
International Journal on

A d v a n c e d S c i e n c e
E n g i n e e r i n g
Information Technology

A Comparison of Exhaustive, Heuristic and Genetic Algorithm for
Travelling Salesman Problem in PROLOG

Nur Ariffin Mohd Zin1 , Siti Norul Huda Sheikh Abdullah2, Noor Faridatul Ainun Zainal3

Esmayuzi Ismail4
1,2,3,4Center for Artificial Intelligence Technology, Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia 43600 Bangi, Malaysia.

 E-mail: ariffin@uthm.edu.my1, mimi@ftsm.ukm.my2, farida@ftsm.ukm.my3, esmayuzi@ktb.edu.my4

1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Malaysia.

Abstract— This paper discusses on a comparative study towards solution for solving Travelling Salesman Problem based on three
techniques proposed namely exhaustive, heuristic and genetic algorithm. Each solution is to cater on finding an optimal path of
available 25 contiguous cities in England whereby solution is written in Prolog. Comparisons were made with emphasis against time
consumed and closeness to optimal solutions. Based on the experimental, we found that heuristic is very promising in terms of time
taken, while on the other hand, Genetic Algorithm manages to be outstanding on big number of traversal by resulting the shortest
path among the others.

Keywords— travelling salesman; exhaustive; heuristic; genetic algorithm; prolog; cities; cuckoo algorithm;

I. INTRODUCTION

Travelling Salesman Problem (TSP) has been a prominent
problem discussed widely among scholars in the community
of mathematics and computer science. It was started by Irish
and British mathematician, namely Hamilton and Thomas
Kirkman in 1800s. The idea is to travel along a number of
cities, n while maintaining to visit each city only once
through a shorter path and returning to the starting city. It is
a non-trivial problem, hence acquiring a sort of
mathematical explanation to solve. A lot of effort has been
made to conceive a new algorithm as to tackle the most
optimized solution. Over years, the size of TSP solved has
expanded dramatically, from solution of 49 cities [1] up to
85,900 cities recently.

TSP is feasibly solved by illustrating it as a graph as
illustrated in Fig. 1. Cities are depicted as vertices, along
with edges that resemble path. Thus, leading to acquiring
shortest Hamiltonian cycle is the great concern towards
solution. Given 2 cities, traversal could be done in both
ways, as a symmetric TSP should be. On contrary, an
asymmetric TSP may not allow traversal on both direction,
which means the cost should not necessary the same.

Our aim here is to provide a concrete comparison in
solving TSP via exhaustive, heuristic and genetic algorithm
in regards of optimum cost of traversal. We opted to
measure the cost in terms of time taken and utmost shortest
path.

The rest of this paper is organized as follows. Section two
elaborates on state of the art, reviewing the concept and
several related studies from the past. Third section briefly
discusses on proposed method to perform the solution.
Section four reviews the result obtained by each method
utilized. We conclude this paper in a brief and concise
summary in section five. Last but not least will be a section
of references that referred throughout the study.

Fig. 1 Example of 4-cities TSP as a graph based on [12]

49

II. STATE OF THE ART

Solutions are classified into two categories, either
exhaustive or heuristic [2]. Exhaustive seems to be
promising in a way it leads to ideal result. The search space
for TSP is to search the all traversal combination; a
symmetric determined by (n-1)!/2, an asymmetric defined by
(n-1)!; where n is the number of cities. For instance, to solve
a 5 cities problem consumes 24 possible solutions for
asymmetric and half the number if it is symmetric. However,
the efficiency lies within a polynomial factor of O(n.n!),
hence impractical in some way, especially for big number of
cities. Exhaustive approach would search all (n-1)! possible
paths and keep the one with the optimal cost which is shown
in Algorithm 1. Inspired mathematically, there are such a
quite numbers of its kind as explained in [3] namely, cutting
plane method, branch-and-bound and branch-and-cut.
Cutting plane method was presented by Dantzig et al. [1]
which has solved an instance of 49 cities to optimality by
constructing a tour and proving that no other tour could be
shorter. Branch-and-bound by Land and Doig [4] can be
determined as relaxation of upper and lower bound to
eliminate unnecessary solution candidates. While branch-
and-cut incorporates branch-and-bound and cutting plane
method [5]. Apparently, of all those, the most breakthrough
achieved stated to be a solution for about 85,900 cities [6].
As the number of cities exceeds, alternatively, we may have
to rely on heuristic approach.

