

Vol.7 (2017) No. 3

ISSN: 2088-5334

Defeasible Policy Language for Online Social Networks
Mahdi Rohaninezhad#1, Shahrul Azman Mohd Noah#2, Shereena Mohd Arif #3

Center of Artificial Intelligence Technologies, Faculty of Information Science and Technology, University Kebangsaan Malaysia, 43600,
Bangi, Selangor, Malaysia

 E-mail: 1rohaninezhad@gmail.com,2shahrul@ukm.edu.my, 3shereen.ma@gmail.com

Abstract— Current online social network sites have not addressed policy control sufficiently. In addition, the existing rule-based
proposals on policy control have not been able to cope with normative, temporal, exceptional and conflicting nature of OSNs policies.
These characteristics of OSNs policies fit to defeasible logic formalism. Thus, we contextualized a defeasible policy language and
proposed corresponding ontologies to extend an existing ontology framework on policy control called open digital right language. Our
ontology proposal focused on OSNs use cases and provided solution for implementing norms, deadlines and conflict resolution and
compensation models for policies. Deployed ontology shows that defeasible policy language is expressive enough to represent and
manipulate complicated policy use cases of OSNs.

Keywords— modal defeasible logic; policy language; online social networks.

I. INTRODUCTION

Privacy is the main concern in online social networks
(OSNs) [1-5]. The issue is deepening since various OSNs are
appearing and each contains specific personal information of
citizens where companies and organizations are eager to
access and benefit. Thus, the policy control framework for
usage and access control in OSN web sites and the
underlying applications must be addressed. Although there
have been a lot of researches on policy control for OSNs, the
investigation on how to express and reason with conflicting,
exceptional, normative and temporal policies has remained
neglected. In this paper we contextualize a defeasible policy
language (DPL) and propose corresponding ontology
vocabularies to represent and reason with norms, deadlines
and conflicts in OSNs policies.

 Access control is the dominant model for conceptualizing
and managing privacy policy in today’s online world.
Access control in OSNs mainly is regulated based on the
degree of relationship, which in turn, stems from the notion
of trust reflected in user-to-user relationship [6]. The Kruk et
al. system, which is called D-FOAF, is the first ontology-
based and FOAF-like model for OSNs that supports access
control based on the trust concept. This relation-based
interpretation and implementation of access control in OSNs
became a cornerstone for managing privacy at the very
beginning.

The proposal of Carminati et al. [7, 8] extended the
previous relation-based approach by suggesting a rule-based
model for access control based on type, depth and trust level

of relationship in OSNs. They employed a rudimentary
Horn-like language to regulate user’s privacy policies.
Carminati and colleagues enhanced their access control
architecture towards semantic web tools in [7, 9]. Their main
idea was to represent social network information through
ontology language and then use reasoning tools of semantic
web to manage privacy. In fact, they followed the Kruk
proposal [6] and extended ontologies for; (1) user’s profile,
(2) resources (e.g., photo album), (3) actions, and finally (3)
relationship beetween users and resources, (e.g., post a
status). This provides the possibility of using semantic web
reasoning tools such as SweetRules to do reasoning on
access control. However, inference on permission can be
complicated where the source of authorization is
decentralized and abdicated to OSNs users. Thus, they had a
naive discussion on conflict and exception resolution or
express normative aspects of policies in their framework.

Governatori and Iannella [10] argued that existing
ontological and rule-based proposals, which are based on
first order language, fundamentally are not capable to
address policy language. Because normative, exceptional
and conflicting characteristic of policies are out of the
boundaries of first order language. Thus, they suggested to
extend ontological framework towards defeasible logic [11]
formalism in [12]. They suggested defeasible logic to
overcome policy conflicts and modal operators on defeasible
logic to address normative and temporal aspects of policies.
They also drew outline of extending an existing ontological
framework on policy control called Open Digital Right
Language (ODRL).

736

This work continued the outline to cover temporalised
policies, policy conflict detection and compensation. We
provided ontology vocabularies to infer and compensate
policy conflicts as well as deadlines. Then we addressed
some usage and access control policies of OSNs using
suggested ontologies,. We employed ODRL ontology
version 2.1 investigated in [13] which is available in [14]
and [15]. In the following sections we first discussed about
DPL components. Then we described ODRL ontology
vocabularies and finally introduced proposed ontology
vocabularies to map DPL components to ODRL.

II. MATERIAL AND METHOD

In this section we contextualise DPL features based on
Governatori and Iannella [12] proposal for policy control.
We focus on specific OSNs policy use cases that are not
addressed before. The use cases are brought from both
access and usage control. Each subsection addresses one
important gap of rule-based policy languages for OSNs.

