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Abstract— Two Crossover-first Differential Evolution (XDE) algorithms as well as four self-adaptive DE algorithms are compared in 
this study in terms of their optimization accuracy for solving a set of 15 complex, non-linear numerical optimization functions across 
4 different dimensions of 10, 30, 50 and 100 optimization variables. XDE is a crossover-first variant of the original DE algorithm 
where XjDE is the crossover-first variant of the self-adaptive jDE algorithm. The original DE representing a fixed parameter strategy 
is tested against four self-adaptive algorithms, namely the DESACR, DESACRF, SDE and jDE algorithms. Although XDE is able to 
outperform XjDE in all 15 test problems for the lowest dimensional benchmark test setting of 10 variables, the crossover-first 
approach in XjDE is able to improve its performance and obtained better results over XDE in some of the test problems for the 
higher-dimensional benchmark test settings of 30, 50 and 100 variables. As such, this shows that there is some merit in adopting the 
crossover-first approach into the self-adaptive XjDE algorithm since the CR and F parameters are automatically adjusted and 
optimized by the algorithm itself as compared to the fixed CR and F in XDE which has to be manually tuned by hand. The results also 
show that different self-adaptive parameter tuning schemes have significantly different effects on the performance of DE as the 
number of optimization dimensions increases. 
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I. INTRODUCTION 

The Crossover-First Differential Evolution (XDE) 
algorithm was recently introduced as a more efficient 
optimizer than the original Differential Evolution (DE) 
algorithm for solving complex, non-linear numerical 
optimization problems [1-4]. XDE uses a novel sequence of 
genetic operations for DE in that the crossover operation is 
first conducted before the mutation operation. This simple 
modification introduced in XDE by way of reversing the 
genetic operations in DE has proven to be highly effective in 
improving the optimization accuracy of DE, particularly in 
handling expanded and hybrid composition functions with 
highly complex search spaces [1]. 

In this paper, we extend the crossover-first approach to 
another well-known DE variant called jDE [5-7]. In jDE, 
rather than fixing the tunable parameters for its crossover 
rate (commonly referred to as CR) and scaling factor 
(commonly referred to as SF), it adopts a self-adaptive 
approach where the CR and SF are incorporated into the 
algorithm and subjected to evolutionary optimization in 
order to self-adjust and find the best rates for its CR and SF 
parameters [8]. Since the crossover-first methodology has 

proven to be effective in XDE, here we employ this 
crossover-first methodology to jDE, which we refer to as 
XjDE. 

In order to test whether this approach improves upon the 
performance of XDE, we conducted comprehensive 
optimization tests on both XDE and XjDE using a set of 15 
benchmark suite of non-linear numerical test problems 
proposed in the 2015 Congress on Evolutionary 
Computation (CEC2015) competition for global 
optimization across the four dimensions of 10, 30, 50 and 
100 variables [9] which has been widely used in complex 
numerical optimization studies [10-15]. 

The rest of the paper is arranged as follows: Section 2 
reports on the related work of this paper; Section 3 explains 
the methodology adopted in this study; Section 4 presents 
the results and analysis of this work; Section 5 concludes 
with a summary of the findings and possible future work. 

II. MATERIAL AND METHOD 

A. Related Material 

XDE algorithm [1] was recently proposed as an 
improvement over the original DE algorithm [2,18,19]. It 
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proposes a novel reversal of genetic operations in the 
original DE algorithm.  

The basic DE algorithm is a population-based, real-valued, 
stochastic global optimizer that conducts the following 
operations in the following order after initialization: 1. 
mutation; 2. crossover; 3. selection; 4. repeat until 
termination. It also requires three user-defined parameters to 
be set prior to the optimization run: 1. F: scaling factor; 2. 
CR: crossover rate; and 3. NP: population size. The reader 
may refer to [2] for a detailed treatment of DE including the 
description of the algorithm in pseudocode. In the 
description that follows, only the key genetic operations are 
described. In brief, given a minimization problem f: 

f(x)*=xi∈Ωminf(xi)                                              (1) 

where xi  is a vector with D dimensions, x*  is the global 

solution and Ω⊆RD, DE will attempt to optimize the vector 
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Importantly, a new trial solution is generated in the 
following order:  

i. Mutation: for each parent xG,i , a new vector is 
created as follows: 
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where r1,r2, and r3 are randomly chosen from [1,NP] 
and i≠r1≠r2≠r3. 