Algorithm 1: Exhaustive search algorithm:
Finds every possible route and returns the shortest [4].
Input : An undirected graph G = (V,E) with edge
weights we.
Output: A Hamilton cycle defined by the edges S
weight(T)= eE,we
Step 1: w = w(1,2) + w(2,3) + w(3,4) + ... + w(n-
1,n) + w(n,1)
Step 2: Best_S_so_far = (n, [1, 2, 3, ... , n-1,
n], w)
Step 2.1: S = (1, [1], 0)
Step 2.2: Search(S, Best_S_so_far)
Step 2.3: print Best_S_so_far
Step 3: procedure Search(S, Best_S_so_far)
Step 3.1: let (k, [i1, i2, ... , ik], w) = S
Step 3.2: let (n, [i1B, i2B, ... , inB], wB) =
Best_S_so_far
Step 3.3: if k = n then new_w = w + w(ik,i1)
Step 3.3.1: if new_w < wB then Best_S_so_far = (k,
[i1, i2, ... , ik], new_w)end if
Step 3.4: else for all j not in [i1, i2, ... , ik]
Step 3.4.1: new_w = w + w(ik,j)
Step 3.4.2: New_S = (k+1, [i1, i2, ... , ik, j],
new_w)
Step 3.4.3: Search(New_S, Best_S_so_far)end for
end if
Step 4: return

Heuristic approach anticipates the solution guided by a

given knowledge, which to some extent, leads to the exact
result or remains merely approximation. Unlike exact
algorithm, heuristic does not have to exhaustively permute
all available paths, in which the time taken may be less nor
reasonable. However, it may not guarantee of yielding an
optimal result or even worse, not returning to the first city. It
is marginal, but the possibilities are there. Instances of TSP
employing heuristic are various; Lin-Kernighan by Lin and
Kernighan [7], Tabu-Search by Glover [8], Simulated
Annealing by Kirkpatrick et al. [9] and Cerny [10], Ant
Colony by Dorigo and Gambardella [11] and quite a few. In

this study, we take example of Greedy algorithm. This
algorithm will always choose the next nearest city from the
current city. According to Nilsson [12], the selection must
not violate two conditions; 1) It doesn’t create any cycle
with less than n edges; 2) It doesn’t increase the degree of
any node to more than 2. Algorithm 2 shows the pseudo-
code of Greedy algorithm.

As an addition of previously stated approaches, we opted
for another called genetic algorithm (GA). Conceived by
Holland [13], GA is a breed of a new form of nature-like
heuristic. It is based on biological evaluation of a gene in
human body. It starts by representing the problem as a
population of solution candidates. The idea is to produce
new offspring through a crossover and mutation process,
with the intention to having the most fit candidates when the
next evaluation takes place. Each candidate has its own
fitness value to determine how good they are [12]. Applying
GA to TSP may be varies on different studies. Some of them
are spotted done by Braun [14] and Grefenstette [15].
However, a standard scheme proposed by Johnson and
McGeoch [16] is used as our guide as presented in
Algorithm 3.

