 to at most 3.3 times reduction in execution time of
those techniques if proper parallelism is applied to the
implementations.

II. MATERIAL AND METHOD

A. Related Works

For implementing the big data analytics and executing
them concurrently, the distributed processing framework and
the distributed computing system should be needed. The
distributed systems not only support the resources for
executing the analytics but also provide various libraries for
convenient development of those techniques. The distributed
processing framework provides high level programming
interface for implementing the general parallel programming
models which are based on concurrent parallel processing in
the distributed systems. However, the components which
constitute the system are too complex to optimize
performance of those techniques at the distributed systems.

There are many big data analytics and they have a very
wide range of execution performance difference. If input
data of them are too large or computation resources are not
appropriately utilized some of which have really higher
computation complexity can largely be reduced by those
factors. Others may also get affected by those reasons which
could result in significant difference between the expected
execution performance and the real execution performance
of them. Therefore, when the big data analytics are
implemented at the distributed systems, optimization of
execution performance is required for not being largely
affected by the size of the data but also scale of the system’s
available computing resources.

MapReduce programming model[6] is an algorithm for
distributed parallel execution of big data analytics. It
consisted of map and reduce procedures. The map procedure
performs distributed filtering and sorting and the reduce
procedure performs a combine operation as a summary. The
model also has redundancy and fault tolerance so that it is
commonly used to implement big data analytics. However, if
the appropriate number of task partitions is not applied to the
implementations, efficiency of the system’s resources and
execution performance of the implementations can be
severely degraded.

Most of MapReduce systems are built around an acyclic
data flow model which is not suitable to some cases of
applications. To overcome such flaw, [2] introduced Spark.
Spark is in-memory based framework which is suitable to
cyclic data flow model especially machine learning
algorithm. In the experiment, it outperforms Hadoop by 10x.
To process iterative jobs resiliently, Spark use resilient
distributed datasets (RDDs) which is a read-only collection
of objects partitioned across a set of machines that can be
rebuilt if a partition is lost.

In [8], ‘CHOPPER’ is proposed which dynamically
optimize the number of parameters and partition scheme in
the middle of execution. In general, the performance of in-
memory based framework is affected by the method of data
partition because it is subordinated to the memory

performance. In its experiment, it boosts up to 1.35x as
compared with the default option of Spark. One of the
reasons why it is faster than the baseline is it minimizes the
stage execution time and shuffle traffic. However, it is
training-based model that when the available resources are
changed, it needs re-training. Therefore, it is not appropriate
to adapting cloud-based system.

Marcu [9] compares two of the most famous and fast big
data analytics frameworks: Spark vs Flink. In the experiment,
Spark is about 1.7x faster than Flink for large graph
processing, while the latter outperforms Spark up to 1.5x for
batch and small graph workloads using sensitively less
resources and being less tedious to configure. The difference
of the performance is derived from design choices like
memory management, optimizations and parameter
configuration.

There are representative two workloads were developed to
enhance the batch-oriented Hadoop with iterative support.

▪Batch workloads: Word count, grep and sort are used in
various real applications such as LHC[10], google[11],
amazon[12], and so on.

▪ Iterative workloads: K-Means, Page Rank and
Connected Components are frequent in machine learning
algorithms [13,19,20] and social graphs processing (at
Facebook [14] or Twitter [15]).

TABLE I
OPERATORS USED IN EACH WORKLOAD

Table I shows the most important operators’ usage by

each workload. These operators have basic core and specific
modules by the libraries of each framework.
▪Word Count(WC): a simple metric for measuring article

quality by counting the total number of occurrence of each
word.
▪Grep(G): a common command for searching test data

sets.
▪Sort(S): a sorting algorithm suitable for measuring the

I/O and the communication performance of the two engines.
▪K-Means(KM): an unsupervised method used in data

mining to group data elements with a high similarity.
▪Page Rank(PR): an unsupervised method used in data

mining to group data elements with a high similarity.
▪ Connected Components(CC): an important topological

invariant of a graph

1717

B. Optimizing Parallelism of Big Data Analytics at
Distributed System

In this section, we describe execution procedure of big
data analytics and optimizing big data analytics’ parallelism.
We focused on how to optimize big data analytics’
parallelism on general execution procedure of big data
analytics at distributed system.

1) Execution procedure of big data analytics

Distributed computing system[2] consists of a master
node which manages overall processing procedure of a
program and multiple computing nodes which compute
small, partitioned tasks in parallel. Developers take
advantage of parallel programming model based distributed
processing framework to implement the big data analytics.
Fig. 1 shows the general execution procedure of big data
analytics at distributed system.