A. Normative policy model

Policy languages are compliant with normative
knowledge representation. And normative regulations can be
represented under deontic logic [16] addresses concepts like
obligation, permission and prohibition. These concepts
correspond to notions such as duty, right and prohibition.
Deontic logic extends first order logic to deontic operators O,
P and F indicate obligation, permission and prohibition
(forbidden) respectively. The following relations are
satisfied with the above deontic operation,

OA ≡ ¬P¬A ¬O¬A ≡ PA O¬A ≡ FA ¬PA≡ FA (1)

The rule OA→PA is another implication that deontic

operations satisfy. This relation indicates that if A is
obligatory then it is permitted. In fact, we could ensure
internal consistency of obligations in a set of norms, by
examining the possibility of executing obligations without
doing forbidden acts. Governatori [17] extended standard
deontic logic towards directed deontic operations where
subject and beneficiary of normative operators are specified.

Use case. “Tom forbids acquaintances to save photo”
In detail, denotes an obligation where s represents

the subject and b the beneficiary of normative operator. Thus,
 means that s (e.g., a Facebook user) has the obligation

of A (e.g., prevent access personal information) with respect
to b (e.g., an acquaintances). Or means that s (e.g, an
acquaintance) is forbidden of B (e.g, usage private data) with
respect to b (e.g., a Facebook user). Thus, the DPL provides
a ground for implementing normative aspect of privacy
policies. Indeed, deontic operations denote access/deny
permission by obligation/prohibition operations.

B. Exception and conflict resolution model

Conflicts in OSNs policies stem from different facets of
social life (i.e., the source of policies might vary) [18].
Superiority relation in standard defeasible logic is employed
to capture conflicts and exceptions. Exception is a state that
implements default notion where some additional
information prevents to trigger normal policy condition. For
instance, the following default policy,

Use case 1. “Facebook users are allowed to save other
member photos, unless they are classified as private.” This
can be represented by the following default rule,

r1: photos(x) ⇒ P save(x) (2)

The rule states that if x is a photo then the save

permission is granted. Note that there is no need to
represents users in the rule since it is implicitly covered. But
to represent unless part of the policy condition we have,

r2: private(x) , ¬owner(x,y) ⇒ O y¬save(x) (3)

This indicates that if someone y is not owner of a photo x

and the resource is a private then the usage of x is forbidden
for y. Note that prohibition is expressed by obligation
followed by negation here in this rule since prohibition is a
negated obligation.

Thus, two rules are contradictory and no conclusion can
be derived. Superiority relation represents and resolves the
conflict in the logic. Having superiority relation r1<r2 , the
rule r2 defeats r1 when both rules are triggered.

This expressive power of defeasible logic can easily
model conflicting policy conditions, which might come from
different resources (OSNs or even offline life facets). The
most privacy policies in OSNs are about specifying who can
access which re-sources that can be classified as follows,

• Only the resource owner
• A friend
• A friend list
• The second level of friends (friends of friends)
• All friend lists
• Everybody
Thus, each policy language must be able to manage usage

(access) control for all above cases. For example,

Use case 2. “Tome allowed all friend lists to save

wedding photos except his colleagues”. Then the usage
control in this use case can be represented as follows,

r1: friend(y), wedding_photo(x)⇒ P ysave(x) (4)

Expresses that if y is a friend can save wedding photo x. But
the following rule for-bids colleagues to save the photo.

r2: colleague(y) ⇒ O y¬save(x) (5)

Similar to the last example by employing superiority relation
(r1<r2) the exceptional case can be managed.

C. Privacy violation resolution model

Although contrary-to-duty (CTD) obligation is a typical
phenomenon in normative systems, of which privacy
policies are particular instances, it is not addressed in OSNs
yet. On the other hand, reasoning under CTD obligations is
one of the main philosophical aspects of deontic reasoning.

Deontic logic of violations proposed in [19] addresses this
particular part of deontic reasoning. A sequential order of
CTD obligations is denoted by compensation operator ⊗ to
be used like OA⊗OB. It means that we have the obligation

737

of A (i.e., OA), but if this is violated, i.e., we have the
negation of A, i.e., ¬A, then the obligation OB is enforced.
Other words, obligation B is a compensate for obligation A if
is failed to be fulfilled. In the same way a chain of obligation
compensation can be formulated as follows,

OA1⊗…⊗OAn (6)

The chain of obligation states that OA1 is the main

obligation, but if it is violated then the next obligation
triggers and so on. It is worth noting that only obligations
and prohibitions can appear in the chain. Permission can
come only at the end of the chain. Because it is not possible
to violate permission and compensation is only meaningful
for statements that cannot be violated.