Algorithm 2: Greedy search algorithm:
Takes each selected town in turn, and inserts it into the optimal
location in the route as it grows.
Input: A connected undirected graph G = (V,E) with
edge weights we
Output: A minimum spanning tree defined by the edges
X
Step 1: for all u ∑ V :makeset(u)
Step 2: Set X = { }
Step 3: Sort the edges E by weight
Step 4: for all edges {u,v} є E, in increasing order
of weight:
Step 4.1: if find(u) ≠ find(v) then add edge {u,v}
to X
Step 5: union(u,v)

Algorithm 3: Genetic algorithm [5]
Input : An undirected graph G = (V,E); edge weights
we.
Output: A Hamilton cycle defined by the edges S
weight(T)= eE,we
Step 1: Generate a population of k starting
solutions S = {S1 , . . . , Sk}.
Step 2: Apply a given local optimization algorithm A
to each solution S in S, letting the resulting
locally optimal solution replace S in S.
Step 3: While not yet converged do the following:
Step 3.1: Select k¢ distinct subsets of S of size 1
or 2 as parents (the mating strategy).
Step 3.2: For each 1-element subset, perform a
randomized mutation operation to obtain a new
solution.
Step 3.3: For each 2-element subset, perform a
(possibly randomized) crossover operation to obtain
a new solution that reflects aspects of both
parents.
Step 3.4: Apply local optimization algorithm A to
each of the k’ solutions produced in Step 3.3, and
let S’ be the set of resulting solutions.
Step 3.5: Using a selection strategy, choose k
survivors from S S’, and replace the contents of S
by these survivors.
Step 4: Return the best solution in S.

Another current searching algorithm for optimization

approach to engineering design called Cukcoo algorithm
[17]. They claimed that it has been demonstrated
successfully and outperformed compared to other
approaches including the advanced particle swarm
optimization approach. This approach was inspired by

50

obligating brood parasitism of some cuckoo species as
laying eggs in the nests of other host birds (other species).
Some cuckoo female parasitic cuckoos are often very
specialized in the mimicry in colour and pattern of the eggs
of a few chosen host species [18]. Its pseudo-code can be
summarized as Algorithm 4. However, this approach is still
remained untested on travelling salesman problem. In
conclusion, out of four searching algorithms, we only test on
three of them namely, Exhaustive, Heuristic and Genetic
algorithm.

Algorithm 4: Cukcoo Search Algorithm [6]
Input: Initial population of n host nests
Output: Best solution / new nest
Objective function: f(x), x = (x1, x2, . . ., xd);
Step 1: Generate an initial population of n host
nests;
Step 2: While (t<MaxGeneration) or (stop criterion)
Step 3: Get a cuckoo randomly (say, i) and replace
its solution by performing Lévy flights;
Step 4: Evaluate its quality/fitness Fi [For
maximization, Fi α f(xi)];
Step 5: Choose a nest among n (say, j) randomly;
Step 6: if (Fi > Fj),Replace j by the new solution;
end if
Step 7: A fraction (pa) of the worse nests are
abandoned and new ones are built;
Step 8: Keep the best solutions/nests;
Step 9: Rank the solutions/nests and find the
current best;
Step 10: Pass the current best to the next
generation;
Step 11: end while

III. PROPOSED METHOD

While other’s work used common programming language,
Java by Sengoku and Yoshihara [19], C by Zhi et al. [20],
C++ by Chapel and Palma [21], we tried to break with
precedent by using Prolog due to its simplicity and large
library of Graphical User Interface (GUI) supports. Besides,
TSP in Prolog has never been published, which has turned it
into a motivation that spurred us. Prolog is a logic
programming language which provides semantic
presentation of statements in a form of facts, rules and
queries [22]. A fact constitutes of relation among entities;
queries are used in order to retrieve logic information from a
fact; a rule is conjunction of facts to express new queries.