Fig. 1 General execution procedure of big data analytics at distributed
system

The execution procedure detail of the analytics is given as

follow. The input data which is required for each analytic is
partitioned to small data partitions and the number of them is
decided by the framework’s parallelism policy. Then, the
partitioned data is allocated into Computing Nodes(CN) by
Master Node(MN)’s scheduler(In spark, the default policy is
FIFO). The real data is transferred to CNs by distributed file
system manager(e.g. HDFS) and the manager sometimes
replicate the whole data into the CNs for enhancing
processing performance of the system. After that, CNs
process transferred data in parallel with multiple cores and
merge the outputs of the processes when results should be
synchronized. Finally, the analytic is terminated with
returning the merged outputs of CNs.

TABLE II
AN IMPLEMENTATION EXAMPLE OF ‘WORD COUNT’ AT SPARK

lines = spark.read.text(sys.argv[1]).rdd.map(lambda r: r[0])
counts = lines.flatMap(lambda x: x.split(' ')) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)
output = counts.collect()

We show a specific example ‘Word count’ which is one

of the most common data analytics in table II. The system
proceeds the analytics’ tasks related to map procedure with
‘map’ and ‘flatMap’ API supported by the framework and
reduce procedure with ‘reduceByKey’ and ‘collect’ API [16].

TABLE III
AN IMPLEMENTATION EXAMPLE OF ‘K- MEANS’ AT SPARK

from numpy import array
from math import sqrt

from pyspark.mllib.clustering import KMeans, KMeansModel

Load and parse the data
data = sc.textFile("data/mllib/kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in
line.split(' ')]))

Build the model (cluster the data)
clusters = KMeans.train(parsedData, 2, maxIterations=10,
initializationMode="random")

Evaluate clustering by computing Within Set Sum of Squared
Errors
def error(point):
 center = clusters.centers[clusters.predict(point)]
 return sqrt(sum([x**2 for x in (point - center)]))

WSSSE = parsedData.map(lambda point: error(point))
.reduce(lambda x, y: x + y)
print("Within Set Sum of Squared Error = " + str(WSSSE))

Save and load model
clusters.save(sc,"target/org/apache/spark/PythonKMeans
Example/KMeansModel")
sameModel = KMeansModel.load(sc, "target/org/apache/spark/
PythonKMeansExample/KMeansModel")

Table III shows an example ‘K-means’ which is more

complex than ‘Word count’. After loading and parsing data,
this example use the K-means object to cluster the data into
two clusters. The number of supposed clusters is passed to
the algorithm. Then, this example computes within set sum
of squared error (WSSSE). By increasing k, we can reduce
this error measure. Usually, the optimal k is one in the
WSSSE graph.

2) Optimizing big data analytics’ parallelism

A minimum processing unit of the CN is a task partition.
An implementation of single data analytic is divided into
multiple task partitions and processed at multiple CNs in
parallel. However, if the number of task partition is
improperly decided, execution time deviation of each CN is
extremely large. There are 3 case of processing.

1718

TABLE IV
TOTAL EXECUTION TIME OF ALL CNS IN CASE OF PROCESSING ‘WORD

COUNT’, ‘K- MEANS CLUSTERING’, AND ‘SORT’

Time unit:
minute

CN 1 CN 2 CN 3 CN 4

Word count

5GB 15 14 23 14

10GB 34 29 37 27

15GB 52 50 50 44

K-means
clustering

10GB 80.9 81.4 115 81.4

15GB 163 157 231 169

Sort

0.01GB 0.68 0.72 0.75 0.77

0.05GB 1.91 2.43 1.83 2.32

0.1GB 4.45 4.07 3.7 4.2

Table IV shows that in case of ‘K-means clustering’

which handles 15GB, CN 2 processed it 157 minutes while
CN 3 processed it 231 minutes which is 74 minutes longer
than that of CN 2. As a result, the parallelism of the
analytics’ implementation so severely affects the usage of
CNs that usage of CNs can be extremely different.

We linearly increased the total number of partitions for
optimizing execution performance of the implementations
and found the lowest bound of execution time for each case.
Moreover, we verified each analytic has different
appropriate number of task partitions and the optimal
number of every analytics’ task partitions is different if input
data of them vary in size. We also recognized that after the
point which has minimum execution time, there is almost no
difference whether the number of task partitions is increased.
And there is large performance decrease when the number of
task partitions is increased too much.