DPL supports the violation resolution model based on
defeasible inference. In this language, the consequence of a
defeasible rule can be a chain of obligation compensation. It
is worth remembering that in standard defeasible logic, the
consequence of a rule only can be a single literal not a chain
of compensation. But DPL extends classical defeasible logic
with compensation operator such that the obligation OA
appears in conclusion. In the following defeasible rule of
compensation obligation, to prove OA we have to prove
negation of all elements appear before OA in the chain,

P1,…,Pn ⇒ OB1⊗…⊗OBn⊗OA⊗OC1…⊗OCn (7)

All P1,...,Pn must be provable, and we must have ¬B1,...,

¬Bn. For more details refer to [17].

Use case 3. If a user is reported as abuser then he must

remove his offensive post, or inactive his account for six
months otherwise will not have access permission to his
account. The obligations can be represented as follows,

r1: abuser(x) ⇒ O xremove(y) ⊗ O x inactive(x)

⊗ P x¬access(x). (8)

This indicates that if x is abuser, then he must remove his

abusive post y or otherwise inactive his account for six
months or otherwise will lose the permission to access his
account. Technically, if the first condition, i.e.,
Oxremove(y) is violated, the second condition must hold,
i.e., Ox inactive(x) , otherwise user will lose his access to
his account Px¬access(x) . This conclusion is contradictory
with the general social network regulation that everyone has
access to his account. This conflict can be resolved by using
the exception and resolution model discussed in section B.

D. Temporal policy model

Time is one of the key factors in OSN policies since it is
an important aspect of offline social life. For instance, a
policy might be valid only for a year and compensate
another policy for several months. Or an OSN website might
interested to consider a deadline for an obligation in the site
(e.g., if users are inactive for 6 months their account will be
inactive automatically). It is essential to determine which
policies might be in conflict in time axis. Temporalizing
normative propositions first proposed by Governatori et al.
in [20, 21]. They suggested RuleML like language for the

temporal rules in [22] and [23] and showed the linear
complexity of the logic in [24]. Then, Governatori et al. [20]
represented the concept of deadline and enhanced it
efficiently [12].

The main idea in this aspect of DPL is that each
normative proposition is attached with a timestamp. Thus, in
temporalizing DPL language each proposition p denotes by
pt that t is a timestamp. For example, post(Tom,

wedding_pic, family_list) 20151013 means that Tom
posted his wedding photo for family list on 13th of Oct 2015.

The second key specific of DPL is that conclusions can be
either persistent or transient. Correspondingly, two classes of
rules (persistent or transient) are conceivable. Persistent
rules denoted as follows,

 (9)

This implies that if a1 hold on t1 and a2 hold on t2 and so

on for all elements of the rule in antecedent, then we can
conclude c at t, and the conclusion is valid until it is
terminated.

But the transient rules denoted as follows,

 (10)

expresses the same semantic with the previous one except
that the conclusion is valid only at the time t (not after that).

This rule’s classification provides a ground to implement
the concept of deadline in policy control. In fact, deadline is
an obligation confined with temporal parameters in the
context of policy languages. Deadlines also are classified
into two distinguished types, namely, achievement
obligation like and maintenance obligation like policies.
Achievement obligation must happen at least once before the
deadline (use case 4). But maintenance obligation, must hold
during all time before deadline (use case 5).

Use case 4. Facebook users must complete their profile
info after 30 days of opening account.

In this example, deadline refers to an obligation triggered
by opening account (open init), which is a persistent
obligation. Then, user has to complete her profile before the
deadline. The obligation automatically will be terminated
only if the user obeys it (open term). It is worth noting that
obligation may remain persist even after the deadline (like
this example). In this case, the role of deadline is to signal
obligation violation (open viol).
open init : open_account(x) t1 ⇒ π
Oxcomplete_profile(x) t1
open term : O xcomplete_profile(x) t2 ,
complete_profile(x) t2 ⇒ τ
¬Oxcomplete_profile(x) t2+1
open viol :
open_account(x) t1 ,O xcomplete_profile(x) t1+30

⇒τ
viol(open) t1+30

Having the fact set {open_account(Tom) 1,

complete_profile(Tom) 20} the rule Openinit triggers the
persistent obligation to complete profile. Then, having
complete_profile(Tom) 20 fact trigger the rule open init
rule which terminates obligation in 21. Thus, the violation
rule (open viol) is not triggered on 30.