There are two factors to take into consideration upon
designing the program, which are algorithm and GUI.
Essentially, they interact each others, sending data back and
forth and eventually produce the result. Based on Fig. 2,
algorithm is a part of three techniques proposed, exhaustive,
and heuristic and GA. While GUI consists of 3 vital
elements; buttons, map and event-handler, which apparently
served to map the location and traversal of city based on the
input of user and output of the algorithm selected. The
process starts as the selection of cities begin. The input data
(cities) will be passed to the selected algorithm for
processing. Once it has been processed, the algorithm will
send the output (traversal and total path) back to GUI and
process it in a graphical manner (map). The same process
should apply on every algorithm selected.

This work proposed a program written by Steel et al. [23]
with some endeavour on altering the program to fill in the
GA part as well as meeting the GUI needs. The 3 algorithms
proposed, exhaustive, heuristic and GA are resided in
algorithm part and the visual part lies in GUI. Modification

did take into account of three things. First of all, the GA
code itself need to be included. During the inclusion,
precaution is necessary to avoid any changes that will affect
the existing algorithm. Meanwhile, the development of the
code should match the call function as the other algorithm
does, to which the input variables need to be passed.
Otherwise, problem will occur during the GUI calls. Lastly,
GUI representation needs to be catered, covering from a new
button to the addition of event-handler during selection of
cities. The outcome program is depicted in Fig. 3, which
explains the sample selection of 10-cities with addition of
GA function.

Fig. 2 Modified program design based on [12]

Fig. 3 An example of modified program with 10-cities selection in red with
addition of GA function

IV. EXPERIMENTAL RESULTS

Three methods were proposed to solve symmetric TSP by
practising exhaustive, heuristic and genetic algorithm (GA).
Solutions are written in Prolog, which then compiled and run
with Win-Prolog 4320 application under a machine equipped
with Intel Core 2 Duo 2.0GHz and 2GB of RAM. We used
an existing program by Steel et al. [23] named
SALESMAN.PL, whereby the solution for exhaustive and
heuristic was already available. The code was written with
respect of the graphical interface for ease. With some
modifications took place, the resulting code was valid to

Algorithm

Heuristic

Exhaustive

GA

Output

GUI

Buttons

Map

Event Handler

Input

51

evaluate the problem in GA without loosing any graphical
elements. 25 cities in England were opted which then broken
into cases of different path. We started the evaluation for 4
cases, 4, 8, 12 and 25 cities consecutively. Measurement of
time consumed and total path were recorded as in Table 1. It
also shows the traversal from the starting city until it reaches
back.

GA approach differs, as population size and maximum
iteration need to be defined. During the experimental, the
maximum iteration need to be defined. During the
experimental, the maximum iteration for each case was
heterogeneous. This is explained as the number of cities
increrased, sticking to the same number of iteration
throughout the process would results in inconsistency of path
taken/total path. We experienced that insufficient amount of
iteration may cause of training error escalates, thus requires
training. We have determined the suitable iteration for each
case; 100 – 4 cities, 170 – 8 cities, 400 – 12 cities, 900 – 25
cities. The best population size being used is referred from
Whitley et al. [24], whereby determined by (1):

Number of Cities * 3 < Population Size < Number of Cities
* 5 (1)

We opted for 100 constantly. These figures were carried
out throughout the experiment. Fig. 4 shows the results for
every algorithm selected for a case of 8-cities. Based on the
result shown in Table 1, in terms of total path, each approach
seem to yield similar result until it reached 12 cities. During
25 cities, while exhaustive seems to fail, a big leap spotted
between heuristic and GA. Apparently, GA outperformed
heuristic by 2.5%, resulting lesser total path than heuristic.
Exhaustive and GA have shown a salient time increases,

however, until to some extent, exhaustive halted. While in
the meantime, heuristic managed to stay consistent with a
marginal increase. By referring to this result, we observed
that heuristic took less time than exhaustive and GA. While
GA outperformed the others on giving optimized path
regardless of how big the traversal is. We are optimist that a
better result can be obtained if other programming language
is used. This is due to the nature of Prolog that always
backtracks, causing a simple process taking longer than
usual.

