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Abstract— This paper discusses on a comparative study towards solution for solving Travelling Salesman Problem based on three 
techniques proposed namely exhaustive, heuristic and genetic algorithm.  Each solution is to cater on finding an optimal path of 
available 25 contiguous cities in England whereby solution is written in Prolog. Comparisons were made with emphasis against time 
consumed and closeness to optimal solutions. Based on the experimental, we found that heuristic is very promising in terms of time 
taken, while on the other hand, Genetic Algorithm manages to be outstanding on big number of traversal by resulting the shortest 
path among the others. 
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I. INTRODUCTION 

Travelling Salesman Problem (TSP) has been a prominent 
problem discussed widely among scholars in the community 
of mathematics and computer science. It was started by Irish 
and British mathematician, namely Hamilton and Thomas 
Kirkman in 1800s. The idea is to travel along a number of 
cities, n while maintaining to visit each city only once 
through a shorter path and returning to the starting city. It is 
a non-trivial problem, hence acquiring a sort of 
mathematical explanation to solve. A lot of effort has been 
made to conceive a new algorithm as to tackle the most 
optimized solution. Over years, the size of TSP solved has 
expanded dramatically, from solution of 49 cities [1] up to 
85,900 cities recently. 

TSP is feasibly solved by illustrating it as a graph as 
illustrated in Fig. 1. Cities are depicted as vertices, along 
with edges that resemble path. Thus, leading to acquiring 
shortest Hamiltonian cycle is the great concern towards 
solution. Given 2 cities, traversal could be done in both 
ways, as a symmetric TSP should be. On contrary, an 
asymmetric TSP may not allow traversal on both direction, 
which means the cost should not necessary the same. 

Our aim here is to provide a concrete comparison in 
solving TSP via exhaustive, heuristic and genetic algorithm 
in regards of optimum cost of traversal. We opted to 
measure the cost in terms of time taken and utmost shortest 
path.  

The rest of this paper is organized as follows. Section two 
elaborates on state of the art, reviewing the concept and 
several related studies from the past. Third section briefly 
discusses on proposed method to perform the solution. 
Section four reviews the result obtained by each method 
utilized. We conclude this paper in a brief and concise 
summary in section five. Last but not least will be a section 
of references that referred throughout the study. 
 

 
Fig. 1  Example of 4-cities TSP as a graph based on [12] 
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II. STATE OF THE ART 

Solutions are classified into two categories, either 
exhaustive or heuristic [2]. Exhaustive seems to be 
promising in a way it leads to ideal result. The search space 
for TSP is to search the all traversal combination; a 
symmetric determined by (n-1)!/2, an asymmetric defined by 
(n-1)!; where n is the number of cities. For instance, to solve 
a 5 cities problem consumes 24 possible solutions for 
asymmetric and half the number if it is symmetric. However, 
the efficiency lies within a polynomial factor of O(n.n!), 
hence impractical in some way, especially for big number of 
cities. Exhaustive approach would search all (n-1)! possible 
paths and keep the one with the optimal cost which is shown 
in Algorithm 1. Inspired mathematically, there are such a 
quite numbers of its kind as explained in [3] namely, cutting 
plane method, branch-and-bound and branch-and-cut. 
Cutting plane method was presented by Dantzig et al. [1] 
which has solved an instance of 49 cities to optimality by 
constructing a tour and proving that no other tour could be 
shorter.  Branch-and-bound by Land and Doig [4] can be 
determined as relaxation of upper and lower bound to 
eliminate unnecessary solution candidates. While branch-
and-cut incorporates branch-and-bound and cutting plane 
method [5]. Apparently, of all those, the most breakthrough 
achieved stated to be a solution for about 85,900 cities [6]. 
As the number of cities exceeds, alternatively, we may have 
to rely on heuristic approach. 

 
Algorithm 1: Exhaustive search algorithm: 
Finds every possible route and returns the shortest [4]. 
Input : An undirected graph G = (V,E) with edge 
weights we. 
Output: A Hamilton cycle defined by the edges S 
weight(T)= eE,we    
Step 1: w = w(1,2) + w(2,3) + w(3,4) + ... + w(n-    
1,n) + w(n,1)  
Step 2: Best_S_so_far = (  n, [ 1, 2, 3, ... , n-1,  
n ], w ) 
Step 2.1: S = ( 1, [ 1 ], 0 ) 
Step 2.2: Search( S, Best_S_so_far ) 
Step 2.3: print Best_S_so_far 
Step 3: procedure Search( S, Best_S_so_far ) 
Step 3.1: let ( k, [ i1, i2, ... , ik ], w ) = S 
Step 3.2: let ( n, [ i1B, i2B, ... , inB ], wB ) =  
Best_S_so_far  
Step 3.3: if k = n then new_w = w + w(ik,i1) 
Step 3.3.1: if new_w < wB then Best_S_so_far = ( k, 
[ i1, i2, ... , ik ], new_w )end if 
Step 3.4: else for all j not in [ i1, i2, ... , ik ] 
Step 3.4.1: new_w = w + w(ik,j) 
Step 3.4.2: New_S = ( k+1, [ i1, i2, ... , ik, j ], 
new_w ) 
Step 3.4.3: Search( New_S, Best_S_so_far )end for 
end if 
Step 4: return 

