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Abstract— Rough set theory is a mathematical model for dealing with the vague, imprecise, and uncertain knowledge that has been 
successfully used to handle incomplete information system. Since we know that in fact, in the real-world problems, it is regular to find 
conditions where the user is not able to provide all the necessary preference values. In this paper, we compare the performance 
accuracy of the extension of rough set theory, i.e. Tolerance Relation, Limited Tolerance Relation, Non-Symmetric Similarity Relation 
and New Limited Tolerance Relation of Rough Sets for handling incomplete information system in real-world student dataset. Based 
on the results, it is shown that New Limited Tolerance Relation of Rough Sets has outperformed the previous techniques.  
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I. INTRODUCTION 

Data mining is the process that include the collection, use 
historical data to find regularities, patterns, relationships in 
large data sets and represent the new knowledge to make the 
data understandable [1]. It has been widely used and has 
solved many real-life problems [2–4]. In fact, besides 
enhancing the method used in the learning system [5], data 
mining has also been used in the field of education to better 
understand how students learn and identify the settings in 
which they learn to improve educational outcomes [6].  

One of the popular and viable approach for data mining is 
using rough set theory. Rough set theory [7] was first 
initiated by Professor Zdzislaw Pawlak as information 
system i.e. pairs ( )AU,  where U  is the universe of objects, 

while A is the set of conditional attributes. In recent years, it 
has been successfully applied to knowledge discovery, 
information system analysis, artificial intelligence, decision 
analysis, pattern recognition, etc. Various real-life 
applications of rough set theory have shown its usefulness 

in many domains, i.e. clustering [8–11], modeling conflict 
analysis [12] with improvement by using soft set theory [13] 
in terms of computational time, association rule[14], 
medical diagnosis [15], [16], supplier and distributor 
selection on Supply Chain Management [17], [18], etc. 

The rough set theory does not need any initiatory or 
supplementary information of data. That is its main 
advantage. The standard rough set theory, however, can 
only be implemented to deal with the problems of complete 
information system where all available objects in the system 
have attribute values. It is based on the indiscernibility 
relation that conforms with the reflexive, symmetric and 
transitive properties. Even though in fact, in the real-world 
problems, it is regular to find conditions where the user is 
not able to provide all the necessary preference values, and 
thus, we need to deal with the incomplete information 
system. 

To cope with this incomplete information system, a lot of 
effort has been run in studying this domain. The simplest 
method to deal with incomplete information system is to 
remove the objects with unknown or missing values [19].  
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However, this approach certainly reduces the sample size 
of data. Apart from that, a well-known approach is the 
extension of rough set theory, called tolerance relation [20]. 
Yet the disadvantage is, tolerance relation approach leads to 
poor results in terms of approximation. Subsequently, 
Stefanowski and Tsoukias [21], [22] proposed similarity 
relation to improve the results obtained by means of 
tolerance relation technique. However, Wang [23] and Yang 
et al., [24] showed that when applying similarity relation, 
some information are lost, hence they introduced limited 
tolerance relation. Nevertheless, some information are also 
lost since limited tolerance relation does not consider the 
similarity precision between two objects. Nguyen et al., [25] 
improved the tolerance relation by considering the 
probability matching between two objects. After all, first, 
we need to know the probability distribution of the data. 
Consequently, Deris et al. [26] proposed New Limited 
Tolerance Relation of Rough Sets. This proposal is based on 
limited tolerance relation by taking into consideration the 
similarity precision between two objects. The similarity 
precision is defined when a threshold value is given. 
Therefore, this study aims to address multiple techniques for 
incomplete information system based on rough set theory 
using real-world student data with missing or incomplete 
values. 

This study examines the results of an experimental and 
comparative analysis on several incomplete information 
system techniques, including Tolerance Relation (TR), 
Limited Tolerance Relation (LTR), Non-Symmetric 
Similarity Relation (NSSR) and New Limited Tolerance 
Relation of Rough Set (NLTRS) regarding their 
performance in terms of accuracy. The student data to be 
analyzed were obtained from the Directorate of Information 
Systems (SISFO), Telkom University. 