It means that although increasing the number of task
partitions makes usage of the system resources high, there is
also additional overheads such as scheduler delay of task
partitions and context switching overhead as more number of
task partitions are uploaded to cores. In our future work, we
will analysis factors which are closely related to
performance of processing task partitions and find the
optimal number of task partitions which makes execution
time minimized after only one execution of specific
implementation. We also have plan to research scheduler of
task partitions in the distributed computing system for
promoting efficiency of CNs.

III. RESULT AND DISCUSSION

The experiment environment of our research is progressed
with single cluster with 4 desktops. Each one consists of
Intel i7 8 cores(4 hyperthread cores included) 3.4GHz
processor, 16GB memory, 256GB SSD. And we used
Ubuntu 14.04 as OS, Spark 2.0.2, Java 1.7, Python 2.7, and
Scala 2.11 for our experiment. The Spark consists of 1 MN
and 4 CNs and we added 8GB memory to the desktop which
has the MN. In this experiment, we are focused on total
execution time. For the batch workloads, our goal was to
validate strong and weak scalability. We further analyze the
resource usage that focused on scalability, caching and
pipelining performance.

Fig. 2 Execution time curves of the big data analytics as the number of word
count is increased

Fig. 2 shows execution time curves of each method as the

number of word count is increased when the size of input
data varies. The ‘word count’ 5gb, 10gb, 15gb has minimum
execution time when the number of task partitions are 400,
600, 900 and the execution time of them is increased after
the number of task partitions becomes 2000. This means that
even though the input data is increased, increasing the
number of task partitions not always decreases the
executions time of the method.

Fig. 3 Execution time curves of the big data analytics as the number of K-
means clustering is increased

Fig. 3 shows execution time curves of each method as the

number of K-means clustering is increased when the size of
input data varies. The ‘K-means’ 5gb, 10gb, 15gb has
minimum execution time when the number of task partitions
are 700, 1000, 300 and the average execution time of them is
9.12, 18.70, and 27.93. Each of them is generally over each
average after the number of task partitions becomes 1200.
This also shows the input data is increased, increasing the
number of task partitions not always decreases the
executions time of the method.

1719

Fig. 4 Execution time curves of the big data analytics as the number of sort
is increased

Fig. 4 shows execution time curves of each method as the

number of sort clustering is increased when the size of input
data varies. The ‘sort’ 0.05gb, 0.10gb, 0.15gb has minimum
execution time when the number of task partitions are 224,
224, 320 and the execution time of them is increased after
the number of task partitions becomes 500. This means that
reordering the operators drastically reduces the execution
time and enables more efficient resource usage.

Fig. 5 Standard deviation rate of optimized and default implementations’
processing time for all CNs

Fig. 5 shows standard deviation(stdev) rate of optimized
and default implementations’ processing time for all CNs
when the input size of the data varies. In case of optimized
ones, all the implementations has relatively low processing
time to that of default ones. Specially, ‘Wordcount’ 5gb,
15gb, and ‘K-means’ 5gb, 10gb have nearly 0 when they are
compared to default ones. It means that if proper parallelism
is applied, usage of the system resource would be higher
than when it is not applied.

Fig. 6 Improvement rate of optimized and default implementations’
processing time for all CNs

Fig. 6 shows improvement rate of optimized and default

implementations’ processing time when the input size of the
data varies. In case of wordcount, there is at most 3.33 times
higher than execution performance of the default with 5gb
input data and at least 2.29 times performance improvement
of the default with 15gb input data. Although kmeans with
15gb has 1.04 times performance enhancement, but most
cases have been improved more than 1.5 times execution
performance of the default.

IV. CONCLUSION

Nowadays, by information has increased explosively,
enhancing processing performance of big data analytics and
systems is highly issued by researchers. Several big data
analytics programming models are studied that implemented
for processing and generating huge data sets. However,
developing the big data analytics in the distributed
computing systems with utilizing parallel processing
framework needs expertise in each area.

In this paper, we researched on enhancing performance of
processing time by applying parallelism optimization when
implementing big data analytics with parallel programming
model based distributed processing framework at distributed
computing system. Our study proved that if the optimization
of parallelism is not applied, the implementations of the
methods cannot fully utilize resources of the system. And we
also demonstrated if proper parallelism is applied to the
implementations, there can be at least 1.5 to at most 3.3
times performance enhancement.