 
Heuristic approach anticipates the solution guided by a 

given knowledge, which to some extent, leads to the exact 
result or remains merely approximation. Unlike exact 
algorithm, heuristic does not have to exhaustively permute 
all available paths, in which the time taken may be less nor 
reasonable. However, it may not guarantee of yielding an 
optimal result or even worse, not returning to the first city. It 
is marginal, but the possibilities are there. Instances of TSP 
employing heuristic are various; Lin-Kernighan by Lin and 
Kernighan [7], Tabu-Search by Glover [8], Simulated 
Annealing by Kirkpatrick et al. [9] and Cerny [10], Ant 
Colony by Dorigo and Gambardella [11] and quite a few. In 

this study, we take example of Greedy algorithm. This 
algorithm will always choose the next nearest city from the 
current city. According to Nilsson [12], the selection must 
not violate two conditions; 1) It doesn’t create any cycle 
with less than n edges; 2) It doesn’t increase the degree of 
any node to more than 2. Algorithm 2 shows the pseudo-
code of Greedy algorithm.     

As an addition of previously stated approaches, we opted 
for another called genetic algorithm (GA). Conceived by 
Holland [13], GA is a breed of a new form of nature-like 
heuristic. It is based on biological evaluation of a gene in 
human body. It starts by representing the problem as a 
population of solution candidates. The idea is to produce 
new offspring through a crossover and mutation process, 
with the intention to having the most fit candidates when the 
next evaluation takes place. Each candidate has its own 
fitness value to determine how good they are [12]. Applying 
GA to TSP may be varies on different studies. Some of them 
are spotted done by Braun [14] and Grefenstette [15]. 
However, a standard scheme proposed by Johnson and 
McGeoch [16] is used as our guide as presented in 
Algorithm 3.  

 
Algorithm 2: Greedy search algorithm: 
Takes each selected town in turn, and inserts it into the optimal 
location in the route as it grows. 
Input: A connected undirected graph G = (V,E) with 
edge weights we 
Output: A minimum spanning tree defined by the edges 
X 
Step 1: for all u ∑ V :makeset(u) 
Step 2: Set X = { } 
Step 3: Sort the edges E by weight 
Step 4: for all edges {u,v} є E, in increasing order 
of weight: 
Step 4.1: if find(u) ≠ find(v) then add edge {u,v} 
to X 
Step 5: union(u,v) 

 
Algorithm 3: Genetic algorithm [5] 
Input : An undirected graph G = (V,E); edge weights  
we. 
Output: A Hamilton cycle defined by the edges S 
weight(T)= eE,we    
Step 1: Generate a population of k starting 
solutions S = {S1 , . . . , Sk}. 
Step 2: Apply a given local optimization algorithm A 
to each solution S in S, letting the resulting 
locally optimal solution replace S in S. 
Step 3: While not yet converged do the following: 
Step 3.1: Select k¢ distinct subsets of S of size 1 
or 2 as parents (the mating strategy). 
Step 3.2: For each 1-element subset, perform a 
randomized mutation operation to obtain a new 
solution. 
Step 3.3: For each 2-element subset, perform a 
(possibly randomized) crossover operation to obtain 
a new solution that reflects aspects of both 
parents. 
Step 3.4: Apply local optimization algorithm A to 
each of the k’ solutions produced in Step 3.3, and 
let S’ be the set of resulting solutions. 
Step 3.5: Using a selection strategy, choose k 
survivors from S  S’, and replace the contents of S 
by these survivors. 
Step 4: Return the best solution in S. 

 
Another current searching algorithm for optimization 

approach to engineering design called Cukcoo algorithm 
[17]. They claimed that it has been demonstrated 
successfully and outperformed compared to other 
approaches including the advanced particle swarm 
optimization approach. This approach was inspired by 
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obligating brood parasitism of some cuckoo species as 
laying eggs in the nests of other host birds (other species). 
Some cuckoo female parasitic cuckoos are often very 
specialized in the mimicry in colour and pattern of the eggs 
of a few chosen host species [18]. Its pseudo-code can be 
summarized as Algorithm 4. However, this approach is still 
remained untested on travelling salesman problem. In 
conclusion, out of four searching algorithms, we only test on 
three of them namely, Exhaustive, Heuristic and Genetic 
algorithm. 
 