The other section of the paper is organized as follows. In 
Section 2, the basic notion of rough set theory and 
incomplete information system of the rough set theory are 
introduced. Afterward, the tolerance relation, limited 
tolerance relation, non-symmetric similarity relation and 
new limited tolerance relation of the rough set for handling 
incomplete information system are briefly described. 
Section 3 elaborates the results and compares them in terms 
of accuracy. Finally, the conclusion of this work is 
presented in Section 4. 

II. MATERIALS AND METHODS 

In this section, we recalled the notion of information 
systems, the idea of rough set theory and continued with the 
essential definitions of incomplete information system 
techniques based on rough set theory, namely Tolerance 
Relation, Non-Symmetric Similarity Relation, Limited 
Tolerance Relation and New Limited Tolerance Relation of 
Rough Sets. 

A. Information System 

The idea of information system gives an appropriate tool 
for the representation of objects in terms of their attribute 
values. An information system is a 4-tuple (quadruple) 

( )fVAUS ,,,= , where { }
U

uuuU ,,, 21 ⋯=  is a non-empty 

finite set of objects, { }
A

aaaA ,,, 21 ⋯=  is a non-empty finite 

set of attributes, ∪ Aa aVV
∈

= , aV  is the domain (value set) of 

attribute a, VAUf →×:  is an information function such that 

( ) aVauf ∈, , for every ( ) AUau ×∈, , called information 

(knowledge) function [27]. If U in ( )fVAUS ,,,=  contains at 

least one object with an unknown or missing value, then S is 
called incomplete information system. The unknown or 
missing value is denoted by “*” in an incomplete 
information system. In this paper, we used the quadruple 

( )fVAUS ,,,* *=  to denote an incomplete information system. 

After the idea of an information system was presented as 
above, we recalled the notion of rough set theory in the 
following section. 

B. Rough Set Theory 

The idea of rough set theory was founded on the 
assumption that every object of the universe of discourse 
can be associated with some information (data, knowledge). 
Objects characterized by the same information are 
indiscernible (similar) in view of the available information 
about them. The mathematical basis of a rough set theory is 
that similarity (indiscernible) relationship. The basic set of 
any set of all similar objects will form the basic grains 
(atoms) of knowledge of the universe. Some of the basic sets 
that form a union are called exact - otherwise those are 
called rough set (not exact, not clear). On a rough set there 
are objects in boundary line whose certainty cannot be 
classified, using existing knowledge, as a member of its set 
or complement. 

Foremost, we recalled some fundamental definitions of 
rough set theory. Formal definitions and detailed description 
of rough set theory are originated from [7]. 

The concept of an information table is a quadruple 
( )fVAUS ,,,= , where U  is a non-empty finite set of objects, 

A is a non-empty finite set of attributes, V  is the union of 
attribute domains such that ∪ Aa aVV

∈
=  for 

aV  denotes the 

value domain of attribute a, any Aa∈  determines a function 
aa VUf →:  where 

aV  is the set of values of a. 

Two elements Uyx ∈,  in ( )fVAUS ,,,=  are said to be B-

indiscernible (indiscernible by the set of the attribute 
AB ⊆  in S) if and only if ( ) ( )ayfaxf ,, = , for every Ba ∈

[27]. An indiscernible relation induced by the set of attribute 
B, denoted by ( )BIND , is an equivalence relation. It is well 

known that an equivalence relation can induce a unique 
partition. The partition of U induced by ( )BIND  in 

( )fVAUS ,,,=  is denoted by BU/  and the equivalence class in 

the partition BU /  contains Ux∈  and denoted by [ ]Bx . Let B 

be any subset of A in S and let X be any subset of U, the B-
lower approximation of X, denoted by ( )XB and B-upper 

approximation of X, denoted by ( )XB  respectively, are 

defined by 

( ) [ ]{ }XxUxXB
B

⊆∈=  and ( ) [ ]{ }φ≠∈= XxUxXB
B
∩ . 