738

Use case 5. Facebook users must keep active in the last
six month

In this Example, the deadline signals only when
obligation terminates. And obligation terminates only if user
keep active (logic in the last 6 months) to the web site
(keep term). If obligation does not occur in some times before
the deadline, then violation occurs (keep viol).
keep init : last_login(x) t1 ⇒ π O xkeep_active(x) t1
keep term : O xkeep_active(x) t1 ⇒ τ

¬Oxkeep_active(x) t1+180
keep viol : O xkeep_active(x) t2 ,
¬Oxkeep_active(x) t2 ⇒ τ viol(keep) t2

It is worth noting that there might be cases that
maintenance obligations are undefined (i.e., not for 180 days)
where no termination condition needed and the rule keep term
will be dropped. Or might be cases that the termination
condition exists but the exact time is not determined and
depends on other events. For example, when termination
condition is; if user insults other users in OSNs. In such a
case we need to add another clause representing an event or
action in the body of termination condition.

Maintenance obligations do not persist after the deadline,
while often achievement obligations do until they achieved.
Nevertheless, there might be the cases that achievement
obligation also terminates after deadline. For more details,
refer to [20].

III. RESULT AND DISCUSSION

A. ODRL Basic Components

In the past years, ODRL has extended from a digital right
language to a wider range of policy language. Figure 1,
depicts the core UML model of ODRL version 2.1.
According to the Figure, the core model components include
policy, asset, party, permission, duty, prohibition, action and
constraint.

Fig 1. ODRL new version core model taken from ODRL community

Policy is the central top entity in the ODRL model, which

refers to Permission and Prohibition that hold the Policy.
This entity has several subclasses, namely, agreement, offer,
privacy, set and ticket (For more detail see [14]). In the
domain of social network, policies focus on who is the end
Party; only the resource owner, a friend, a friend list, the

second level of friends (friends of a friend), all friend lists or
everybody.

Asset is the data object that its usage is confined by policy
constraints. The assets in OSNs are user’s resources like
pictures, profile info and etc.

Party represents policy subjects that have two subtypes of
Assigner (who establish policy constraints) and Assignee
(who receive policy constraints). In OSNs they are users and
their friends respectively.

Permission allows particular Action on a specific Asset.
Permission is related to Parties, Constraints and probable
Duties under which license granted. For example, share a
picture in OSNs is to give permission of display to friends.

Prohibition is to forbid particular Action on a specific
asset (opposite Permission).

Duty implies necessary Action that the Permission
Assignee has to perform to have permission applicable.

Action is an operation that Assignee is allowed to do (if is
about Permission), or forbidden to do (if is about Prohibition)
or has to do (if is about Duty). Potential actions in OSNs are
display, share, print or play of a picture (movie) and etc.

Constraints are limitations or conditions on Permissions,
Prohibitions or Duties in the policy language. Conditions
may contain temporal, logical or mathematical operators.

B. Mapping ODRL Ontology with DPL Language

Current ODRL ontology language1 supports some basic
elements of DPL including normative rules and conflicts
resolution. As depicted in Figure 2, ODRL ontology
provides a constructive model for deontic modalities
(Permission, Prohibition and Obligation). In the following
section we articulate rule, literals, predicates and terms,
which are the basic vocabularies of DPL, based on ODRL
ontology elements. Then we describe how ODRL ontology
language can capture and implement other DPL specifics
such as “conflict policy”, “compensation policy” and
“temporal policy”.

Fig 2. ODRL version 2.1 ontology visualized by VOWL.

Rule. Rule owl:Class is placed in the central position of

ODRL policy language ontology that implements deontic
modalities by Permission, Prohibition and Duty disjoined
subclasses (see Fig. 2). This class can be mapped to deontic
operators P, ¬O and O in DPL respectively. A Rule in

1 The ODRL ontology URI is available in
http://www.w3.org/ns/odrl/2/

739

ODRL indicates special Action that Assignee is
permitted/prohibited (i.e., Permission/Prohibition) to do on
an Asset under a specific Constraint or Duty. Thus, rule
entity is the subject of Asset (i.e., Policy), Constraint (i.e.,
time), Party (i.e., Assignee and Assigner) and Action (e.g.,
download) entities. It is worth noting that each rule must
include exactly one Action in ODRL language. And the
range of deontic modal properties is the union of Action and
the modal operator. Duty (Rule owl:subclass) applied only
as a condition of Permission/Prohibition. Consequently, each
head literal might bound by a deontic operator (i.e.,
Permission/Prohibition/Duty), Action, Assignee and Asset
(i.e., P Action(Assignee, Asset)). And body literals
may include Duty, Constraint, Asset and Assigner. The rule
RDF vocabulary in ODRL is as follows,

<!--http://www.w3.org/ns/odrl/2/Rule-->
 <owl:Class rdf:about="Rule">
 <rdfs:label
xml:lang="en">Rule</rdfs:label>
 <rdfs:isDefinedBy rdf:resource=""/>
 </owl:Class>

