

Vol.7 (2017) No. 5

ISSN: 2088-5334

A Dynamic Resource Manager with Effective Resource Isolation
Based on Workload Types in Virtualized Cloud Computing

Environments
Chung Geon Song1, Na Yoon Hwang1, Heon Chang Yu1, Jong Beom Lim2, *

1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea

E-mail: security0730@korea.ac.kr, nayoo38@korea.ac.kr, yuhc@korea.ac.kr

2 Department of Game & Multimedia Engineering, Korea Polytechnic University,

Siheung-si, Gyeonggi-do 15073, Korea

E-mail: jblim@kpu.ac.kr

Abstract— To use computing resources for processing parallel algorithms on demand, cloud computing has been widely used since it
is able to scale in response to load increases and decreases. Typically, cloud computing providers offer virtual machines to cloud users
with static configurations, and these configurations are not changed until virtual machines are shutting down. To accelerate parallel
processing computations in cloud computing environments, we design and implement a dynamic resource manager by isolating
resources based on workload types. To avoid unnecessary context switching and increase CPUs affinity, our dynamic resource
manager determines whether vCPU to physical CPU core pinning is required. If so, the VM’s vCPUs are pinned by our dynamic
resource manager, which can guarantee the resource and performance isolation. With our proposed resource manager for virtual
machines, we can achieve a performance boost and load balancing at the same time. Performance results show that our proposed
method outperforms the default scheduler of Xen about 36.2% by reducing the number of context switching for VMs.

Keywords— Resource manager; hypervisor; virtualization; resource isolation; cloud computing

I. INTRODUCTION

Scientific applications often require a massive number of
computing resources for performing large-scale parallel
computations. Traditionally, these needs have been
addressed by using high-performance computing (HPC)
hardware on physical server machines [1-3]. Cloud
computing providers offer virtual machines (VMs) as
computing resources to cloud users with user-specified
configurations [4, 5] and VMs can be dynamically
provisioned on a pay as you go basis for many applications
[6-9].

Although requirements of cloud users for cloud
computing services are varied, cloud computing ensures that
it can supply computing resources on demand by taking
advantage of virtualization technology. The advances in
virtualization technology have attracted HPC users to cloud
computing and enhanced the performance of the hypervisor
or virtual machine monitor (VMM). The typical examples
of hypervisors include Xen and kernel-based virtual
machine (KVM) [10-12].

However, the specific demands of HPC applications in
cloud computing environments often mismatch the
assumptions and mechanisms provided by default
hypervisor settings for various workloads. Figure 1 shows
an example of VMs’ workloads. For vm1, the application
running on the VM is CPU-intensive, in other words, it
consumes the CPU resource as much as possible.

On the other hand, the workload of vm2’s application is
like to be a background service. When the two VMs are
running on the same host and the configurations of the VMs
are the same, the resource allocated to vm2 has more idle
time than vm1’s case.

In this paper, we propose a dynamic resource manager
with effective resource isolation based on workload types in
virtualized cloud computing environments. The proposed
resource manager monitors VMs and detects workload types
of applications for VMs running on the hypervisor. Then, it
dynamically allocates computing resources to VMs on
runtime, which can resolve the mismatch and improve
utilization of resources effectively.

1771

The rest of this paper is organized as follows. Section2
describes our research motivation and our intuition for
designing and implementing the resource manager for VMs.
Section 3 provides our proposed dynamic resource manager
with resource isolation. The experiments and performance
analysis are given in Section 4. Finally, Section 5 concludes
the paper.

Scientific Workflow

Service Workflow

Fig. 1 VMs’ workloads.

II. MATERIAL AND METHOD

While cloud computing has been considered as an
efficient solution for processing parallel applications and
CPU intensive workloads, developing a dynamic resource
manager with workload types in mind is not fully undertook.
We found that most cloud applications could be categorized
into two different groups: scientific workflow and service
workflow. In this section, we provide research motivation
and related work in the area.

In this section, we present our dynamic resource manager
with resource isolation based on workload types. The
proposed dynamic resource manager is able to recognize the
workload types (scientific and service) without prior
knowledge and history. With the workload type information
the dynamic resource manager allocates recourses to VMs
while the VMs are running.

A. Background and Motivation

HAL

• TLS : Thread Level Scheduler
• HAL : Hardware Abstraction Layer
• P/C : Processor or Core

P/C P/CP/C P/C

Operating
System
Scheduler

H
ar

dw
ar

e
K

er
ne

l S
pa

ce
U

se
r

S
pa

ce

TLS TLS

Use-level
threads

Process

Operating System
Threads

TL
S

TLS TLS

Fig. 2 Basic process scheduling in operating systems

Figure 2 shows the basic process scheduling in operating

systems. The scheduler of operating systems is in charge of
scheduling processes or threads. Therefore, the scheduler
determines the mapping between threads and processors.

