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Abstract— The limitations of the existing Knowledge Hyper-surface method in learning cause and effect relationships in the 
manufacturing process is explored. A new approach to enhance the performance of the current Knowledge Hyper-surface method has 
been proposed by constructing midpoints between each primary weight along each dimension by using a quadratic Lagrange 
interpolation polynomial. The new secondary-weight values, generated due to the addition of midpoints, were also represented as a 
linear combination of the corresponding primary/axial weight values. An improved neural networks in learning from examples have 
also been proposed where both of the proposed algorithms able to constrain the shape of the surface in two-dimensional and multi-
dimensional cases and produced more realistic and acceptable results as compared to the previous version. The ability of the 
proposed approach to models the exponential increase/decrease in the belief values by using high-ordered polynomials without 
introducing ‘over-fitting’ effects was investigated. The performance of the proposed method in modelling the exponential 
increase/decrease in belief values was carried out on real cases taken from real casting data. The computed graphical results of the 
proposed methods were compared with the current Knowledge Hyper-surface and neural-network methods. As a result, the proposed 
methods correctly predict the sensitivity of process-parameter variations with the occurrence of a defect and very important area of 
research in a robust design methodology.  
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I. INTRODUCTION 

Manufacturing has evolved drastically since the 
introduction of the intelligent system in the machine. The 
new emerge of technology had shown that intelligent 
manufacturing had become one of the most promising and 
quickly developed fields of today's science and technology. 
The goal for intelligent manufacturing is satisfying customer 
needs to the highest standard, for the lowest possible cost by 
incorporating computer technology and introducing human-
like decision-making capabilities into the manufacturing 
system. The manufacturing industries face difficulties in 
developing a new paradigm to cope with ever-changing 
consumer preferences and tastes, which results in shorter and 
shorter product life cycle. These difficulties increase the 
globalisation of manufacturing, as a cheap labour force is 
available in Eastern countries like China and India and 
classical manufacturing systems are not capable of satisfying 
all the needs of the global market [1].   

Future manufacturing process needs to have an ability to 
automatically and continuously adapt production resources 

and processes in an optimal way with respect to business and 
production objectives as well as market and technical 
conditions. These adaptive production systems should 
integrate innovative processes, overcome existing process 
limitations, handle the transfer of manufacturing know-how 
into totally new manufacturing-related methods and also 
adapt to the existing manufacturing equipment and resources 
in order to implement changes related to radically new 
technologies. This is indeed a vision shared by the European 
Commission and formulated in the recently announced 
Framework 7 program [2]. 

Delivering reliable, high-quality casting products and 
processes at low cost has become the key to the survival of 
foundries in the twenty-first Century. Driven by the need to 
compete on cost and performance, many qualities conscious 
organisations are increasingly focusing on employing 
optimisation methods and numerical simulation technologies 
to improve their product quality with lower cost and reach 
the desired result as quickly as possible.  

The quality, productivity and costs of components 
manufactured by most of the casting processes are 
influenced by a large number of process controls, material 
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and design considerations. The analysis of cause and effect 
relationship is complex for many manufacturing processes 
and in most cases ‘experience’ is the only factor which can 
help to take corrective actions. Normally in the 
manufacturing industry, manufactured products are usually 
tested for quality and sub-standard products are rejected. 
During that process, the fault or faults are noted, and reasons 
for the occurrence of the faults are established so that the 
corrective actions can be taken. In this way, the chances of 
manufacturing sub-standard products thereafter are 
minimised. Such a diagnosis is usually performed by experts 
in the field, who have acquired a fundamental understanding 
of the process over years of experience in analysing cause 
and effect relationships. Experience takes time to gather and, 
when an expert leaves a particular industry, his expertise is 
also lost to that employer. To be competent in the nowadays 
modern manufacturing industry, the ability to learn causal 
relationship from diagnosis examples is extremely useful 
and demanding.  