The accuracy of approximation of any subset UX ⊆  with 
respect to AB ⊆ , denoted by ( )XBα  is measured by 

( ) ( ) ( )XBXBXB /=α , where X  denotes the cardinality of 
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X. For the empty set φ , it is defined as ( ) 1=φαB
 [28]. Clearly, 

( ) 10 ≤≤ XBα . If X is a union of some equivalence classes of 

U, then ( ) 1=XBα . Thus, the set X is exact  with respect to B. 

And, if X is not a union of some equivalence classes of U, 
then ( ) 1<XBα . Thus, with respect to B, the set X is not exact. 

This means that the higher the accuracy of approximation of 
any subset UX ⊆ , the more precise (the less imprecise) it 
would be [29].  

C. Tolerance Relation 

Given a complete decision system ( )fVAUS ,,, *= , where 

CA =  { }d , C  is a set of condition attributes and d  is the 

decision attribute, such that VAUf →×: , for any Aa ∈ , 

where 
aV  is called domain of attribute .a  An incomplete 

information system ( )fVAUS ,,,* *= , for any subset CB ⊆ , the 

tolerance relation T is determined by the following 
definition. 
 
Definition 1. (See [18,27]) Let ( )fVAUS ,,,* *=  be an 

incomplete information system. A tolerance relation TR is 
defined as 
 

( ) ( ) ( ) ( )( )**)(,, =∨=∨=∀⇔∀ ∈∈ ycxcycxcyxTR jjjjBCUyx j
 (1) 

Thus, 
 

( ){ jcUyUxyxTR ∀∧∈∧∈= ,  

                       
( ) ( ) ( ) ( )( )( )}** =∨=∨=→∈ ycxcycxcBc jjjjj  

 
Obviously, TR is reflexive and symmetric but does not need 
to be transitive. From Definition 1, we described the notion 
of tolerance class as follows: 
 
Definition 2. Let ( )fVAUS ,,,* *= be an incomplete 

information system. The tolerance class ( )xI T

B
of an object x 

with reference to an attribute set B is defined as follows: 
 

( ) ( ){ }yxTRUyyxI B
T
B ,| ∧∈= .         (2) 

 
From Definition 2, the notion of lower and upper 
approximations of tolerance class are described as follows: 
 
Definition 3. Let ( )fVAUS ,,,* *=  be an incomplete 

information system. The lower approximation 
T
Bx  and 

upper approximation 
B
Tx  of an object set X with reference 

to attribute set B respectively can be defined as follows: 
 

( ){ }XxIUxxx T
B

T
B ⊆∧∈= |   

and            (3) 

 ( ){ }φ≠∧∈= XxIUxxx T
B

B
T ∩|           

 
 

 
 

TABLE I 

AN INCOMPLETE INFORMATION TABLE 

AU /  1a  2a  3a  4a  d 

1p  3 2 1 0 θ  

2p  2 3 2 0 θ  

3p  2 3 2 0 α  

4p  * 2 * 1 θ  

5p  * 2 * 1 α  

6p  2 3 2 1 α  

7p  3 * * 3 θ  

8p  * 0 0 * α  

9p  3 2 1 3 α  

10p  1 * * * θ  

11p  * 2 * * α  

12p  3 2 1 * θ  

 
We can represent the above ideas by using an incomplete 

information system of Wang [23].  
 

Example 1. Table 1 is an incomplete information system, 
where 1221 ,,, ppp ⋯  are objects. The 4321 ,,, aaaa  are four 
condition attributes, where their domain values are {0,1,2,3}. 
The d is a decision attribute, where its domain values is 
{ }αθ , , { }12107421 ,,,,, pppppp=θ and 

{ }1198653 ,,,,, pppppp=α . 