As cloud computing emerges, software system has
changed from standalone applications into service-based
systems based on the virtualization technology. Typically,
the major goal of resource management of computer
systems was to provide fairness between processes.

However, in cloud computing environments, there is
another mediator, that is, hypervisor. With this in mind, a
process (threads) can be considered as a VM and, therefore,
the cost of context switching for VMs is higher than that for
typical processes.

Since cloud computing environments are different from
the traditional distributed systems, resource management
schemes for processes is not suitable for VMs. In other
words, it generates unnecessary context switching between
VMs.

Hence, we introduce a novel dynamic resource manager
with effective resource isolation for VMs considering
performance and load balancing by reducing the number of
context switching.

B. Related Work

In [13], Li et al. proposed an affinity-aware dynamic
vCPU pinning scheduling for VMs, the mechanism aims at
supporting only symmetric multi-processors (SMPs).
However, the affinity information should be known before
the scheduling process.

In [14], Caglar et al. proposed a log based machine
learning approach for optimizing the hypervisor’s system
parameters by performing three phases, that is, discover,
optimize, and observe steps.

While it can optimize the scheduler of the hypervisor, it
requires history information for the system and involves
computational cost for performing the k-means and
simulated annealing algorithms. In [15], Zhou et al.
proposed a dynamic VM allocation policy for a cluster by
migrating VMs for load balancing.

Our work differs from previous work in that our dynamic
resource manager can be applied to both SMPs and
asymmetric multi-processors (AMPs) systems since our
daemon service implementation is not dependent on a
specific system.

Furthermore, the monitoring scheme of our dynamic
resource manager periodically checks the recent system
information on a real time basis, and does not require
history information and complex computation for the
resource allocation algorithm.

Moreover, with our dynamic resource manager, both
performance gain and load balancing can be achieved by
vCPU pinning. In other words, once vCPUs are pinned,
other VMs cannot interfere the pinned vCPUs.

C. System Model

Figure 3 shows the architecture of our dynamic resource
manager. The dynamic resource manager resides in the host
OS and it periodically monitors resources of the system for
the host OS and the guest OSes to check whether resource
re-allocation is required. The monitor module in the
dynamic resource manager automatically categorizes the
VMs in the system according to the algorithm.

Then, the allocation module manages the resource
allocation to optimize the performance of the system. Our
dynamic resource manager has two policies to allocate
resources to VMs:

• allocate_pr: it allocates resources to VMs evenly by

considering load balancing;

1772

• allocate_sla: it allocates resources to VMs
restrictively by considering SLA.

The allocate_pr policy is for the scientific workflow.

When the allocate_pr policy is used, the dynamic resource
manager decides the amount of resources for the scientific
workflow and allocates the resources to the VM accordingly.
Therefore, the scientific workflow can benefit from the
dynamic resource manager.

The allocate_sla policy is for the service workflow.
When the allocate_sla policy is used, the dynamic resource
manager allocates the minimum amount of resources to VM
provided that SLA violation is not detected.

Hardware

Linux Kernel
Hypervisor

QEMU

Virtio 1

Guest
OS
1

…

Host
OS

libvirt

Dynamic
Resource
Manager

Virtio 2

Guest
OS
2

Virtio N

Guest
OS
N

Fig. 3 Architecture of our dynamic resource manager

D. Basic Idea

The hypervisor regards vCPU as a logical computation
unit for VMs. Unlike physical machines, by taking
advantage of virtualization technology, the hypervisor is
capable of adjusting the number of vCPUs of VMs
regardless of the number of physical CPU cores while VMs
are running.

When the number of vCPU is greater than the number of
physical CPU cores (overcommit), context switching is
inevitable. On the other hand, when the number of vCPU is
less than the number of physical CPU cores, VMs are
underutilizing the host resources. Based on applications’
workload types of VMs, our proposed dynamic resource
manager adds additional vCPUs considering the host’s
available physical CPU cores.

Then, to avoid unnecessary context switching and
increase CPUs affinity, our dynamic resource manager
determines whether vCPU to physical CPU core pinning is
required. If so, the VM’s vCPUs are pinned by our dynamic
resource manager, which can guarantee the resource and
performance isolation.