In an earlier work, Ransing [3] had proposed a method 
known as ‘Knowledge Hyper-surface method’ that provided 
the industry with a self-learning decision-making tool, which 
can store the knowledge of current/past rejection levels 
within the manufacturing set up. The tool automatically 
learns a cause and effect relationship by using the diagnosis 
information provided by experts. Such learning ability can 
help managers not only to quantify the influence of causes of 
defects for existing products but also to set up a new process, 
material and design parameters to manufacture new, high-
quality products. Furthermore, the method has also potential 
to assist industry in retaining some of the expertise when 
experienced staff either retire or leave the job.  

The Knowledge Hyper-surface method retained the 
advantage of regression analysis and neural network 
techniques and at the same time overcome the limitations of 
each other for cause and effect relationship. The method 
describes that the belief variation in the occurrence of a 
cause, with respect to a change in the belief value of the 
occurrence of an effect, follows a pattern. It was observed 
that such a variation is generally either linear, quadratic or 
cubic and certainly not an arbitrary higher ordered 
polynomial.  

The knowledge hyper-surface method used lower ordered, 
one-dimensional Lagrange Interpolation Polynomials to 
construct the multi-dimensional hypersurfaces. A number of 
equidistant reference points were chosen in the input space 
created by belief values representing the strength of the 
effects. A Lagrange Interpolation polynomial and a weight 
value are associated with each of the reference points. A 
weight value at a reference point is considered to be 
representative of the belief value in the cause. The reference 
points have been divided into two categories, referred to as 
primary and secondary reference points. Weight values 
associated with these primary reference points were 
considered as independent variables (primary weight values) 
and other weight values associated with secondary reference 
points (secondary weight values), have been considered to 
be linearly dependent on one or more primary weight values.  
However, the current methodology was unable to model 
exponential increase/decrease in belief values particularly in 
cause and effect relationships. Therefore, a strategy that is 

computationally efficient and able to model the exponential 
increase/decrease in belief values in cause and effects 
relationships without introducing the side-effects of 
‘overfitting’ is essential by introducing the capabilities of 
neural networks.    

Over the past several years, many works have been done 
and proposed by previous researchers based on a few areas 
such as operations research, statistics and computer 
simulation. Moreover, control theory has been developed 
and applied to solve a wide spectrum of problems in casting. 
Nowadays the casting environment is characterised by its 
complexity and ever-growing demand for new tools and 
techniques to solve difficult problems. Therefore, neural 
network had been known for offering a new and intelligent 
alternative to investigate and analyze challenging issues 
related to manufacturing.  

Part of this interest is due to some features of the Multi-
Layer Perceptrons not found altogether in the techniques 
traditionally used for causal relationship analysis. Neural 
network is used to capture the general relationship between 
variables of a system that is difficult to relate analytically. 
Neural network has been described as ‘brain metaphor of 
information processing’ or as ‘a biologically inspired 
statistical tool’ [4]. It has the capability to learn or to be 
trained about a particular task, its computational capabilities 
and the ability to formulate abstractions and generalisations.  

Neural network is used to learn patterns and relationship 
in data. Having to know the relationship in the data means 
that two or more factors work together to predict the model 
outcome. Neural networks are universal function 
approximators [5], a non-parametric system capable of 
mapping complex non-linear relations among explanatory 
factors (e.g., defects or input data) and the outcome (causes 
or output data) and achieve excellent generalisation capacity. 
Neural networks discover this non-linear relationship during 
training phase when the input and output data are repeatedly 
presented to the network. The output data are compared with 
the results calculated by the neural network and the 
difference, or the error is calculated via mathematical 
procedure, which adjusts the value of network parameters 
(such as weights, bias, etc.) in order to minimise the error. 

In a neural network, weights are generally modified on 
the basis of the errors between desired and actual outputs in 
an iterative fashion, and one of the commonly used training 
algorithms is the ‘Delta Rule’ [6]. Basically, the neural 
network learns the desired outputs by adjusting its internal 
connection weights by minimising the discrepancy between 
the actual outputs of the system and the desired outputs [7], 
[8], [9]. 