<!-- http://www.w3.org/ns/odrl/2/Permission
-->
 <owl:Class rdf:about="Permission">
 <rdfs:label
xml:lang="en">Permission</rdfs:label>
 <rdfs:subClassOf
rdf:resource="Rule"/>
 <owl:disjointWith
rdf:resource="Prohibition"/>
 <rdfs:isDefinedBy rdf:resource=""/>
 </owl:Class>

<!--
http://www.w3.org/ns/odrl/2/Prohibition -->
 <owl:Class rdf:about="Prohibition">
 <rdfs:label
xml:lang="en">Prohibition</rdfs:label>
 <rdfs:subClassOf
rdf:resource="Rule"/>
 <rdfs:isDefinedBy rdf:resource=""/>
 </owl:Class>

<!--http://www.w3.org/ns/odrl/2/Duty-->
 <owl:Class rdf:about="Duty">
 <rdfs:label
xml:lang="en">Duty</rdfs:label>
 <rdfs:subClassOf
rdf:resource="Rule"/>
 <owl:disjointWith
rdf:resource="Permission"/>
 <owl:disjointWith
rdf:resource="Prohibition"/>
 <rdfs:isDefinedBy rdf:resource=""/>
 </owl:Class>

Policy conflict resolution. In ODRL, policy conflict

arises when contradictory Actions appear in
Permission/Prohibition. The instances of "Conflict term"
owl:Class (i.e, Perm, Prohibit and Invalid) characterize the
policies to resolve conflicts in ODRL version 2.1. Perm
indicates that Permission is considered precedence, but
Prohibit gives priority to Prohibition and Invalid indicates
that the license is not applicable (this called precedent

mechanism). Thus, the notion of conflict resolution of DPL
language can easily be implemented by ODRL ontology
framework. However, the “Conflict term” implementation in
ODRL is not able to capture some notions behind superiority
relation in DPL since its vocabulary does not support rule
labeling. In fact, it is not going to establish superiorities
between different policies but only consider priorities within
a policy (risen by Prohibition/Permission). The conflict term
vocabulary in ODRL is as follows:

<!--http://www.w3.org/ns/odrl/2/conflict-->

<owl:ObjectProperty
rdf:about="conflict">
 <rdfs:label
xml:lang="en">conflict</rdfs:label>
 <rdfs:range
rdf:resource="ConflictTerm"/>
 <rdfs:domain rdf:resource="Policy"/>

</owl:ObjectProperty>

Policy conflict deduction. One of the main challenges in

ODRL ontology making is to create ontology vocabulary
such that is able to detect (infer) conflicts in
Permission/Prohibition. On the one hand, a friend (Assignee)
might place in several friend lists where each one may
involve in different usage (or access) policy. On the other
hand, a resource (Asset) might be subject of different
conflicting Policies come from different resources. Thus one
source of conflict is Assignee and the other one is Asset. For
example, one policy might state that all Alice close friends
can access to all photos while another policy expresses that
only close friends who are invited to her wedding are
allowed to access her wedding photos. To detect conflicts in
OSNs we suggest changing Party class in ODRL. We first
create different friend lists as a subclass for Group (e.g.,
Friend, Colleague, Family and etc). Then we need to employ
Individual as a class restriction for friend lists. By doing this,
Friend is a class of instances of Individuals who participate
in friend property (using anonymous defined class). Thus,
each Group Policy assignment is reducible to Individual
Policy upon which conflicting policies can be inferred and
noticed to user. For example, Family RDF vocabulary will
be as follows:

<!-- http://www.w3.org/ns/odrl/2/Family -->
 <owl:Class rdf:about="Family">
 <rdfs:subClassOf
rdf:resource="Group"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
rdf:resource="isFamily"/>
 <owl:allValuesFrom
rdf:resource="Individual"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

This expresses that Family are individuals that has

isFamiliy property. Thus, the result of querying use case 2 is
as follows:

740

Individual:
http://www.w3.org/ns/odrl/2/Policy:02

 Types:
 Agreement
 Facts:
 prohibition

http://www.w3.org/ns/odrl/2/Prohibit:02,
 conflict Prohibition,
 permission

http://www.w3.org/ns/odrl/2/Perm:02

Individual:
http://www.w3.org/ns/odrl/2/Perm:02

 Types:
 Permission
 Facts:
 assigner

http://www.w3.org/ns/odrl/2/user:02,
 action save,
 target

http://www.w3.org/ns/odrl/2/weddingPhoto:02

Individual:
http://www.w3.org/ns/odrl/2/Prohibit:02

 Types:
 Prohibition
 Facts:
 assigner

http://www.w3.org/ns/odrl/2/user:02,
 action save,

 target
http://www.w3.org/ns/odrl/2/weddingPhoto:02

This policy includes two conflicting Permission and

Prohibition policies at which Prohibition has higher priority.
This indicates that if a friend is the subject of both policies
then he could not save the wedding photos.