Figure 4 illustrates an example of the basic idea behind
our vCPU pinning algorithm for the dynamic resource
manager. Suppose the workload type of VM1’s application
is scientific workflow, our dynamic resource manager is
able to detect the type of the application by monitoring
performance metrics. The Tcheck parameter is used for
monitoring period and the administrator can adjust the
parameter according to the resource management policy.

1:1 Matching

Fig. 4 An example of vCPU to physical CPU core pinning.

In our design, when the performance metric exceeds the

threshold value, our dynamic resource manager regards it as
the scientific workflow. Whereas, when the performance
metric is below the threshold value, it is considered as the
service workflow.

 Note that the workload type can be changed from
scientific to service or vice versa on runtime. With this in
mind, our dynamic resource manager can achieve the
performance gain while maintaining SLA by isolating
resources. The next subsection describes the algorithmic
details for our dynamic resource manager with resource
isolation, and the symbols used in the algorithms are listed
in Table 1.

TABLE I
SYMBOLS USED IN THE ALGORITHMS

Symbol Description

VMi
sc i-th VM of VMsc

VMi
se i-th VM of VMse

Listsc A list of VMsc

Listse A list of VMse

Tcheck Monitoring period

α Threshold of utilization

β Threshold of count

Nsc The number of VMsc

Nse The number of VMse

add_vm() A function to add a VM to a list

delete_vm() A function to delete a VM from a list

allocate_pr() A function to perform the allocate_pr

policy with a VM list

allocate_sla() A function to perform the allocate_sla

policy with a VM list

1773

E. Resource Monitoring Algorithm

The resource monitoring step is essential for the dynamic
resource manager. Based on the resource monitoring
information, our dynamic resource manager can categorize
the workflow types of VMs and allocate the specified
amount of resources to VMs.

The resource monitoring algorithm is periodically
performed as follows (cf. Algorithm 1).

1) When a VM is created: Since our dynamic resource
manager does not rely on history information of VMs, the
default policy is used when a VM is created. In other words,
the type of workflow of the newly created VM is
unspecified and the default resource scheduling policy is
used. Note that when the default resource scheduling policy
is used, the VM’s resource is static and does not changed
during the VM is running in the system.

2) Checking the resource utilization of VMs: For a newly
created VM, the resource monitoring algorithm checks the
resource utilization. When the utilization of the VM exceeds
the threshold α, it increases count_scientific parameter.
Similarly, when the utilization of the VM below the
threshold α, it increases count_service parameter. The
count_scientific and count_service parameters are used
when determining the types of workflow.

In this procedure, the count_scientific and count_service
parameters cannot have the positive values simultaneously
when determining the workflow types. Either
count_scientific or count_service parameter can have the
positive value in order to become a workflow type.

Algorithm 1. Dynamic Resource Monitoring Algorithm

1: /* The algorithm is performed every Tcheck */

2: /* Resource monitoring for VMse */

3: for i =1 to Nse do

4: if (VMi
se.cpuUtilization > α) then

5: increase VMi
se.count by 1;

6: else

7: decrease VMi
se.count by 1;

8: end if

9: end for

10: /* Resource monitoring for VMsc */

11: for i =1 to Nsc do

12: if (VMi
sc.cpuUtilization < α) then

13: increase VMi
se.count by 1;

6: else

7: decrease VMi
se.count by 1;

16: end if

17: end for

More specifically, when the resource monitoring

algorithm increases the count_scientific parameter, it
initializes the count_service parameter to 0. Similarly, when
the resource monitoring algorithm increases the
count_service parameter, it initializes the count_scientific

parameter to 0. By doing so, the dynamic resource manager
maintains the workflow types of VMs in the system.

Algorithm 2 Dynamic Resource Management Algorithm

1: /* The algorithm is performed every Tcheck */

2: /* Dynamic resource management for VMse */

3: for i = 1 to Nse do

4: if (VMi
se.count > β) then

5: VMi
se.count ← 0;

6: delete_vm(Listse, VMi
se);

7: add_vm(Listsc, VMi
se);

8: allocate_pr(Listsc);

9: end if

10: end for

11: /* Dynamic resource management for VMsc */

12: for i = 1 to Nsc do

13: if (VMi
sc.count > β) then

14: VMi
sc.count ← 0;

15: delete_vm(Listsc, VMi
sc);

16: add_vm(Listse, VMi
sc);

17: allocate_sla(Listse);

18: end if

19: end for

3) Determining the workflow types: Based on the
resource monitoring information, our dynamic resource
manager is able to determine the types of workflow. When
the count_scientific parameter reaches β, the dynamic
resource manager considers the workflow as the scientific
type. Similarly, when the count_service parameter reaches β,
the dynamic resource manager considers the workflow as
the service type.