There are many alternative training methods and variants 
for neural networks. In the case of feedforward multilayer 
networks, the most successful algorithm was the classical 
backpropagation [10]. Although this approach is very useful 
for the training process of this kind of neural networks, it has 
its own drawbacks. One of the main drawbacks is that the 
training becomes inefficient and training takes too long 
when compared to the training algorithms in use today.   

In order to solve these problems, several variations of the 
commonly used neural network algorithm and also new 
methods have been proposed. Focusing the attention on the 
problem of the slow learning speed, some algorithms have 
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been developed to accelerate it. In this research, a novel and 
efficient method for speeding up and improving the training 
efficiency of a backpropagation algorithm has been 
developed. 

In order to verify the efficacy of the proposed method, 
some simulation experiments were performed on four 
selected benchmark problems. The remaining of the paper is 
organised as follows: In Section II, some discussion on the 
implementation of Lagrange Interpolation Polynomials into 
the current Knowledge Hyper-surface method and highlights 
the limitation of the current method in learning from 
examples. The enhancements to the current method by 
incorporating midpoints in the existing shape formulation 
were discussed in Section III. The experiments and 
simulation results are presented in Section IV. The final 
section contains concluding remarks and short discussion for 
further research. 

II. MATERIAL AND METHOD 

The method proposed by Ransing [3] proposed a method 
that retains advantages of regression analysis and neural-
network techniques and at the same time overcomes the 
limitations of both techniques. The Knowledge Hyper-
surface method described that the belief variation in the 
occurrence of a cause, with respect to a change in the belief 
value of the occurrence of an effect, follows a pattern. Such 
a variation is generally linear, quadratic or cubic and 
certainly not an arbitrary higher-ordered polynomial.  

The method described that to model an thn  order 
relationship along a dimension,  )1( +n  equidistant 

reference points between -1 and +1 are chosen. For 
each reference point 1)nto1('' +=ii , a one-

dimensional Lagrange Interpolation Polynomial is 
used based on the following formula: 
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where: 

n  : Order of the Lagrange Interpolation 
Polynomial (e.g., one for linear; two for quadratic; 
three for cubic; etc.) 

k  : A reference point at which the one-
dimensional Lagrange Interpolation 

Polynomial )(ξn
kl  is constructed (k  ranges 

from 0 to n ). 

i  : Ranges from one to the total number of 
reference points, i.e. )1( +n .  

The variable ξ  is used to store the belief value 

representing the strength of the corresponding effects, 
ranges from -1 to +1. For one-dimensional Lagrange 
Polynomial Interpolation, the reference points are 
drawn along this dimension. Whereas for a given 
cause connected to ‘p ’effects, the Lagrange 

Interpolation Polynomial at a reference point ‘i ’ is 

defined as ‘ p ’ dimensional and is given by the 

following equation: 
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jn  : The order of one dimensional Lagrange 

Interpolation Polynomial ))(( jn
k

k

j
l ξ  corresponding to 

thj  dimension that represents the relationship 

between  thj  effect and the cause under consideration. 

jk  : Reference point along thj  dimension, at which 

the one-dimensional Lagrange Interpolation 

Polynomial )( jn
k

k

j
l ξ  is evaluated. jk  Independently 

ranges from 0 to jn  for each Lagrange Polynomial 

Interpolation). 
j

n
jjj

j
ξξξξ ,...,,, 210  are )1( +jn  reference points 

along the 
thj  dimension. 

i  : for a ‘ p ’ dimensional case, ‘i ’ ranges from one 

to the total number of reference points ‘q ’ as given 

below: 
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The method also prescribed that a Lagrange Interpolation 

polynomial and a weight value can be associated with each 
of the said reference points as shown by the equation below: 
     The belief value in the cause 
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where: 
 q  : Total number of reference points. 