D. Non-Symmetric Similarity Relation 

An object x is considered to be similar to object y only if 
all their known attribute values are the same. Thus, one 
object may have more complete description than the other, 
the inverse relation does not hold [30]. The notion of a non-
symmetric similarity relation is given as follows: 
 
Definition 4 (See [30], [31]). Let ( )fVAUS ,,,* *= be an 

incomplete information system. A non-symmetric similarity 
relation S is defined as 
 

( ) ( ) ( ) ( )( )( )*,, =∨=∀⇔∀ ∈∈ xcycxcyxS jjjBcBUyx j
 (4) 

 
It is clear that S is transitive and reflexive but not symmetric. 
From Definition 4, we can induce two similarity sets as 
given in Definitions 5 and 6 below. 
 
Definition 5. Let ( )fVAUS ,,,* *= be an incomplete 

information system and AB ⊆ .The set of objects similar to 
object x denoted by ( )xBSim  is defined as 

 
( ) ( ){ }xySUyyx BB ,|Sim ∧∈=  (5) 

 
Definition 6. Let ( )fVAUS ,,,* *= be an incomplete 

information system and AB⊆ .The set of objects which x is 

similar to ( )xB

1Sim− is defined as 
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( ) ( ){ }yxSUyyx BB ,|Sim 1 ∧∈=−  (6) 

 

Obviously, ( )xBSim  and ( )x-1

BSim are two different sets.  

Furthermore, from Definitions 5 and 6, the lower 
approximation and upper approximation of objects set X can 
be defined as follows:    
 
Definition 7. Let ( )fVAUS ,,,* *=  be an incomplete 

information system and AB ⊆ .The lower-approximation 
S

BX and the upper-approximationB

SX of an object set X with 

respect to an attribute set AB⊆  are respectively defined as 
 

( ){ }XxUxxX B
S
B ⊆∧∈= −1Sim|  

 
And 
 

( ){ }XxxX B
B
S ∈= |Sim∪          (7) 

 
The approximations showed by the non-symmetric 

similarity relation are more informative than those resulted 
by tolerance relation. 

 

E. Limited Tolerance Relation 

In an information system, two objects may be distinct 
because of a little missing information. For example, two 
objects { }wzyxa ,,,*,=  and { }wzyvb ,,,*,= are similar, but 

they do not satisfy the non-symmetric similarity relation. To 
avoid such problem, Wang [22] developed a limited 
tolerance relation based on the following definition. 
 
Definition 8 (See [23]). Let ( )fVAUS ,,,* *= be an 

incomplete information system, a subset AB ⊆ , and

( ) ( ){ }*| ≠∧∈= xbBbbxPB . A binary relation L (limited 

tolerance relation) defined on U is given by 
 

           
( ) ( ) ( )( )∨==∀⇔∀ ∈∈ *(,, ybxbyxL BbBUxUyx  

           
( ) ( )( )( ∧≠ φyPxP BB ∩  

( )( ) ( )( ) ( ) ( )( )( ))ybxbybxbBb =→≠∧≠∀ ∈ **       (8) 

 
Obviously, the limited tolerance relation is symmetric and 
reflexive but not transitive. In Definition 8, the condition 
that ( )( ) ( )( ) ( ) ( )( )ybxbybxb =→≠∧≠ **  is equivalent to 

( )( ) ( )( ) ( ) ( )( )ybxbybxb =∨=∨= ** . Thus, two objects that 

satisfy the tolerance relation but not limited tolerance 
relation are only those with the formula ( ) ( ) φ=yPxP BB ∩ . 

In other words, there are two cases where two objects are 
in a limited tolerance relationship, i.e if two objects lose all 
attribute values, and the second case is where there is at 
least an attribute having an ordinary value for both objects 
and the two objects have the same value for those attributes. 
The notion of limited tolerance class is given as follows: 
 

Definition 9. Let ( )fVAUS ,,,* *= be an incomplete 

information system and a subset AB ⊆ . The limited 

tolerance class is defined as ( ) ( ){ }yxLUyyxI B

L

B ,| ∧∈= . 

 
From Definition 9, the notions of lower approximation 

and upper approximation of an object x based on the limited 
tolerance class are given in the following definition. 
 