Note that a VM cannot become both scientific and
service workflow types since the resource monitoring
algorithm guarantees the mutual exclusion for the
count_scientific and count_service parameters.

F. Dynamic Resource Management Algorithm

With the workflow type information, the dynamic
resource manager allocates resources to VMs as follows (cf.
Algorithm 2).

1) Resource maintenance: The dynamic resource
manager maintains the available resources of the system as
Equation 1 for performance and load balancing.

 ,servicescientific Resγ)(1 Resγ Total_Res ⋅−+⋅= (1)

where γ is the system parameter and 0 < γ < 1.
The γ parameter can be tuned according to the number of

scientific workflows and the number of service workflows
in the system. With this resource maintenance method, the

1774

resource isolation is effectively achieved by taking
advantage of the libvirt library.

When the number of scientific workflows is greater than
the number of service workflows, the dynamic resource
manager increases the γ parameter. On the other hand, when
the number of service workflows is greater than the number
of scientific workflows, the dynamic resource manager
decreases the γ parameter.

2) For scientific workflow: The dynamic resource
manager allocates γ·Resscientific/nscientific to a VM, where
nscientific is the number of scientific workflows.

3) For service workflow: The dynamic resource manager
allocates the minimum amount of resources to a VM if SLA
violation is not detected.

Note that like the resource monitoring algorithm, the
resource allocation procedure is also performed periodically.
Therefore, the dynamic resource manager can achieve both
performance and load balancing by reducing the number of
context switching for VMs.

III. RESULTS AND DISCUSSION

In this section, we provide the experimental results to
show the effectiveness of the proposed dynamic resource
manager. The NAS Parallel Benchmarks (NPBs) are used
for scientific workflow applications. Table 2 shows the
experimental settings for performance evaluation.

Although the experimental environment is configured
with the Xen hypervisor, our dynamic resource manager can
be used with other hypervisors like KVM since the resource
monitoring module and the dynamic resource allocation
module are developed without dependency of hypervisors.

TABLE II
EXPERIMENTAL SETTINGS

Parameter Value

Host OS Ubuntu 14.04

Hypervisor Xen

Host CPU Intel(R) i5-4590T

The number of host CPU

cores

Quad core without hyper-threading

Host Memory 8 GB

Figure 5 shows the performance results of NPBs for the

default scheduling method and the proposed method with
our dynamic resource manager. The results show that with
our dynamic resource manager, the execution time is
reduced by 36.2% for the benchmarks on average. This
demonstrates that our dynamic resource manager effectively
controls the vCPU to physical CPU core mapping and
monitors the VMs’ resource status.

Because our dynamic resource manager is running as a
background service at dom0, the overhead of controlling
VMs is almost zero without requiring history information or
complex computation. It is interesting to note that the
proposed solution can achieve almost 2 times faster than the

default scheduling policy for some of the benchmark results
(e.g., BT and LU).

0

5

10

15

20

25

30

35

40

45

BT CG DC EF FT IS LU MG SP UA

Default Scheduling Proposed Solution

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Fig. 5 Performance comparison for benchmark runtime

This signifies that when we apply the proposed dynamic

resource manager to the scalable clusters, the performance
gain will become large. Since we focus on implementing the
prototype of the dynamic resource manager by pinning
vCPUs to physical CPU cores and detecting the workload
types of VMs’ applications with our novel algorithm, we
leave the deployment our dynamic resource manager to a
large-scale cluster as future work.

For some of the benchmark results (e.g., CG), the
difference of execution time is comparable. The reason why
this result is introduced is that some applications do not
affected by CPU performance.

Nevertheless, the proposed solution always results in the
better execution time in comparison with the default
scheduling policy. With our dynamic resource monitoring
and management algorithm, the number of context
switching can be reduced since our algorithm does not allow
vCPU overcommits.

The downside of our approach is as follows. Since the
resources are allocated on runtime, some vCPUs mappings
to physical CPU cores should be altered as the number of
VMs is increasing or decreasing or the workload types of
the applications are changing.

To overcome this challenge, we can use the epoch
parameter to determine the re-allocation of vCPUs. After
epoch, our dynamic resource manager checks whether the
vCPUs mapping has to be altered. If this is the case, the
algorithm adds or subtracts vCPUs according to the
monitoring information without violating SLA and allowing
overcommits.

