

Vol.7 (2017) No. 5

ISSN: 2088-5334

Analyzing the Scalability Performance of Crossover-First and Self-
Adaptive Differential Evolution Algorithms for Complex Numerical

Optimization
Jason Teo#

Faculty of Computing & Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu,Sabah, Malaysia.
 E-mail: jtwteo@ums.edu.my

Abstract— Two Crossover-first Differential Evolution (XDE) algorithms as well as four self-adaptive DE algorithms are compared in
this study in terms of their optimization accuracy for solving a set of 15 complex, non-linear numerical optimization functions across
4 different dimensions of 10, 30, 50 and 100 optimization variables. XDE is a crossover-first variant of the original DE algorithm
where XjDE is the crossover-first variant of the self-adaptive jDE algorithm. The original DE representing a fixed parameter strategy
is tested against four self-adaptive algorithms, namely the DESACR, DESACRF, SDE and jDE algorithms. Although XDE is able to
outperform XjDE in all 15 test problems for the lowest dimensional benchmark test setting of 10 variables, the crossover-first
approach in XjDE is able to improve its performance and obtained better results over XDE in some of the test problems for the
higher-dimensional benchmark test settings of 30, 50 and 100 variables. As such, this shows that there is some merit in adopting the
crossover-first approach into the self-adaptive XjDE algorithm since the CR and F parameters are automatically adjusted and
optimized by the algorithm itself as compared to the fixed CR and F in XDE which has to be manually tuned by hand. The results also
show that different self-adaptive parameter tuning schemes have significantly different effects on the performance of DE as the
number of optimization dimensions increases.

Keywords— crossover-first differential evolution; evolutionary optimization; genetic operations; non-linear optimization.

I. INTRODUCTION

The Crossover-First Differential Evolution (XDE)
algorithm was recently introduced as a more efficient
optimizer than the original Differential Evolution (DE)
algorithm for solving complex, non-linear numerical
optimization problems [1-4]. XDE uses a novel sequence of
genetic operations for DE in that the crossover operation is
first conducted before the mutation operation. This simple
modification introduced in XDE by way of reversing the
genetic operations in DE has proven to be highly effective in
improving the optimization accuracy of DE, particularly in
handling expanded and hybrid composition functions with
highly complex search spaces [1].

In this paper, we extend the crossover-first approach to
another well-known DE variant called jDE [5-7]. In jDE,
rather than fixing the tunable parameters for its crossover
rate (commonly referred to as CR) and scaling factor
(commonly referred to as SF), it adopts a self-adaptive
approach where the CR and SF are incorporated into the
algorithm and subjected to evolutionary optimization in
order to self-adjust and find the best rates for its CR and SF
parameters [8]. Since the crossover-first methodology has

proven to be effective in XDE, here we employ this
crossover-first methodology to jDE, which we refer to as
XjDE.

In order to test whether this approach improves upon the
performance of XDE, we conducted comprehensive
optimization tests on both XDE and XjDE using a set of 15
benchmark suite of non-linear numerical test problems
proposed in the 2015 Congress on Evolutionary
Computation (CEC2015) competition for global
optimization across the four dimensions of 10, 30, 50 and
100 variables [9] which has been widely used in complex
numerical optimization studies [10-15].

The rest of the paper is arranged as follows: Section 2
reports on the related work of this paper; Section 3 explains
the methodology adopted in this study; Section 4 presents
the results and analysis of this work; Section 5 concludes
with a summary of the findings and possible future work.

II. MATERIAL AND METHOD

A. Related Material

XDE algorithm [1] was recently proposed as an
improvement over the original DE algorithm [2,18,19]. It

1847

proposes a novel reversal of genetic operations in the
original DE algorithm.

The basic DE algorithm is a population-based, real-valued,
stochastic global optimizer that conducts the following
operations in the following order after initialization: 1.
mutation; 2. crossover; 3. selection; 4. repeat until
termination. It also requires three user-defined parameters to
be set prior to the optimization run: 1. F: scaling factor; 2.
CR: crossover rate; and 3. NP: population size. The reader
may refer to [2] for a detailed treatment of DE including the
description of the algorithm in pseudocode. In the
description that follows, only the key genetic operations are
described. In brief, given a minimization problem f:

f(x)*=xi∈Ωminf(xi) (1)

where xi is a vector with D dimensions, x* is the global

solution and Ω⊆RD, DE will attempt to optimize the vector

of variables },,,{ 21 Dxxxx K= , where

},,,{ ,2,1,
G

Di
G
i

G
i

G
i xxxx K= represents the ith individual in the

population of solutions of the Gth generation of optimization
iteration.

Importantly, a new trial solution is generated in the
following order:

i. Mutation: for each parent xG,i , a new vector is
created as follows:

}.({ 321
1 G

r
G
r

G
r

G
i xxFxv −+=+ (2)

where r1,r2, and r3 are randomly chosen from [1,NP]
and i≠r1≠r2≠r3.

ii. Crossover: for each parent xG,i , a trial solution is
created as follows:

 =<+

+

 otherwise.

 or if

,

1
,1

, G
ji

randj
G

jiG
ji x

jj CR Rv
u (3)

where Rj is a uniform random [0,1] and jrand is

random integer [1,D].

iii. Selection: the new trial solution competes with the
parent for survival to the next optimization iteration:

 <++

+

 otherwise.