Fig. 4 Examples of 8-cities results based on Exhaustive, Heuristic and GA
with 170 of iterations and 100 of population size

TABLE I

PATH TAKEN, TOTAL PATH AND TIME TAKEN FOR EACH CASE

C
as

e
(c

it
ie

s)

Path Taken

Total Path
(miles) /

Time Taken
(seconds)

4
Exhaustive Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.18
Heuristic Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.18

GA Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.58

8
Exhaustive York-Newcastle-Edinburgh-Aberdeen-Glasgow-Carlisle-Leeds-Hull-York 747 / 0.18
Heuristic York-Hull-Leeds-Carlisle-Glasgow-Aberdeen-Edinburgh-Newcastle-York 747 / 0.18

GA York-Hull-Leeds-Carlisle-Glasgow-Aberdeen-Edinburgh-Newcastle-York 747 / 1.48

12

Exhaustive
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Sheffield-Nottingham-Hull-York-

Leeds-Newcastle-Edinburgh
923 / 1440

Heuristic
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Nottingham-Sheffield-Leeds-Hull-

York-Newcastle-Edinburgh
926 / 0.18

GA
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Sheffield-Nottingham-Hull-York-

Leeds-Newcastle-Edinburgh
923 / 2.94

25

Exhaustive Failed Failed

Heuristic
London-Dover-Brighton-Portsmouth-Exeter-Penzance-Bristol-Cardiff-Swansea-Aberystwyth-

Liverpool-Manchester-Glasgow-Aberdeen-Edinburgh-Carlisle-Newcastle-Leeds-York-Hull-Sheffield-
Nottingham-Birmingham-Oxford-Cambridge-London

2041 / 0.19

GA
London-Cambridge-Oxford-Birmingham-Nottingham-Sheffield-Leeds-Hull-York-Newcastle-

Edinburgh-Aberdeen-Glasgow-Carlisle-Manchester-Liverpool-Aberystwyth-Swansea-Cardiff-Bristol-
Penzance-Exeter-Portsmouth-Brighton-Dover-London

1989 / 5.15

52

V. CONCLUSIONS

This work attempted on evaluating three methods for
solving symmetric TSP for 25 contiguous cities in England.
These methods were exhaustive, heuristic and genetic
algorithm (GA) which then translated into Prolog as a
solution. Exhaustive may be conventional but the result was
impressive on yielding optimal total path and traversal. We
have found that GA is a close rival to exhaustive, as their
total path was similar, but at the end GA won. While, on the
other hand, heuristic has outcame a close result as well as
maintaining mild consume of time. During the cities
proliferation, it is wise to conclude that exhaustive and GA
suffers from time deterioration, which was also happen to
heuristic but less. To produce a consistent result, GA may
need bigger iteration with respect to number of cities, thus a
lot of time taken. However, GA exceled compared to
heuristic as we increased the number of cities to the highest.
We may assume that with accurate iteration and population
size, GA approach may be able to cater larger problems. Due
to the restriction of Prolog that always backtrack upon
finding solution, we observed that the result is still far
behind. In future, we can enhance this work by using
Cukcoo search algorithm.

ACKNOWLEDGEMENT

The authors would like to thank Faculty of Information
Science and Technology, University Kebangsaan Malaysia
for providing facilities and financial support under Research
University operation Project No. UKM-GGPM-ICT-119-
2010 and Fundamental Research Grant Scheme No. UKM-
TT-03-FRGS0129-2010. Besides, special thanks to Pattern
Research Group for their greatest contribution in this
research.

REFERENCES
[1] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale

travelling salesman problem,” Journal of the Operations Research
Society of America, vol. 2, pp. 393-410, Nov. 1954.

[2] D. Lin, X. Wu, and D. Wang, “Exact heuristic algorithm for traveling
salesman problem,” in The 9th International Conference for Young
Computer Scientists (ICYCS '08), 2008, pp. 9-13.