 ),...,,( 21 p
il ξξξ  is given by Equation (1)

 iw  : Weight variable associated with the 
thi  

reference point. 
By considering a weight value at a reference point to be 

representative of the belief value in the cause, the total 
number of weights is, therefore, the same as the total number 
of reference points. However, this formulation had its own 
limitation. As the number of dimensions increased, the total 
number of weights in a network also increased exponentially. 
This rapidly increased the number of unknown variables 
within the network, and it was not a practical 
implementation, as it would not only slow down the system 
but also requires an excessively large training dataset.  
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In order to overcome that limitation, Ransing [3] divided 
the reference points into two categories, referred to as 
primary and secondary reference points. Weight values 
associated with these primary reference points have been 
considered as independent variables (primary weight values) 
and other weight values associated with secondary reference 
points (secondary weight values), have been considered to 
be linearly dependent on one or more primary weight values 
(see Fig. 1).  

 
Fig. 1  Dependent (1,2,3,4,7) and Independent Weight Values (5,6,8,9) 
associated with Reference Points 1 to 9 

 
For a ‘ p ’ dimensional problem, the total number of 

primary weights is calculated as: 
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As we can see from Fig. 1, weights associated with primary 
reference points 1, 2, 3, 4 and 7 are primary weights. The 
secondary weight values at locations 5, 6, 8 and 9 are 
expressed as a linear combination of the primary weights 
and in particular: 
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The current method was capable a priori of storing any 
known information about the cause-effect relationship within 
the network and at the same time was able to learn from 
examples. For some selected datasets the proposed algorithm 
has shown superior extrapolation abilities as compared to the 
multi-layer neural network. The extrapolation ability was 
enhanced by the network’s ability to constrain the shape of 
the resulting multi-dimensional hyper-surface to the known 
variation in the belief values in causes and effects.  The 

dependence of the secondary weight values on the primary 
weight values had reduced the number of unknowns to an 
acceptable number.  

Despite the superior extrapolation abilities of the current 
knowledge Hyper-surface method, two major limitations 
have been identified. First (1) the use of higher ordered 
polynomials can lead to the ‘over-fitting’ effect as observed 
in other interpolation techniques including neural networks. 
Second (2), an exponential rise in the belief value (as shown 
in Fig. 2) cannot be modelled by lower-ordered polynomials 
such as quadratic and cubic Lagrange interpolation 
polynomials.  

To demonstrate the over-fitting effect, the following 
dataset is created by choosing a few data points, and then a 
maximum of twenty percent noise with a normal distribution 
with mean zero and unit standard deviation value is added 
randomly. The variations are plotted using linear-, quadratic- 
and quartic-shape functions to observe the performance of 
the current method as shown in Fig. 2. 

 

 
 
Fig. 2  Data points plotted with linear-, quadratic- and quartic-shape 
functions to demonstrate the over-fitting effect caused by the current 
Knowledge Hyper-surface method 

 
Fig. 2 clearly shows that the use of quartic-shape 

functions in the current Knowledge Hyper-surface method 
had fitted all the data points perfectly as compared to the 
others, but the resulting shape of the decision hyper-surface 
is unrealistic and is a clear case of  ‘over-fitting’ to the data 
points. 

In order to overcome the current method from ‘over-
fitting’ problem, Meghana [3] introduced an improvement 
by adding reference points between the end-and mid-
reference points. The primary weights determined previously 
at end-and mid-reference points are kept constant and 

optimal values for the two new reference points (1x  and 

2x ) are determined by a second-stage optimisation process 

using the current knowledge hyper method using fourth-
ordered (quartic) Lagrange interpolation polynomials.  

Furthermore, in solving the same problem from ‘over-
fitting’, Nazri [11] also introduced a new method in neural 
networks by improving gain parameters in activation. The 
proposed method had significantly improved the back-
propagation training algorithm. The detail of the proposed 
algorithm by Nazri can be referred to some papers [12], [13], 
[14].    