But we should notice that in the above example Assignees
are not determined. Indeed, Assignees are all Colleague and
Friend instances that are determined through hasValue
restriction as follows:

<!-- http://www.w3.org/ns/odrl/2/Friend -->
 <owl:Class rdf:about="Friend">
 <rdfs:subClassOf

rdf:resource="Group"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="assignee"/>
 <owl:hasValue

rdf:resource="Perm:02"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="isFriend"/>
 <owl:allValuesFrom

rdf:resource="Individual"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

<!-- http://www.w3.org/ns/odrl/2/Colleague
-->

 <owl:Class rdf:about="Colleague">
 <rdfs:subClassOf

rdf:resource="Group"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="assignee"/>
 <owl:hasValue

rdf:resource="Prohibit:02"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="isColleague"/>
 <owl:allValuesFrom

rdf:resource="Individual"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

This expresses that Friends are instances of Individual

class who can save wedding photos whereas Colleagues
cannot. Thus, we easily can query all individual’s policy and
detect and notify probable conflicts in between.

Policy compensation. As discussed in the section C,
Duty compensation policy is denoted by compensation
operation ⊗ in DPL. However, we can deploy
compensation without this operator in ODRL. Because the
rule A⇒OB⊗OC corresponds these two rules; A⇒OB,

A,¬B⇒OC. In ODRL ontology, Duty is assumed to be
compulsory and Duty violation is not tolerated. In detail, if
Assignee complies Duty then he will have the Permission to
access to the Asset otherwise cannot. We suggest extending
ODRL model to implement precedent attribute. This
attribute establishes connection between individuals of Duty
class. isPrecedent property is defined irreflexive to prevent
meaningless Duty chain. The sequence order of isPrecedent
conveys priorities between different Duties. Policy
compensation vocabulary is provided in the following:

741

<!-- http://www.w3.org/n s/odrl/2/isPrecedent
-->

 <owl:ObjectProperty
rdf:about="isPrecedent">

 <rdf:type
rdf:resource="&owl;IrreflexiveProperty"/>

 <rdfs:range rdf:resource="Duty"/>
 <rdfs:domain rdf:resource="Duty"/>

 </owl:ObjectProperty>

For example, ontological representation of the use case 4

would be as follows:

Individual:

http://www.w3.org/ns/odrl/2/Policy:04
 Types:
 Agreement
 Facts:
 permission

http://www.w3.org/ns/odrl/2/Perm:04

Individual:

http://www.w3.org/ns/odrl/2/Perm:04
 Types:
 Permission
 Facts:
 assigner Facebook,
 action Access,
 target

http://www.w3.org/ns/odrl/2/account:04,
 duty

http://www.w3.org/ns/odrl/2/requirements:04,
 assignee

http://www.w3.org/ns/odrl/2/user:04

Individual:
http://www.w3.org/ns/odrl/2/requirements:04

 Types:
 Duty
 Facts:
 isPrecedent

http://www.w3.org/ns/odrl/2/requirements:14,
 action remove

Individual:

http://www.w3.org/ns/odrl/2/requirements:14
 Types:
 Duty
 Facts:

 action inactive

This expresses that the Duty instance

“ requirements:04 ” is related to the other one
“ requirements:04 ” trough precedent attribute where it is
assumed that the former has higher priority but is relaxable
by the later Duty. Thus, during applying policy we simply
can query and check chain of Duties to implement
compensation notion.

Temporal Policy. ODRL ontology vocabulary supports
temporal Constraints using dateTime, time and right
operators by which Permission/Prohibition can determine
deadline. Other words, Constraint (owl:class) can limit
Permission/Prohibition policy using “dateTime”. Time
interval also has implemented by employing right operators
called gteq and lteq in ODRL. But the discussed deadline in

ODRL only concerns Permission/Prohibition (e.g., “can”
have access in deadline) not obligation or Duty (e.g., “must”
complete the profile in deadline) whereas DPL language
characterizes time obligations for Duties as well. In detail,
Duty in ODRL ontology plays the role of requirement for
Permission and duty attribute only appears in relation with
Permission, whereas Duty in deadline is not going to
grant/deny permission. Duty in here is to implement time
obligation on an Action. Thus, Duty is triggered by initial
action (init) and then obliges another action within a
deadline (terms and conditions) otherwise obligation will be
violated. Thus, we defined another type of Policy called
Deadline accompanied with deadline attribute having three
sub-properties called init, term and viol. Deadline attribute
connect Policy to union of Duty and Action classes. Since
every action attached with timestamp in DPL deadline use
cases we suggest considering dateTime data property for
Action in ODRL. We also considered “relax” data attribute
for Duties to denote Duties that are done within the deadline.
The suggested deadline vocabulary is as follows:

<!--http://www.w3.org/ns/odrl/2/deadline -
->
 <owl:ObjectProperty
rdf:about="deadline">
<rdfs:domain rdf:resource="Policy"/>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf
rdf:parseType="Collection">
 <rdf:Description
rdf:about="Action"/>
 <rdf:Description
rdf:about="Duty"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 </owl:ObjectProperty>

<!-- http://www.w3.org/ns/odrl/2/term -->
 <owl:ObjectProperty rdf:about="term">
 <rdfs:subPropertyOf
rdf:resource="deadline"/>
 </owl:ObjectProperty>

<!-- http://www.w3.org/ns/odrl/2/viol -->
 <owl:ObjectProperty rdf:about="viol">
 <rdfs:subPropertyOf
rdf:resource="deadline"/>
 </owl:ObjectProperty>

<!-- http://www.w3.org/ns/odrl/2/init -->
 <owl:ObjectProperty rdf:about="init">
 <rdfs:subPropertyOf
rdf:resource="deadline"/>
 </owl:ObjectProperty>

Thus, the use case 4 can be represented by ODRL

ontology as follows:

<http://example.com/policy:07>
 odrl:viol
<http://example.com/duty:27> ;
 odrl:term
<http://example.com/duty:17> ;
 odrl:init

742

<http://example.com/duty:07> ;
 rdf:type odrl:Deadline ;
 rdf:type owl:NamedIndividual .
<http://example.com/duty:07>
 odrl:action odrl:Open ;
 odrl:assigner odrl:Facebook ;
 odrl:assignee
<http://example.com/user:07> ;
 odrl:action
<http://example.com/account:07> ;
 odrl:dateTime "2016-04-
05"^^xsd:date ;
 rdf:type odrl:Duty ;
 rdf:type
owl:NamedIndividual .

<http://example.com/duty:17>
 odrl:action odrl:profile ;
 odrl:action odrl:Complete ;
 odrl:constraint
<http://example.com/constraint:17> ;
 odrl:relax true ;
 odrl:dateTime "2016-04-
28"^^xsd:date ;
 rdf:type odrl:Duty ;
 rdf:type
owl:NamedIndividual .
<http://example.com/duty:27>
 odrl:action odrl:Close ;
 odrl:action
<http://example.com/account:07> ;
 odrl:relax true ;
 rdf:type odrl:Duty ;
 rdf:type owl:NamedIndividual .

Where policy:07 expresses that user:07 has to

complete his profile within 30 days from opening day
(2016-04-05). Since user has completed the profile at
2016-04-28 the relax field of the “term” and “viol” is Duty
set to true which indicates they are not remaining duties.

Unlike Permission/Prohibition policies that are set up
once, Deadline policy fields might be completed in several
steps. For instance, system may schedule to query Deadline
policies every day to look for Duty terms that still are not
relaxed and their due date is reached to execute and fill viol
Duty fields. Or when the user completes his profile “relax”
fields in term and viol should be updated. Proposed ontology
works for both persistent and transient types of temporal
policies.

IV. CONCLUSIONS

In this work, we extended ODRL ontology vocabularies
towards DPL by which addressed normative, temporal,
exceptional and conflicting policies based on modal
defeasible logic formalism. This empowered us to represent
complicated policy use cases on OSNs such that able to
address privacy concerns and policy management in a
broader view. Policy conflict resolution and compensation
models as well as deadlines were explored by querying use
cases in the framework. Indeed, we can query policy
instances using SPARQL and parse them into modal
defeasible logic to infer and pull out implicit indications of
provided policies.

It is worth mentioning that an only part of policy
implications is obtainable using ontology vocabularies and
OWL description logic. Other aspect of reasoning with
normative, temporal and conflicting policies is to define
defeasible rules profile and superiority relations then apply
them into ontological knowledge bases. This may happen
using defeasible logic reasoning engines that support
semantic web technology such as DR-Device and SPINdle.
This scheme is quite feasible for heterogeneous OSNs since
time complexity of defeasible logic is linear and it is
employed in dealing with big data under semantic web
technology. The suggested scheme is the subject of our
future work.

ACKNOWLEDGMENT

We would like to thank CAIT research group for
facilitating this project by offering lab and server. This work
is funded under grant LRGS/TD/2011/UITM/ICT/01/02 and
FRGS/2/2013/ICT02/UKM/02/2 by National University of
Malaysia.