Algorithm 4: Cukcoo  Search Algorithm [6] 
Input: Initial population of n host nests 
Output: Best solution / new nest  
Objective function: f(x), x = (x1, x2, . . ., xd); 
Step 1: Generate an initial population of n host  
nests;  
Step 2: While (t<MaxGeneration) or (stop criterion) 
Step 3: Get a cuckoo randomly (say, i) and replace 
its solution by performing Lévy flights; 
Step 4: Evaluate its quality/fitness Fi [For 
maximization, Fi α f(xi)];  
Step 5: Choose a nest among n (say, j) randomly;  
Step 6: if (Fi > Fj),Replace j by the new solution;  
end if 
Step 7: A fraction (pa) of the worse nests are 
abandoned and new ones are built; 
Step 8: Keep the best solutions/nests; 
Step 9: Rank the solutions/nests and find the 
current best; 
Step 10: Pass the current best to the next 
generation; 
Step 11: end while 

III. PROPOSED METHOD 

While other’s work used common programming language, 
Java by Sengoku and Yoshihara [19], C by Zhi et al. [20], 
C++ by Chapel and Palma [21], we tried to break with 
precedent by using Prolog due to its simplicity and large 
library of Graphical User Interface (GUI) supports. Besides, 
TSP in Prolog has never been published, which has turned it 
into a motivation that spurred us. Prolog is a logic 
programming language which provides semantic 
presentation of statements in a form of facts, rules and 
queries [22]. A fact constitutes of relation among entities; 
queries are used in order to retrieve logic information from a 
fact; a rule is conjunction of facts to express new queries.  

There are two factors to take into consideration upon 
designing the program, which are algorithm and GUI. 
Essentially, they interact each others, sending data back and 
forth and eventually produce the result. Based on Fig. 2, 
algorithm is a part of three techniques proposed, exhaustive, 
and heuristic and GA. While GUI consists of 3 vital 
elements; buttons, map and event-handler, which apparently 
served to map the location and traversal of city based on the 
input of user and output of the algorithm selected. The 
process starts as the selection of cities begin. The input data 
(cities) will be passed to the selected algorithm for 
processing. Once it has been processed, the algorithm will 
send the output (traversal and total path) back to GUI and 
process it in a graphical manner (map). The same process 
should apply on every algorithm selected. 

This work proposed a program written by Steel et al. [23] 
with some endeavour on altering the program to fill in the 
GA part as well as meeting the GUI needs. The 3 algorithms 
proposed, exhaustive, heuristic and GA are resided in 
algorithm part and the visual part lies in GUI. Modification 

did take into account of three things. First of all, the GA 
code itself need to be included. During the inclusion, 
precaution is necessary to avoid any changes that will affect 
the existing algorithm. Meanwhile, the development of the 
code should match the call function as the other algorithm 
does, to which the input variables need to be passed. 
Otherwise, problem will occur during the GUI calls. Lastly, 
GUI representation needs to be catered, covering from a new 
button to the addition of event-handler during selection of 
cities. The outcome program is depicted in Fig. 3, which 
explains the sample selection of 10-cities with addition of 
GA function. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Modified program design based on [12] 

 

 
 

Fig. 3  An example of modified program with 10-cities selection in red with 
addition of GA function 

 

IV. EXPERIMENTAL RESULTS 

Three methods were proposed to solve symmetric TSP by 
practising exhaustive, heuristic and genetic algorithm (GA). 
Solutions are written in Prolog, which then compiled and run 
with Win-Prolog 4320 application under a machine equipped 
with Intel Core 2 Duo 2.0GHz and 2GB of RAM. We used 
an existing program by Steel et al. [23] named 
SALESMAN.PL, whereby the solution for exhaustive and 
heuristic was already available. The code was written with 
respect of the graphical interface for ease. With some 
modifications took place, the resulting code was valid to 

Algorithm 

Heuristic 

Exhaustive

GA

Output 

GUI 

Buttons 

Map 

Event Handler 

Input 
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evaluate the problem in GA without loosing any graphical 
elements. 25 cities in England were opted which then broken 
into cases of different path. We started the evaluation for 4 
cases, 4, 8, 12 and 25 cities consecutively. Measurement of 
time consumed and total path were recorded as in Table 1. It 
also shows the traversal from the starting city until it reaches 
back.  