ii. Crossover: for each parent xG,i , a trial solution is 
created as follows: 
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where Rj  is a uniform random [0,1] and jrand  is 

random integer [1,D]. 

iii. Selection: the new trial solution competes with the 
parent for survival to the next optimization iteration: 
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In XDE, the crossover operation is first conducted before 
the mutation operation as follows [1]: 

i. Crossover: for each parent xG,i, a new vector is 
created as follows: 
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where where r1 is randomly chosen from [1,NP], Rj 

is a uniform random [0,1], jrand is random integer 

[1,D] and i≠r1. 

 
ii. Mutation: for each parent xG,i , a trial solution is 

created as follows: 





 <+

+
+

                             otherwise.                     

 if     )-F.(
1

,

,4,3,21
, G

ji

j
G

jr
G

jr
G

jrG
ji v

 MR Rxxx
u (6) 

where r2,r3, and r4 are randomly chosen from 
[1,NP], Rj  is a uniform random [0,1] and 

i≠r1≠r2≠r3≠r4. MR denotes the explicit mutation 
rate parameter that is tunable. 
 

iii. Selection: the new trial solution competes with the 
parent for survival to the next optimization iteration: 



 <++

+

                              otherwise.       

               )(  )( if     11
1

, G
i

G
i

G
i

G
iG

ji
x

xfufu
x (7) 

B. jDE Algorithm 

The jDE algorithm functions in exactly the same way as 
DE with the exception that the CR and SF parameters are 
self-adapted in the following manner [3]: 
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where new control parameters F and CR are produced before 
a new trial solution is generated using the crossover and 
mutation operations. τ1 and τ2 are set to 0.1 and represent 
the probabilities of adjusting CR and F. 

C. XjDE Algorithm 

In the proposed adoption of the crossover-first approach 
to the genetic operations in jDE, a similar process of 
conducting the generation of trial solutions is implemented 
as in XDE previously described in Section II. The only 
difference is that the self-adaption of CR and F is conducted 
as in jDE explained in Section III.A above before the trial 
solutions are generated using the crossover and mutation 
operations in XjDE in order to allow for the new CR and F 
values to be produced before the trial solutions are subjected 
to the new crossover-first operations. 

D. Self-Adaptive DE Algorithms 

Next, we present the two straightforward but novel self-
adaptive modifications to the basic DE algorithm. The two 
novel algorithms are implemented as straightforward self-
adaptive DE whereby the first is called DESACR 
implements a self-adaptive CR that is encoded into the 
chromosome and evolved and the F is randomized between 0 
and 1 for each offspring generated. The self-adaptive CR is 
mutated using the standard DE genetic operations similar to 
how the actual design variables are mutated and is conducted 
first before conducting the standard crossover operation in 
order to capture the goodness of the newly-generated CR if a 
superior offspring is generated through this new CR. The 
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self-adapted CR is then adopted by the new offspring and 
used in subsequent crossover operations should this 
offspring survive into the next generation. A lower and 
upper bound threshold of 0 and 1 respectively are set for the 
self-adaptive CR in order to maintain the CR within this 
range. 

The second novel algorithm is called DESACRF and 
version of DE is also implemented in a straightforward 
fashion as described above for DESACR except that now 
both the CR and F are self-adapted in this manner. Again, 
both CR and F are mutated first and then used for the actual 
mutation and crossover operations for the actual design 
variables for the same reasons as described earlier. Again, 
lower and upper bound thresholds of 0 and 1 are set for both 
the self-adaptive CR and F. 