REFERENCES
[1] B. Debatin, J. P. Lovejoy, A.-K. Horn, and B. N. Hughes, "Facebook

and online privacy: Attitudes, behaviors, and unintended
consequences," Journal of Computer‚ÄêMediated Communication,
vol. 15, pp. 83-108, 2009.

[2] N. B. Ellison, J. Vitak, C. Steinfield, R. Gray, and C. Lampe,
"Negotiating privacy concerns and social capital needs in a social
media environment," in Privacy Online, ed: Springer, 2011, pp. 19-
32.

[3] J. V. E. Peluchette, K. Karl, and J. Fertig, "A Facebook ‘friend’
request from the boss: Too close for comfort?," Business horizons,
vol. 56, pp. 291-300, 2013.

[4] F. Stutzman, J. Vitak, N. B. Ellison, R. Gray, and C. Lampe,
"Privacy in Interaction: Exploring Disclosure and Social Capital in
Facebook," in International Conference on Weblogs and Social
Media (ICWSM'12), Dublin, IE, 2012.

[5] J. Vitak, C. Lampe, R. Gray, and N. B. Ellison, ""Why won't you be
my Facebook friend?": strategies for managing context collapse in
the workplace," presented at the Proceedings of the 2012 iConference,
Toronto, Ontario, Canada, 2012.

[6] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki, and H.-C.
Choi, "D-FOAF: Distributed identity management with access rights
delegation," in The Semantic Web–ASWC 2006, ed: Springer, 2006,
pp. 140-154.

[7] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thuraisingham, "A semantic web based framework for social
network access control," in Proceedings of the 14th ACM
symposium on Access control models and technologies, 2009, pp.
177-186.

[8] B. Carminati, E. Ferrari, and A. Perego, "Rule-based access control
for social networks," in On the Move to Meaningful Internet Systems
2006: OTM 2006 Workshops, 2006, pp. 1734-1744.

[9] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thuraisingham, "Semantic web-based social network access control,"
computers & security, vol. 30, pp. 108-115, 2011.

[10] G. Governatori and R. Iannella, "Modelling and reasoning languages
for social networks policies," in Enterprise Distributed Object
Computing Conference, 2009. EDOC'09. IEEE International, 2009,
pp. 193-200.

[11] D. Nute, "Defeasible logic," in Handbook of logic in artificial
intelligence and logic programming (vol. 3), ed: Oxford University
Press, Inc., 1994, pp. 353-395.

[12] G. Governatori and R. Iannella, "A modelling and reasoning
framework for social networks policies," Enterprise Information
Systems, vol. 5, pp. 145-167, 2011.

[13] S. Steyskal and A. Polleres, "Defining expressive access policies for
linked data using the ODRL ontology 2.0," in Proceedings of the
10th International Conference on Semantic Systems, 2014, pp. 20-23.

743

[14] R. M. Iannella, McRoberts; Víctor, Rodríguez Doncel. (2015, 27
Oct). ODRL Version 2.1 Ontology.

[15] S. Steyskal and A. Polleres, "Towards Formal Semantics for ODRL
Policies," in Rule Technologies: Foundations, Tools, and
Applications, ed: Springer, 2015, pp. 360-375.

[16] G. H. Von Wright, "Deontic logic," Mind, pp. 1-15, 1951.
[17] G. Governatori, "Representing business contracts in RuleML,"

International Journal of Cooperative Information Systems, vol. 14, pp.
181-216, 2005.

[18] M. Rohaninezhad, S. M. Arif, and S. A. M. Noah, "Defeasible Logic-
Based Strategies to Regulate Facebook," Journal of Applied Sciences,
vol. 14, pp. 2953-2966, 2014.

[19] G. Governatori and A. Rotolo, "Logic of violations: A Gentzen
system for reasoning with contrary-to-duty obligations," 2005.

[20] G. Governatori, J. Hulstijn, R. Riveret, and A. Rotolo,
"Characterising deadlines in temporal modal defeasible logic," in AI
2007: Advances in Artificial Intelligence, ed: Springer, 2007, pp.
486-496.

[21] G. Governatori and P. Terenziani, "Temporal extensions to defeasible
logic," in AI 2007: Advances in Artificial Intelligence, ed: Springer,
2007, pp. 476-485.

[22] M. Palmirani, G. Governatori, and G. Contissa, "Temporal
Dimensions in Rules Modelling," in JURIX, 2010, pp. 159-162.

[23] M. Palmirani, G. Governatori, and G. Contissa, "Modelling temporal
legal rules," in Proceedings of the 13th International Conference on
Artificial Intelligence and Law, 2011, pp. 131-135.

[24] G. Governatori and A. Rotolo, "On the complexity of temporal
defeasible logic," in 13 International Workshop on Non-Monotonic
Reasoning (NMR 2010), 2010.

744