TABLE III
PERFORMANCE RESULTS FOR THE NUMBER OF CONTEXT SWITCHING

 Default Scheduling Proposed Solution

BT 200,932 110,576

Table 3 shows performance results for the number of

context switching. For the BT benchmark, the number of
context switching is 200,932 when the default scheduling
method is used. When our dynamic resource manager is
used, the number of context switching is 110,576, which is

1775

about 55% of reduction in comparison with the default
scheduling method.

IV. CONCLUSION

In this paper, we proposed a dynamic resource manager
for parallel processing in virtualized cloud computing
environments. Our proposed resource manager for virtual
machines classifies workloads into two categories (service
workload and scientific workload). Then, it effectively
isolates computing resources for virtual machines during
runtime. Performance results show that our proposed
method outperforms the default scheduler of Xen about
36.2% by reducing the number of context switching for
VMs. Future work includes finding the optimal resource
monitoring period and applying machine learning
algorithms for the tasks of resource isolation and scheduling.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A1A01061373). The author to whom
correspondence should be addressed is JongBeom Lim.

REFERENCES
[1] D. Zhao et al., "FusionFS: Toward supporting data-intensive

scientific applications on extreme-scale high-performance
computing systems," in 2014 IEEE International Conference on Big
Data (Big Data), 2014, pp. 61-70, 2014.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. Ullah Khan, "The rise of “big data” on cloud computing: Review
and open research issues," Information Systems, vol. 47, pp. 98-115,
1// 2015.

[3] M. Ben Belgacem and B. Chopard, "A hybrid HPC/cloud distributed
infrastructure: Coupling EC2 cloud resources with HPC clusters to
run large tightly coupled multiscale applications," Future
Generation Computer Systems, vol. 42, pp. 11-21, 1// 2015.

[4] J. Lim, H. Yu, and J. M. Gil, "Detecting Sybil Attacks in Cloud
Computing Environments Based on Fail‐ Stop Signature,"
Symmetry, vol. 9, no. 3, p. 35, 2017.

[5] J. Lim, T. Suh, J. Gil, and H. Yu, "Scalable and leaderless Byzantine
consensus in cloud computing environments," Information Systems
Frontiers, journal article vol. 16, no. 1, pp. 19-34, 2014.

[6] S. S. Manvi and G. Krishna Shyam, "Resource management for
Infrastructure as a Service (IaaS) in cloud computing: A survey,"
Journal of Network and Computer Applications, vol. 41, pp. 424-
440, 5// 2014.

[7] N. Grozev and R. Buyya, "Performance Modelling and Simulation
of Three-Tier Applications in Cloud and Multi-Cloud
Environments," The Computer Journal, vol. 58, no. 1, pp. 1-22,
2015.

[8] A. M. Kadhum and M. K. Hasan, "Assessing the Determinants of
Cloud Computing Services for Utilizing Health Information Systems:
A Case Study," International Journal on Advanced Science,
Engineering and Information Technology, Health information
system; cloud computing; cloud services; healthcare; health
informatics; preliminary study; qualitative interview; Iraq vol. 7, no.
2, 2017.

[9] M. A. Rodriguez and R. Buyya, "A taxonomy and survey on
scheduling algorithms for scientific workflows in IaaS cloud
computing environments," Concurrency and Computation: Practice
and Experience, vol. 29, no. 8, pp. 1-32, 2017, Art. no. e4041.

[10] P. Barham et al., "Xen and the art of virtualization," SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 164-177, 2003.

[11] I. Habib, "Virtualization with KVM," Linux J., vol. 2008, no. 166, p.
8, 2008.

[12] S. Varrette, M. Guzek, V. Plugaru, X. Besseron, and P. Bouvry,
"HPC Performance and Energy-Efficiency of Xen, KVM and
VMware Hypervisors," in 2013 25th International Symposium on
Computer Architecture and High Performance Computing, 2013, pp.
89-96.

[13] Z. Li, Y. Bai, H. Zhang, and Y. Ma, "Affinity-Aware Dynamic
Pinning Scheduling for Virtual Machines," in 2010 IEEE Second
International Conference on Cloud Computing Technology and
Science, 2010, pp. 242-249.

[14] F. Caglar, S. Shekhar, and A. Gokhale, "iTune: Engineering the
Performance of Xen Hypervisor via Autonomous and Dynamic
Scheduler Reconfiguration," IEEE Transactions on Services
Computing, vol. PP, no. 99, pp. 1-1, 2016.

[15] W. Zhou, S. Yang, J. Fang, X. Niu, and H. Song, "VMCTune: A
Load Balancing Scheme for Virtual Machine Cluster Using
Dynamic Resource Allocation," in 2010 Ninth International
Conference on Grid and Cloud Computing, 2010, pp. 81-86.

1776