GA approach differs, as population size and maximum 
iteration need to be defined. During the experimental, the 
maximum iteration need to be defined. During the 
experimental, the maximum iteration for each case was 
heterogeneous. This is explained as the number of cities 
increrased, sticking to the same number of iteration 
throughout the process would results in inconsistency of path 
taken/total path. We experienced that insufficient amount of 
iteration may cause of training error escalates, thus requires 
training. We have determined the suitable iteration for each 
case; 100 – 4 cities, 170 – 8 cities, 400 – 12 cities, 900 – 25 
cities. The best population size being used is referred from 
Whitley et al. [24], whereby determined by (1): 

 
Number of Cities * 3 < Population Size < Number of Cities 
* 5            (1) 
 

We opted for 100 constantly. These figures were carried 
out throughout the experiment. Fig. 4 shows the results for 
every algorithm selected for a case of 8-cities. Based on the 
result shown in Table 1, in terms of total path, each approach 
seem to yield similar result until it reached 12 cities. During 
25 cities, while exhaustive seems to fail, a big leap spotted 
between heuristic and GA. Apparently, GA outperformed 
heuristic by 2.5%, resulting lesser total path than heuristic. 
Exhaustive and GA have shown a salient time increases, 

however, until to some extent, exhaustive halted. While in 
the meantime, heuristic managed to stay consistent with a 
marginal increase. By referring to this result, we observed 
that heuristic took less time than exhaustive and GA. While 
GA outperformed the others on giving optimized path 
regardless of how big the traversal is. We are optimist that a 
better result can be obtained if other programming language 
is used. This is due to the nature of Prolog that always 
backtracks, causing a simple process taking longer than 
usual. 
 

 
 

Fig. 4  Examples of 8-cities results based on Exhaustive, Heuristic and GA 
with 170 of iterations and 100 of population size 

 

 

TABLE I 

PATH TAKEN, TOTAL PATH AND TIME TAKEN FOR EACH CASE 

C
as

e 
(c

it
ie

s)
 

Path Taken 

Total Path 
(miles) / 

Time Taken 
(seconds) 

4 
Exhaustive Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.18 
Heuristic Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.18 

GA Aberdeen-Edinburgh-Newcastle-Glasgow-Aberdeen 509 / 0.58 

8 
Exhaustive York-Newcastle-Edinburgh-Aberdeen-Glasgow-Carlisle-Leeds-Hull-York 747 / 0.18 
Heuristic York-Hull-Leeds-Carlisle-Glasgow-Aberdeen-Edinburgh-Newcastle-York 747 / 0.18 

GA York-Hull-Leeds-Carlisle-Glasgow-Aberdeen-Edinburgh-Newcastle-York 747 / 1.48 

12 

Exhaustive 
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Sheffield-Nottingham-Hull-York-

Leeds-Newcastle-Edinburgh 
923 / 1440 

Heuristic 
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Nottingham-Sheffield-Leeds-Hull-

York-Newcastle-Edinburgh 
926 / 0.18 

GA 
Edinburgh-Aberdeen-Glasgow-Carlisle-Liverpool-Manchester-Sheffield-Nottingham-Hull-York-

Leeds-Newcastle-Edinburgh 
923 / 2.94 

25 

Exhaustive Failed Failed 

Heuristic 
London-Dover-Brighton-Portsmouth-Exeter-Penzance-Bristol-Cardiff-Swansea-Aberystwyth-

Liverpool-Manchester-Glasgow-Aberdeen-Edinburgh-Carlisle-Newcastle-Leeds-York-Hull-Sheffield-
Nottingham-Birmingham-Oxford-Cambridge-London 

2041 / 0.19 

GA 
London-Cambridge-Oxford-Birmingham-Nottingham-Sheffield-Leeds-Hull-York-Newcastle-

Edinburgh-Aberdeen-Glasgow-Carlisle-Manchester-Liverpool-Aberystwyth-Swansea-Cardiff-Bristol-
Penzance-Exeter-Portsmouth-Brighton-Dover-London 

1989 / 5.15 
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V. CONCLUSIONS  

This work attempted on evaluating three methods for 
solving symmetric TSP for 25 contiguous cities in England. 
These methods were exhaustive, heuristic and genetic 
algorithm (GA) which then translated into Prolog as a 
solution. Exhaustive may be conventional but the result was 
impressive on yielding optimal total path and traversal. We 
have found that GA is a close rival to exhaustive, as their 
total path was similar, but at the end GA won.  While, on the 
other hand, heuristic has outcame a close result as well as 
maintaining mild consume of time. During the cities 
proliferation, it is wise to conclude that exhaustive and GA 
suffers from time deterioration, which was also happen to 
heuristic but less. To produce a consistent result, GA may 
need bigger iteration with respect to number of cities, thus a 
lot of time taken. However, GA exceled compared to 
heuristic as we increased the number of cities to the highest. 
We may assume that with accurate iteration and population 
size, GA approach may be able to cater larger problems. Due 
to the restriction of Prolog that always backtrack upon 
finding solution, we observed that the result is still far 
behind. In future, we can enhance this work by using 
Cukcoo search algorithm. 
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