In this paper, we only focused on optimizing parallelism
of spark by configuring partitioning parameter. However,
there is plentiful parameters that have close relationship on
optimizing overall performance of spark. Since parameters
have dependency among them, simple idea or single
heuristic which tunes all of them is almost impossible as

1720

well as inefficient at the aspect of executing performance. In
our future works we will deal with more parameters such as
network shuffle parameters, system resource utilization
parameters, etc which can seriously impact on the Spark. We
will also tune those parameters taking advantage of the latest
machine learning techniques which are variety of deep
learning models: “Deep Belief Network”, “Convolutional
Neural Network”, and “Recurrent Neural Network”.

ACKNOWLEDGMENT

This Research was supported by Seokyeong University in
2014. *Corresponding Author: Daewon Lee (daelee@skuniv.
ac.kr)

REFERENCES
[1] Alsheikh MA, Niyato D, Lin S, Tan H-P, Han Z. Mobile big data

analytics using deep learning and apache spark. IEEE Network.
2016;30(3):22-9.

[2] Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark:
Cluster Computing with Working Sets. HotCloud. 2010;10(10-10):95.

[3] Power R, Li J, editors. Piccolo: Building Fast, Distributed Programs
with Partitioned Tables. OSDI; 2010.

[4] Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, et
al., editors. Pregel: a system for large-scale graph processing.
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data; 2010: ACM.

[5] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D, editors. Dryad:
distributed data-parallel programs from sequential building blocks.
ACM SIGOPS operating systems review; 2007: ACM.

[6] Dean J, Ghemawat S. MapReduce: simplified data processing on
large clusters. Communications of the ACM. 2008;51(1):107-13.

[7] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al.,
editors. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation; 2012:
USENIX Association.

[8] Paul AK, Zhuang W, Xu L, Li M, Rafique MM, Butt AR, editors.
CHOPPER: Optimizing Data Partitioning for In-memory Data
Analytics Frameworks. Cluster Computing (CLUSTER), 2016 IEEE
International Conference on; 2016: IEEE.

[9] Marcu O-C, Costan A, Antoniu G, Pérez-Hernández MS, editors.
Spark versus flink: Understanding performance in big data analytics
frameworks. Cluster Computing (CLUSTER), 2016 IEEE
International Conference on; 2016: IEEE.

[10] Aad, G., Abat, E., Abdallah, J., Abdelalim, A. A., Abdesselam, A.,
Abdinov, O., Acharya, B. S, et al., CERN: The Large Hadron
Collider. Choice Reviews Online. 2009;46(08):46-4503-46-4503.

[11] Knill, Emanuel. "Physics: quantum computing." nature
2010;463(7280): 441-443.

[12] Singh L, K. Bharti R. Comparison among different Cryptographic
Algorithms using Neighborhood-Generated Keys. International
Journal of Computer Applications. 2013;73(5):40-43.

[13] Anjeneya Swami Kare. A Simple Algorithm For Replacement Paths
Problem. Electronic Notes in Discrete Mathematics. 2016;53:307-
318.

[14] Lee C. Find Them on Facebook: Using Facebook to Reach Students
Where They Already Go. SSRN Electronic Journal.

[15] Azar P. The Wisdom of Twitter Crowds: Predicting Stock Market
Reactions to FOMC Meetings via Twitter Feeds. SSRN Electronic
Journal.

[16] Aleksiyants A, Borisenko O, Turdakov D, Sher A, Kuznetsov S.
Implementing Apache Spark jobs execution and Apache Spark
cluster creation for Openstack Sahara. Proceedings of the Institute for
System Programming of RAS. 2015;27(5):35-48.

[17] Song J. Performance and Energy Optimization on Terasort Algorithm
by Task Self-Resizing. Information Technology And Control.
2015;44(1).

[18] Kadhum AM, Hasan MK. Assessing the Determinants of Cloud
Computing Services for Utilizing Health Information Systems: A
Case Study. International Journal on Advanced Science, Engineering
and Information Technology. 2017;7(2):503-10.

[19] Yun, Y., Hooshyar, D., Jo, J. Lim, H. Developing a hybrid
collaborative filtering recommendation system with opinion mining
on purchase review. Journal of Information Science; 2017: Chartered
institute of library and information association.

[20] Lee, S., Hooshyar, D., Ji, H. Nam, K. Lim, H. Mining biometric data
to predict programmer expertise and task difficulty. Cluster
Computing; 2017:1-11.

1721