2030



III.  RESULTS AND DISCUSSION 
 

The abilities of the proposed method by Meghana [3] and 
method by Nazri [11] in capturing the exponential change in 
the belief variation of the cause when the belief in the effect 
is at its minimum is compared with the outputs from both the 
current Knowledge Hyper-surface method on a real dataset. 
This dataset was also used by Ransing [3]. The data was 
collected from ‘Kaye Preistigne’– a pressure die-casting 
foundry. A total of fourteen defects were identified and 
associated with forty-three process, material or design 
parameters. The data was collected for similar components 
over a period of one year. A total of sixty representative 
examples were finalised. For this case study as shown in 
Table 5.4, sixteen process parameters, three defects, and 
eleven examples were chosen. The same information was 
also used by Ransing [3].  

A belief value in the occurrence of defects was calculated 
as corresponding to the belief values representing the 
occurrence and non-occurrence of associated process, design 
and material parameters as given by the experts in the 
foundry. Three defects known as ‘Porosity’, ‘Mismakes’ and 
‘Dimensional’ are identified, and all defects chosen are 
represented as defects A, B, and C. For the purpose of 
comparison, the graphical variation of belief surfaces learnt 
by the neural network, the current method, and the proposed 
method are shown only on two defects which are ‘Porosity’ 
and ‘Mismakes’. Sixteen associated process, material, and 
design parameters were identified to create a neural network 
with two input nodes corresponding to defects  ‘A’ and ‘B’, 
and sixteen output nodes corresponding to the sixteen 
process, material, and design parameters. The belief values 
which were used in a training dataset are shown in Fig. 3. 
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Fig. 3  Data points used in the training dataset 
 

The proposed conjugate gradient neural-network method 
(CGPR/AG) [11] with five hidden nodes is constructed and 
trained on the training dataset with a learning rate equal to 
0.4 and with a target error of 0.001. Since a neural network 
uses sigmoid activation function, the input data for the 
neural network was scaled between [0, 1]. A quadratic 
variation between input and output relationships was 
assumed in both the current method and the proposed 
method. Codes for all methods have been written in 
MATLAB.  

All networks achieved the target error of 0.001 and 
seemed to have learnt the training dataset. The speed of all 
networks in learning the training dataset is not the main 
concern in this test, as the resulting shape of the 
hypersurface is of importance. The belief surface has been 
plotted for cause ‘The position of gate’ (cause number 8) 
which influences the occurrence of ‘Porosity’ (defect A) and 
‘Mismakes’ (defect B) as this data requires to model the 
exponential rise in the belief values variation. 

The variation in the belief value in the occurrence of ‘The 
position of gate’ for defect A, i.e. ‘Porosity’ using the 
current method and the proposed method is plotted when 
only defect A is connected to the cause (one-dimensional 
case) and when both defects (i.e., defects A and B) are 
connected to the cause (two-dimensional case). 

The results are shown in Figs. 4 and 5. Since the proposed 
method is able to model an exponential increase in belief 
values, it was shown to be a better fit to data points using the 
quadratic polynomials as compared to the current method. 
This is because of the introduction of midpoints which gives 
an additional degree of freedom to control the resulting 
curve. Furthermore, Fig. 6 also demonstrates that the 
proposed neural networks showed a reasonable fit to these 
data points. However, as demonstrated by Ransing [3], the 
proposed neural networks do not guarantee a better shape for 
hyper surfaces. The proposed neural networks tend to 
interpolate better point and exhibit all the limitations as 
identified by Ransing[3].   

 
Fig. 4  The performance of Ransing’s method and the proposed method for 
one- dimensional belief-value variation modelled by quadratic polynomials 
for defect Porosity. 

 

 
Fig. 5  The performance of Ransing’s method and the proposed method for 
2D belief-value variation modelled by quadratic polynomials for defect 
Porosity 

X1: Belief value in the 
occurrence of defect 
‘Porosity’. 
 
X2: Belief value in the 
occurrence of defect 
‘Mismakes’. 
 
X3: Belief value in the 
occurrence of defect 
‘Dimensional’. 
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Fig. 6  The performance of the proposed neural-network method for a 2D 
belief-value variation for defect Porosity 

 
Figs. 7, 8 and 9 show the variation in the belief value in 

the occurrence of the ‘The position of gate’ for defect B, i.e. 
‘Mismakes’ using the proposed method, the method 
proposed by Ransing [3] and the proposed neural-network 
method plotted for both one-dimensional and two-
dimensional cases. The results demonstrate that the proposed 
method has modelled the exponential rise in the data points 
better than both Ransing’s and the neural-network methods. 