The other two self-adaptive DE algorithm tested in this 
study are jDE [3] and SDE [17]. SDE implements a 
straightforward self-adaptation of the F parameter where 
each individual will optimize its own F value while jDE 
implements self-adaptation for both CR and F based on a 
new parameters, τ1 and τ2, which are thresholds that when 
the conditions are met, the F and CR values will undergo 
randomized changes. 

E. Experimental Setup 

Both the existing XDE and the proposed XjDE algorithms 
are tested using the CEC 2015 Global Optimization 
Competition test suite of 15 non-linear numerical 
optimization benchmark functions which is implemented in 
the C++ language [4].  

 

TABLE I 
CEC 2015 BENCHMARK FUNCTIONS 

No. Functions F* 

1 Rotated High Conditioned Elliptic Function 100 

2 Rotated Cigar Function 200 

3 Shifted and Rotated Ackley’s Function 300 

4 Shifted and Rotated Rastrigin’s Function 400 

5 Shifted and Rotated Schwefel’s Function 500 

6 Hybrid Function 1 (N=3) 600 

7 Hybrid Function 2 (N=4) 700 

8 Hybrid Function 3(N=5) 800 

9 Composition Function 1 (N=3) 900 

10 Composition Function 2 (N=3) 1000 

11 Composition Function 3 (N=5) 1100 

12 Composition Function 4 (N=5) 1200 

13 Composition Function 5 (N=5) 1300 

14 Composition Function 6 (N=7) 1400 

15 Composition Function 7 (N=10) 1500 
 

All parameters were set according to the competition 
guidelines and tested using all four optimization dimensions 
set for the competition, which are 10, 30, 50 and 100 
dimensions (D) representing the scalability of the algorithms 
in terms of their optimization performance. The maximum 
number of evaluations allowed was 10,000 * D.  

The details of the test functions are as detailed in Table 1. 
All final results have been subtracted by the amount of the 
global optimum shift value as denoted by F*. The accuracy 
threshold is set at 1E-08 as per the competition rules. NP is 
set to 100 and MR is set to 0.5 in both XDE and XjDE. 

III.  RESULTS AND DISCUSSION 

The results are presented in the following sections as 
follows: average best values found from each algorithm from 
the experiment using dimensions of 10 and 30 variables are 
presented in Subsection A. This is followed by the results 
obtained from using dimensions of 50 and 100 variables in 
Subsection B.  

Since all the test functions are minimization problems 
with solutions centered around 0, the results are shown are 
the average of the lowest objective value returns over 51 
repeated runs. The better performing algorithm is 
highlighted for its results for each of the respective 15 test 
functions. Figure 1 below shows a summary of the overall 
number of test functions won by each algorithm or drawn. 
 

 
 

Fig. 1. Comparison of XDE vs. XjDE. 
 

A. XDE vs XjDE: Results from 10D & 30D 

TABLE II 
LEFT: RESULTS FOR 10D; RIGHT: RESULTS FOR 30D 

D = 10 Variables  D = 30 Variables 
XDE XjDE  XDE XjDE 

1.34E+07 4.13E+07 
 

6.19E+04 1.96E+05 

2.18E+05 1.02E+07 
 

5.49E+03 1.69E+03 

2.03E+01 2.05E+01 
 

2.01E+01 2.02E+01 

7.40E+01 1.43E+02 
 

4.39E+00 1.09E+01 

2.92E+03 4.56E+03 
 

6.54E+01 3.68E+02 

2.98E+06 6.13E+06 
 

7.88E+01 1.10E+02 
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1.23E+01 1.68E+01 
 

6.17E-01 2.66E-01 

9.15E+05 1.44E+06 
 

6.64E+00 1.36E+00 

1.04E+02 1.05E+02 
 

1.00E+02 1.00E+02 

1.35E+06 2.06E+06 
 

2.24E+02 2.30E+02 

6.81E+02 9.02E+02 
 

1.72E+02 1.73E+02 

1.07E+02 1.08E+02 
 

1.02E+02 1.02E+02 

1.06E+02 1.18E+02 
 

2.68E+01 2.77E+01 

3.34E+04 3.44E+04 
 

5.79E+03 6.32E+03 

1.92E-02 1.60E+01 
 

0.00E+00 0.00E+00 

 
For the test setting with the number of optimization 

dimensions set to 10 variables, XDE outperformed XjDE for 
all 15 test functions as shown in Table II (left). However, 
when the dimensionality of the test problems were increased 
to 30 variables, XjDE could be seen to perform at par or 
better than XDE in 6 out of the 15 test problems as shown in 
Table II (right). 

