












• Web services to provide the ability for the user to 
monitor the real-time information relevant to the 
RTAP through the web using any modern browser on 
any operating system. 

Generally, RTAPs run on the PC-based real-time 
embedded operating system, and it can be extended for the 
cooperative process, or it can be a complete automation 
system which capable to communicate with another 
environment such as power plant DCS (Distributed Control 
System). Therefore, by utilizing the capability and flexibility 
of RTAP features, it enables TNBR to develop new power 
plant apparatus with the capabilities to control the reactive 
power production of the multiple generating units by taking 
into account the actual operating constraints, like reactive 
power limit, stator voltage limit, excitation system failure, 
communication failure and etc. Fig. 3 shows the functional 
scheme of the PPVCs inside the RTAP which consist of 
control system block, finite state machine, and 
communication protocol. 

III.  RESULTS AND DISCUSSION 
 

In order to verify the performance of the power plant 
voltage controller, unit testing on the actual PPVC device is 
conducted in the TNBR power system laboratory through a 
hardware-in-the-loop (HIL) simulation using the OPAL-RT 
real-time digital simulator. In this simulation, the whole 
TNB power grid is simulated in the phasor domain 
simulation, and the physical PPVC device is interfaced with 
the selected TNB power plant which modelled in the 
simulator using communication protocol IEC104 and 
MODBUS. The dynamic response of the PPVC is studied 
under three different kind of network perturbations; step 
variation of the load demands (reactive power), step 
variation of high-side bus voltage setpoint and also the 
transient response of the PPVC under three-phase fault at the 
high side bus of the power plant. Fig. 5 shows the 
deployment diagram of the HIL test setup which conducted 
in TNBR power system laboratory. 

 

 
Fig. 5  Deployment diagram of the HIL test setup for CVC system 

Fig. 6 shows the dynamic response of high side bus 
voltage, without and with PPVC device under a sudden 
reactive power load change occurs at the high-side bus. It 
can be seen that the high-side bus voltage can be maintained 
even after the load disturbance occurred; the PPVC 
automatically send the new set point to the generators AVR 
to adapt this perturbation. Meanwhile, without the PPVC is 

operated, there is no mechanism to update generators AVR 
set point to adapt to this new change. Therefore, generators 
AVR only maintained its previous setpoint value, causing 
the high side voltage to drop to a new steady state value. 
 

 
Fig. 6  Dynamic response of ��� under step variation of the load 

In order to prove that there is no appreciable interference 
between PPVC controller and existing power plant controller, 
a three-phase fault is applied at the high side bus of the 
power plant. Fig. 7 shows that there is no significant 
difference on the high side bus voltage during the transient 
phenomena due to the fact that the nature of the PPVC 
controller is really slow compared with the response of the 
other controller in the power plant. 

To demonstrate the behavior of PPVC under the 
regulation of different voltage setpoint, adjustment of ± 0.01 
p.u from current-voltage setpoint is performed. The result 
shows a very stable response with PPVC controller 
successfully achieve its setpoint value within 250s. The 
dynamic response of the generator reactive power is also 
shown here to indicate the effectiveness of the balancing 
algorithm for generator reactive power in PPVC. 
Furthermore, there is no dynamic interaction among the 
multiple controlled generators occurred, which proves that 
the control parameter is good for PPVC using a quasi-
steady-state sensitivity. The result of this experiment is 
shown in Fig. 8 to Fig. 10. 

 

 
Fig. 7  Transient response of ��� under three-phase fault at high side bus of 
the power plant 
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Fig. 8  Dynamic response of ��� under step variation of voltage setpoint 

 
Fig. 9  Dynamic response of generator voltage under step variation of 
voltage setpoint 

 
Fig. 10  Dynamic response of generator reactive power under step variation 
of voltage setpoint 

IV.  CONCLUSIONS 

The paper has presented a details description on the 
design and implementation of the power plant high side 
voltage controller for Coordinated Voltage Control system in 
TNB. The working principle of PPVC has been described in 
great details in the earlier section including the functional 
component in PPVC and its dynamic design. The 
mathematical formulation to compute the quasi-steady-state 
sensitivity analysis is also presented in this paper. The 
proposed method utilizing a quasi-steady-state sensitivity 
module (QSENS) which calculated online at CVC Control 
Center Master Station (CCMS) using online data from the 
State Estimator (SE) results in Energy Management System 
(EMS). Generally, an almost entire main component in CVC 
utilizing quasi-steady-state sensitivity in their control 
strategies which make it as the most essential module in 

CVC system. Through a simple control strategy, an adaptive 
control can be achieved by using online quasi-steady-state 
sensitivity result to update the controller parameter. The 
result on the dynamic performance of the PPVC is very 
promising for practical applications; the PPVC able to 
maintained their dynamics design under different kind of 
network perturbations. 
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