Definition 10. The lower approximation and the upper 
approximation of an object x based on the limited tolerance 

class ( )xI L
B  are respectively defined as:  

 

( ){ }φ≠∧∈= DxIUxxD L
B

B
L ∩|  

 
and 
 

( ){ }DxIUxxD L
B

L
B ⊆∧∈= | .         (9) 

 

F. New Limited Tolerance Relation of Rough Sets 

An incomplete information system ( )fVAUS ,,,* *= , 

where { }dCA ∪= , C is a set of condition attributes and d 

the decision attribute, such that *: VAUf →× . For any 

Aa ∈ , where aV  is called domain of an attribute a and a 

subset CB⊆ , the similarity precision is defined as follows: 
 

Definition 11 (See [26]). Let ( ) ( ){ }*| ≠∧∈= xbBbbxPB , 

the similarity precisionδ , is defined as: 
 

( ) ( ) ( )
C

yPxP
yx BB ∩

=,δ ,       (10) 

where • represents the cardinality of the set. 

 
From Definition 11, it is clear that ( ) .1,0 ≤< yxα  

Meanwhile, the limited tolerance relation with similarity 
precision is given as follows: 
 
Definition 12. Given an incomplete information system 

( )fVAUS ,,,* *= . The limited tolerance relation with 

similarity precision δL  is defined as follows: 
 

( ) ( ) ( )( ) ( )( )( ) ∧≥∨==∀⇔∀ ∈×∈ δαδ yxybxbyxL BbBUUyx ,*,(,

( )( ) ( )( )( ) ( ) ( )( )( )ybxbybxbBb =→≠∧≠∀ ∈ **       (11) 

where ( ]1,0∈δ  is a threshold value. 

 
Since ( ]1,0∈δ , then ( ) 1,0 ≤< yxα which implies that 

( ) ( ) φ≠yPxP BB ∩ holds, but not vice versa if the particular 

threshold value of the similarity is given.  
 
Afterward, we recalled the extended tolerance relation by 
using similarity precision with a threshold. 
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Definition 13. Given an incomplete information system 
( )fVAUS ,,,* *= , a subset CB ⊆  and a threshold δ . The 

limited tolerance relation with similarity precision is defined 
as follows: 
 

( ) ( ) δαδ ≥⇔ yxyxL BB ,,        (12) 

 
In the next section, we discussed the performance of four 

(4) techniques in terms of accuracy. 
 

III.  RESULT AND DISCUSSION 

In this section, we compare all the incomplete 
information system techniques based on accuracy. A real-
world dataset that contains incomplete missing values is 
used. This dataset was obtained from the Directorate of 
Information Systems (SISFO), Telkom University. It 
contains 200 instances and eight (8) categorical attributes. 
The attributes that have been used are Student ID, 1st GPA, 
2nd GPA, 3rd GPA, 4th GPA, 5th GPA, 6th GPA, and 
Performance of Student. Here, irrelevant attributes such as 
name, gender, student residential address, etc. have been 
removed. The occurrence of missing values might be due to 
several possibilities, such as the student was on leave, the 
GPA score is not final, the student is not enrolled in certain 
semester, etc. 

The Performance Status field represents the performance 
of students during their studies. The description of each 
attribute of the dataset is shown in Table 2 as follows: 

 

TABLE II 
DESCRIPTION OF DATASET ATTRIBUTES 

 
Attribute 

Name Description Attribute Set Value 

ID ID of student { }200,,3,2,1 ⋯  

1st 
Letter representation 
of GPA of student in 
first semester 

{ }EDCBCBABA ,,,,,,  

2nd 
Letter representation 
of GPA of student in 
second semester 

{ }EDCBCBABA ,,,,,,  

3rd 
Letter representation 
of GPA of student in 
third semester 

{ }EDCBCBABA ,,,,,,  

4th 
Letter representation 
of GPA of student in 
fourth semester 

{ }EDCBCBABA ,,,,,,  

5th 
Letter representation 
of GPA of student in 
fifth semester 

{ }EDCBCBABA ,,,,,,  

6th 
Letter representation 
of GPA of student in 
sixth semester 

{ }EDCBCBABA ,,,,,,  

Performance 
Performance status of 
student 

{ }NEGATIVEPOSITIVE,

 
 