B. XDE vs XjDE: Results from 50D & 100D 

For the test setting with the number of optimization 
dimensions set to 50 variables, similar to the results obtained 
from the 30 variable setting, XjDE could be seen to perform 
at par or better than XDE in 6 out of the 15 test problems as 
shown in Table III (left). XjDE’s performance against XDE 
improved to 7 out of the 15 test problems when the 
optimization setting was at its most challenging dimension 
of 100 variables as shown in Table III (right). 

 

TABLE III 
LEFT: RESULTS FOR 50D; RIGHT: RESULTS FOR 100D 

D = 50 Variables  D = 100 Variables 
XDE XjDE  XDE XjDE 

5.47E+07 1.95E+08 
 

1.72E+08 4.44E+08 

8.67E+03 7.86E+03 
 

5.32E+03 3.44E+03 

2.11E+01 2.11E+01 
 

2.13E+01 2.13E+01 

3.43E+02 3.46E+02 
 

8.53E+02 8.52E+02 

1.26E+04 1.28E+04 
 

2.98E+04 3.00E+04 

2.07E+06 1.22E+07 
 

1.77E+07 1.05E+08 

4.58E+01 4.69E+01 
 

1.37E+02 1.39E+02 

5.29E+05 3.55E+06 
 

6.74E+06 4.80E+07 

1.05E+02 1.05E+02 
 

1.08E+02 1.08E+02 

4.53E+04 4.01E+04 
 

3.99E+03 1.17E+04 

4.34E+127 8.43E+127 
 

5.77E+02 6.62E+02 

1.09E+02 1.09E+02 
 

1.19E+02 1.18E+02 

2.16E+02 2.20E+02 
 

4.62E+02 4.64E+02 

6.65E+04 6.76E+04 
 

1.09E+05 1.09E+05 

0.00E+00 0.00E+00 
 

0.00E+00 0.00E+00 

 
The self-adaptive tuning mechanism present in XjDE for 

automatically adjusting the CR and F parameters was 
probably the main reason why it was able to improve its 
performance in the higher dimensional settings. As the 
number of dimensions increases, DE is known to be less 
effective in terms of its performance due to the static nature 
of the CR and F. Since XjDE was able to automatically tune 
these parameters during the run, hence it was able to adjust 
these parameters to more optimum values in order to 
improve its search procedure in the tests involving 30, 50 
and 100 dimensions. Hence, this scalability analysis has 
shown the promise of adopting a self-adaptive approach to 
optimizing the DE algorithm for solving global optimization 
problems with a high number of variables. 

C. Scalability Analysis of DE vs Self-Adaptive DEs 

TABLE IV 
AVERAGE BEST RESULTS FOR 10D 

DE DESACR DESACRF SDE jDE 

0.00E+00 4.10E+07 3.45E+06 3.38E+05 4.80E-04 

0.00E+00 1.00E+07 1.82E+05 8.00E+03 0.00E+00 

2.01E+01 2.05E+01 2.00E+01 2.01E+01 1.98E+01 

2.46E+01 1.43E+02 1.41E+01 8.88E+00 3.87E+00 

8.38E+02 4.56E+03 6.05E+02 3.06E+02 2.25E+02 

7.42E+00 6.13E+06 3.48E+04 2.07E+03 1.39E+01 

5.10E-01 1.68E+01 2.01E+00 4.37E-01 3.14E-01 

2.12E-01 1.44E+06 2.92E+04 6.89E+02 2.24E-01 

1.00E+02 1.05E+02 1.00E+02 1.00E+02 1.00E+02 

2.17E+02 2.06E+06 6.75E+03 4.31E+02 2.17E+02 

2.59E+02 9.02E+02 1.60E+02 1.83E+02 1.43E+02 

1.02E+02 1.08E+02 1.03E+02 1.03E+02 1.02E+02 

3.14E+01 1.18E+02 3.30E+01 2.77E+01 2.73E+01 

6.24E+03 3.44E+04 3.44E+03 4.32E+03 5.58E+03 
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0.00E+00 1.60E+01 1.63E-02 0.00E+00 0.00E+00 