 
Fig. 7  The performance of Ransing’s method and the proposed method for 
1D belief variation modelled by quadratic polynomials for defect Mismakes. 

 
Fig. 8  The performance of Ransing’s method and the proposed method for 
2D belief variation modelled by quadratic polynomials for defect Mismakes 

 
Fig. 9  The performance of the proposed neural network method for 2D 
belief-value variation for defect Mismakes 

 
Figs. 10, 11 and 12 show the variation in the belief values 

in the occurrence of ‘The position of gate’ for belief values 
for defects ‘Porosity’ and ‘Mismakes’ using the proposed 
method, Ransing’s method and the proposed neural-network 
method. It can easily be observed that the proposed method 
has an ability to accurately model the exponential rise in the 
belief values rather than the other two techniques.  
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Fig. 10  2D quadratic output surface for defects Porosity and Mismakes 
generated by Ransing’s method 
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Fig. 11  2D quadratic output surface for defects Porosity and Mismakes 
generated by the proposed method 
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Fig. 12  2D output surface for defects Porosity and Mismakes generated by 
the proposed neural-network method 

 
The major objective of a robust parameter design 

methodology is to make the system insensitive or ‘robust’ to 
a process variation. In a robust parameter-design method, the 
output variation can be lowered by reducing either the 
sensitivities to the variation in the design factor or 
sensitivities to noise factors. Fig. 13 shows how a factor 
setting may influence the variation of the output depending 
on the occurrence of the belief variation. When design factor 
setting one is chosen, more variation is transmitted from a 
small change design factor value to its output due to the 
exponential rise in the slope of the belief curve. This makes 
the corresponding output more sensitive to the variation of 
design factor setting one. Whereas for factor setting two 
even a larger change in values will not influence the output 
value. Design factor setting two thus offers a robust design 
setting as the process is insensitive to its variation. The 
proposed method has an ability to accurately model the 
exponential rise in the data values. This has significantly 
improved the applicability of the Knowledge Hyper-surface 
method in addressing robust design problems.  

 
Fig. 13  Robust design principles: assessing the sensitivity of output 
variation to the change in design-factor settings 

IV.  CONCLUSION 

This study shows that a significant effect in improving the 
search direction, not the learning rate. A novel method to 
improve the training efficiency of BP algorithms with 
respect to the adaptive-gain variation of activation function 

has been successfully developed. The proposed method not 
only coupled the gain update expressions for output, as well 
as the hidden nodes as derived by Ransing [3], but also 
coupled with the adaptive-learning rate. Furthermore, the 
generic nature of the proposed method has been 
demonstrated by successfully implementing its formulation 
into other well-known optimisation methods to yield 
significant improvements in the computational speed. An 
enhancement to the current Knowledge Hyper-surface 
method has been proposed in this chapter. The method 
introduces midpoints in the existing shape-function 
formulation so that an exponential rise in the belief-value 
variation can be modelled without introducing the effects of 
‘overfitting’. The performance of the proposed method was 
compared with the method proposed by Ransing [3] and the 
proposed neural- network method on the same casting data 
used by Ransing. The proposed method does not have 
limitations of neural-network techniques as identified by 
Ransing [3].  

Furthermore, the ability of the proposed approach to 
model the exponential increase/decrease in the belief values 
by using high-ordered polynomials without introducing 
‘over-fitting’ effects was investigated. The performance of 
the proposed method in modelling the exponential 
increase/decrease in belief values was carried out on real 
cases taken from real casting data used by Ransing [3]. The 
computed graphical result of the proposed method was 
compared with the current Knowledge Hyper-surface and 
neural-network methods. As a result of this research 
achievement, it will now be possible to correctly predict the 
sensitivity of process-parameter variations with the 
occurrence of defects. This is an important area of research 
in a robust design methodology.  
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