[3] M. Hahsler and K. Hornik, “TSP infrastructure for the travelling
sales-person problem,” Journal of Statistical Software, vol. 23(2), pp.
1-21, Dec. 2007.

[4] A. H. Land and A. G. Doig, “An automatic method of solving
discrete programming problems,” Econometrica, vol. 28, pp. 497-
520, 1960.

[5] J. E. Mitchell, Branch-and-cut Methods for Combinatorial
Optimization Problems, Handbook of Applied Optimization, pages
65-77, Oxford, London: Oxford University Press, 2002.

[6] D. L. Applegate, R. M. Bixby, V. Chvátal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study, Princeton,
New Jersey: Princeton University Press, 2006.

[7] S. Lin and B. W. Kernighan, "An effective heuristic algorithm for the
traveling salesman problem," Operations Research, vol. 21(2), pp.
498-516, 1973.

[8] F. Glover, “Future paths for integer programming and links to
artificial intelligence,” Computers & Operations Research, vol. 13,
pp. 533-549, 1986.

[9] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol 220, pp. 671-680, May 1983.

[10] V. Cerny, “A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm,” Journal of Optimization
Theory and Application, vol. 45, pp. 41-51, 1985.

[11] M. Dorigo and L. M. Gambardella, “Ant colonies for the traveling
salesman problem”, Universit Libre de Bruxelles, Belgium, 1996.

[12] C. Nilsson, “Heuristic for travelling salesman problem,” Linköping
University, Sweden, Journal of Theoretical Computer Science
Reports, 2003.

[13] J. H. Holland, Adaptation in Natural and Artificial Systems,
Cambridge, MA: MIT Press, 1992.

[14] H. Braun, “On solving travelling salesman problems by genetic
algorithms,” in Proceedings of the 1st Workshop on Parallel
Problem Solving from Nature, 1991, pp. 129-133.

[15] J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. Van Gucht,
“Genetic algorithms for the traveling salesman problem,” in Proc. Int.
Conf. on Genetic Algorithms and their Applications, 1985, pp. 160-
168.

[16] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman
Problem: A Case Study in Local Optimization”, in Local Search in
Combinatorial Optimization, 1997, pp. 215-310.

[17] X.-S.Yang and S. Deb, “Engineering optimisation by cuckoo search,”
in Int. J. Mathematical Modelling and Numerical Optimisation, 2010,
1, pp. 330-343.

[18] R. B. Payen, M. D. Sorenso, K. Klitz, and J. Megahan, The Cukcoos,
New York: Oxford University Press, 2005.

[19] H. Sengoku and I. Yoshihara, “A fast TSP solver using GA on Java,”
in Proc. of the 3rd AROB, 1998, pp. 283-288.

[20] X. H. Zhi, X. L. Xing, Q. X. Wang, L. H. Zhang, X. W. Yang, C. G.
Zhou, and Y. C. Laing, “A discrete PSO method for generalized TSP
problem,” in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2004, pp. 2378-2383.

[21] M. I. Capel and A. Palma, “A Programming tool for Distributed
Implementation of Branch-and-Bound Algorithms,” Parallel
Computing and Transputer Applications, IOS Press/CIMNE, pp.
138-147, Sep. 1992.

[22] L. Sterling, E. Shapiro, and M. Eytan, The Art of Prolog, Advanced
Programming Techniques Second Edition, England: The MIT Press,
1999.

[23] B. D. Steel, R. Shalfield, N. Johns, F. McCabe, P. Vasey, A.
Westwood, and D. Westwood, “The Travelling Salesman,” Logic
Programming Associates, London, 2002.

[24] D. Whitley, T. Starkweather, and D.Shaner, The Traveling Salesman
and Sequence Scheduling: Quality Solutions Using Genetic Edge
Recombination, in Handbook of Genetic Algorithms, New York:
Van Nostrand Reinhold, 1991.

53