The results for all algorithms tested across the 15 test 
problems of the CEC 2015 benchmark test suite are shown 
in Tables 4-7. Each algorithm is tested across four 
dimensions (D), where D = 10, 30, 50, and 100 as per the 
competition’s guidelines. Their average best solutions found 
over 51 repeated runs are shown in the tables respectively. 

Across all dimensions, the original DE algorithm 
outperformed both DESACR and DESACRF except for 50D 
where DESACR performed better in 8 problems compared 
to 7 for DE respectively. When comparing DESACR against 
DESACRF, DESACR outperformed DESACRF across all 
problems in all settings for D. DE and SDE were tied at 7 
wins each with 1 draw for 10D while DE outperformed SDE 
in 30D and 100D. SDE outperformed DE in 50D with 8 wins 
to 6 with 1 draw.  

TABLE V 
AVERAGE BEST RESULTS FOR 30D 

DE DESACR DESACRF SDE jDE 

3.47E+04 4.10E+07 1.30E+07 4.10E+07 4.29E+04 

9.70E-08 1.00E+07 2.18E+05 1.00E+07 1.79E-01 

2.09E+01 2.05E+01 2.03E+01 2.05E+01 2.04E+01 

1.79E+02 1.43E+02 7.40E+01 1.43E+02 4.25E+01 

6.71E+03 4.56E+03 2.92E+03 4.56E+03 2.29E+03 

1.45E+03 6.13E+06 2.98E+06 6.13E+06 3.38E+03 

5.28E+00 1.68E+01 1.23E+01 1.68E+01 6.71E+00 

6.50E+02 1.44E+06 9.15E+05 1.44E+06 3.53E+02 

1.03E+02 1.05E+02 1.04E+02 1.05E+02 1.02E+02 

4.10E+02 2.06E+06 1.35E+06 2.06E+06 1.18E+03 

4.68E+02 9.02E+02 6.81E+02 9.02E+02 4.78E+02 

1.07E+02 1.08E+02 1.07E+02 1.08E+02 1.06E+02 

1.22E+02 1.18E+02 1.06E+02 1.18E+02 1.05E+02 

3.32E+04 3.44E+04 3.34E+04 3.44E+04 3.38E+04 

0.00E+00 1.60E+01 1.92E-02 1.60E+01 0.00E+00 

 
Finally, jDE performed the best amongst all the 

algorithms when comparing against the original DE where it 
outperformed DE in all settings except 30D where it was 
equal to DE with 7 wins each and 1 draw. jDE outperformed 
DE most greatly in 50D where it won 12, lost 2 and drew 1. 

However, it is also interesting to note that the original 
version of DE although being quite dated is still among the 
best performers after jDE. 

 

 