The values of GPA are in the form of letter representation 
of their actual numeric score (4.0 scale). The conversion of 
the actual score of GPA to a letter representation based on a 

standard that is implemented by Telkom University is as 
shown in Table 3 below: 

 
TABLE III 

CONVERSION OF GPA 
 
Range of GPA GPA Letter Category 

3.51 – 4.0 A Excellent 

3.01 -3.5 AB Very Good 

2.51-3.0 B Good 

2.01-2.5 BC Fair 

1.51-2.0 C Satisfactory 

1.1 - 1.5 D Passing  

0.0 – 1.0 E Poor 

 

The sample of 10 out of 200 of student data that are used 
as a dataset in this paper is shown in Table 4 as follows: 

 
TABLE IV 

SAMPLE OF DATASET 
 

ID 1st 2nd 3rd 4th 5th 6th Performance 

1 B B AB B * * POSITIVE 

2 B BC BC AB AB A POSITIVE 

3 B BC BC * BC B NEGATIVE 



5 D B BC C * * NEGATIVE 

6 AB B AB A AB A POSITIVE 

7 D C C BC D BC NEGATIVE 

8 BC B B B * * NEGATIVE 

9 AB B AB AB AB A POSITIVE 

10 A A AB B * * POSITIVE 

  

In order to apply all the techniques, the experiments are 
developed using MATLAB version 7.14.0.334 (R2012a). 
The techniques are executed sequentially on a processor 
Intel 1.5 GHz CPUs, with total main memory 2G of RAM 
and the operating system is Windows 7. The computation 
results comparing all four (4) techniques in terms of 
accuracy are shown in Figure 1. 

Based on the above result, we can see that all techniques 
have recorded low accuracy, but it is undeniable that New 
Limited Tolerance Relation of Rough Sets has outperformed 
other techniques, i.e. Tolerance Relation, Limited Tolerance 
Relation, and Non-Symmetric Similarity Relation 
techniques. We have observed that it has low accuracy due 
to the properties of the dataset, e.g. the data are 
homogeneous, and because of the small number of instances 
used, which are only 200 instances. Although all of the 
techniques have achieved low accuracy, the improvement of 
NLTRS is very significant. The percentage of improvement 
of NLTRS as compared to TR, LTR and NSSR in terms of 
accuracy is shown in Table 5 below. 
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Fig. 1. Accuracy Comparison of each technique 

 
TABLE V 

PERCENTAGE OF IMPROVEMENT 
 

No. Technique Result 
Improvement % 

of NLTR to 
others 

1 TR 0.02065421 90.57 % 

2 LTR 0.02065421 90.57 % 

3 NSSR 0.109986015 49.82 % 

4 NLTRS 0.21918136        - 

Improvement Average 76.99% 

 
The improvement performance of NLTRS compared to 

other techniques is calculated by the following formula: 
 

( ) ( )
%100% ×−=

NLTRS

techniquesotherNLTRS
Impr  

(13) 
In summary, based on experiments that we have carried 

out using the real-world student dataset, the NLTRS 
achieved higher accuracy than the other techniques. The 
improvement average of NLTRS as compared other 
techniques in terms of accuracy of NTRS is 76.99%.  

IV.  CONCLUSION 

A number of techniques of extended rough set theory for 
handling incomplete information system have been 
proposed i.e. Tolerance Relation, Limited Tolerance 
Relation, Non-Symmetric Similarity Relation and New 
Limited Tolerance Relation of Rough Sets. However, all of 
the techniques have not been implemented in the real-world 
dataset that contains missing values or incomplete 
information system. In this paper, the researchers have 
applied all of the techniques and compared the performance 
of each technique in terms of accuracy. From the results, it 
is illustrated that New Limited Tolerance Relation of Rough 
Set achieved higher accuracy as compared to Tolerance 
Relation, Limited Tolerance Relation, and Non-Symmetric 
Similarity Relation with the improvement average of 
76.99%. 
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