TABLE VI 
AVERAGE BEST RESULTS FOR 50D 

DE DESACR DESACRF SDE jDE 

3.23E+06 1.60E+08 3.70E+07 2.60E+08 4.67E+05 

2.71E+02 1.50E+07 1.64E+05 1.83E+04 8.02E+02 

2.13E+01 2.07E+01 2.04E+01 2.09E+01 2.06E+01 

8.20E+02 2.96E+02 1.38E+02 3.12E+02 8.41E+01 

3.00E+04 8.49E+03 4.86E+03 1.10E+04 4.96E+03 

6.47E+05 2.20E+07 7.74E+06 1.90E+07 2.99E+04 

1.31E+02 6.72E+01 5.00E+01 5.04E+01 4.12E+01 

1.32E+05 1.20E+07 7.17E+06 7.82E+06 8.26E+03 

1.08E+02 1.08E+02 1.07E+02 1.05E+02 1.04E+02 

2.05E+03 1.00E+07 3.15E+06 1.46E+06 1.83E+03 

8.25E+02 7.00E+130 1.00E+130 2.00E+128 1.00E+122 

1.18E+02 1.10E+02 1.09E+02 1.11E+02 1.08E+02 

4.64E+02 2.10E+02 1.89E+02 2.16E+02 1.98E+02 

1.09E+05 6.66E+04 6.09E+04 6.45E+04 6.68E+04 

0.00E+00 2.45E+01 8.40E-09 0.00E+00 0.00E+00 

IV.  CONCLUSION 

In this performance and scalability comparison of two 
crossover-first algorithms, the fixed XDE algorithm was 
compared against the self-adaptive XjDE algorithm over 15 
challenging numerical optimization problems. It was shown 
that although the XjDE algorithm performed worse than the 
XDE algorithm in all 15 test functions for the 10-
dimensional problem, XjDE was able to improve its 
performance for the higher dimensional problems of 30, 50 
and 100 variables. XjDE was able to perform at par or better 
than XDE in 6 out of the 15 test problems in the 30 and 50 
variable setting. XjDE returned its best performance with 7 
test problems at par or better than XDE for the largest setting 
of 100 dimensions. Therefore, this study has shown that as 
the dimensionality of the problem grows, the self-adaptive 
XjDE algorithm with the crossover-first approach has some 
merits in terms of solving challenging non-linear numerical 
optimization problems with complex landscapes. 

This study has made a systematic scalability comparison 
of fixed versus four self-adaptive DE algorithms using 15 
benchmark test problems. The fixed parameter and original 
version of Differential Evolution (DE) was compared against 
DESACR, DESACRF, SDE and jDE representing four 
different schemes of self-adapting the various parameter 
values of DE. Observable differences were found between the 
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fixed and self-adaptive DE algorithms as the number of 
optimization dimensions were increased.  

TABLE VII 
AVERAGE BEST RESULTS FOR 100D 

DE DESACR DESACRF SDE jDE 

3.23E+06 0.00E+00 3.40E+08 0.00E+00 2.19E+06 

2.71E+02 1.50E+07 2.37E+04 4.82E+03 2.06E+03 

2.13E+01 2.09E+01 2.06E+01 2.12E+01 2.08E+01 

8.20E+02 7.85E+02 7.12E+02 8.73E+02 1.84E+02 

3.00E+04 2.13E+04 1.57E+04 2.82E+04 1.27E+04 

6.47E+05 1.90E+08 5.60E+07 1.50E+08 1.48E+05 

1.31E+02 1.92E+02 1.56E+02 1.61E+02 1.23E+02 

1.32E+05 7.70E+07 3.40E+07 7.30E+07 4.87E+04 

1.08E+02 1.15E+02 1.13E+02 1.10E+02 1.06E+02 

2.05E+03 5.60E+07 1.70E+07 8.95E+05 5.27E+03 

8.25E+02 3.05E+03 2.87E+03 3.54E+03 1.64E+03 

1.18E+02 1.17E+02 1.17E+02 1.21E+02 1.16E+02 

4.64E+02 4.36E+02 4.13E+02 4.61E+02 4.34E+02 

1.09E+05 1.39E+05 1.12E+05 1.09E+05 1.10E+05 

0.00E+00 5.67E+04 4.27E+01 4.15E-01 4.00E-01 

 
It was found that the jDE algorithm performed the best 

among all the self-adaptive variants where it outperformed 
DE in all settings except 50D. SDE came second in the 
comparison with DESACR coming third and the worst being 
DESACRF. Across all dimensions, it was found that a self-
adaptive parameter adaptation scheme was more beneficial to 
the DE algorithm compared to a fixed parameter setting 
scheme, particularly for larger number of optimization 
dimensions. 

For future work, it would be interesting to extend the 
crossover-first approach to multi-objective DE algorithms as 
well as to test the XDE and XjDE algorithms in solving real-
world practical problems such as in evolutionary robotics and 
evolutionary game-playing applications. 
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