)()(if 11
1

, G
i

G
i

G
i

G
iG

ji
x

xfufu
x (4)

In XDE, the crossover operation is first conducted before
the mutation operation as follows [1]:

i. Crossover: for each parent xG,i, a new vector is
created as follows:

 =<+

 otherwise.

 or if

,

,11
, G

ji

randj
G

jrG
ji x

jj CR Rx
v (5)

where where r1 is randomly chosen from [1,NP], Rj

is a uniform random [0,1], jrand is random integer

[1,D] and i≠r1.

ii. Mutation: for each parent xG,i , a trial solution is

created as follows:

 <+

+
+

 otherwise.

 if)-F.(
1

,

,4,3,21
, G

ji

j
G

jr
G

jr
G

jrG
ji v

 MR Rxxx
u (6)

where r2,r3, and r4 are randomly chosen from
[1,NP], Rj is a uniform random [0,1] and

i≠r1≠r2≠r3≠r4. MR denotes the explicit mutation
rate parameter that is tunable.

iii. Selection: the new trial solution competes with the
parent for survival to the next optimization iteration:

 <++

+

 otherwise.

)()(if 11
1

, G
i

G
i

G
i

G
iG

ji
x

xfufu
x (7)

B. jDE Algorithm

The jDE algorithm functions in exactly the same way as
DE with the exception that the CR and SF parameters are
self-adapted in the following manner [3]:

otherwise

 rand if ,*

,

121
1,

 <+

=+
Gi

ul
Gi F

FrandF
F

τ
 (8)

otherwise

 rand if ,

,

243
1,

 <

=+
Gi

Gi CR

rand
CR

τ
 (9)

where new control parameters F and CR are produced before
a new trial solution is generated using the crossover and
mutation operations. τ1 and τ2 are set to 0.1 and represent
the probabilities of adjusting CR and F.

C. XjDE Algorithm

In the proposed adoption of the crossover-first approach
to the genetic operations in jDE, a similar process of
conducting the generation of trial solutions is implemented
as in XDE previously described in Section II. The only
difference is that the self-adaption of CR and F is conducted
as in jDE explained in Section III.A above before the trial
solutions are generated using the crossover and mutation
operations in XjDE in order to allow for the new CR and F
values to be produced before the trial solutions are subjected
to the new crossover-first operations.

D. Self-Adaptive DE Algorithms

Next, we present the two straightforward but novel self-
adaptive modifications to the basic DE algorithm. The two
novel algorithms are implemented as straightforward self-
adaptive DE whereby the first is called DESACR
implements a self-adaptive CR that is encoded into the
chromosome and evolved and the F is randomized between 0
and 1 for each offspring generated. The self-adaptive CR is
mutated using the standard DE genetic operations similar to
how the actual design variables are mutated and is conducted
first before conducting the standard crossover operation in
order to capture the goodness of the newly-generated CR if a
superior offspring is generated through this new CR. The

1848

self-adapted CR is then adopted by the new offspring and
used in subsequent crossover operations should this
offspring survive into the next generation. A lower and
upper bound threshold of 0 and 1 respectively are set for the
self-adaptive CR in order to maintain the CR within this
range.

The second novel algorithm is called DESACRF and
version of DE is also implemented in a straightforward
fashion as described above for DESACR except that now
both the CR and F are self-adapted in this manner. Again,
both CR and F are mutated first and then used for the actual
mutation and crossover operations for the actual design
variables for the same reasons as described earlier. Again,
lower and upper bound thresholds of 0 and 1 are set for both
the self-adaptive CR and F.

The other two self-adaptive DE algorithm tested in this
study are jDE [3] and SDE [17]. SDE implements a
straightforward self-adaptation of the F parameter where
each individual will optimize its own F value while jDE
implements self-adaptation for both CR and F based on a
new parameters, τ1 and τ2, which are thresholds that when
the conditions are met, the F and CR values will undergo
randomized changes.

E. Experimental Setup

Both the existing XDE and the proposed XjDE algorithms
are tested using the CEC 2015 Global Optimization
Competition test suite of 15 non-linear numerical
optimization benchmark functions which is implemented in
the C++ language [4].

TABLE I
CEC 2015 BENCHMARK FUNCTIONS

No. Functions F*

1 Rotated High Conditioned Elliptic Function 100

2 Rotated Cigar Function 200

3 Shifted and Rotated Ackley’s Function 300

4 Shifted and Rotated Rastrigin’s Function 400

5 Shifted and Rotated Schwefel’s Function 500

6 Hybrid Function 1 (N=3) 600

7 Hybrid Function 2 (N=4) 700

8 Hybrid Function 3(N=5) 800

9 Composition Function 1 (N=3) 900

10 Composition Function 2 (N=3) 1000

11 Composition Function 3 (N=5) 1100

12 Composition Function 4 (N=5) 1200

13 Composition Function 5 (N=5) 1300

14 Composition Function 6 (N=7) 1400

15 Composition Function 7 (N=10) 1500

All parameters were set according to the competition
guidelines and tested using all four optimization dimensions
set for the competition, which are 10, 30, 50 and 100
dimensions (D) representing the scalability of the algorithms
in terms of their optimization performance. The maximum
number of evaluations allowed was 10,000 * D.

The details of the test functions are as detailed in Table 1.
All final results have been subtracted by the amount of the
global optimum shift value as denoted by F*. The accuracy
threshold is set at 1E-08 as per the competition rules. NP is
set to 100 and MR is set to 0.5 in both XDE and XjDE.

III. RESULTS AND DISCUSSION

The results are presented in the following sections as
follows: average best values found from each algorithm from
the experiment using dimensions of 10 and 30 variables are
presented in Subsection A. This is followed by the results
obtained from using dimensions of 50 and 100 variables in
Subsection B.

Since all the test functions are minimization problems
with solutions centered around 0, the results are shown are
the average of the lowest objective value returns over 51
repeated runs. The better performing algorithm is
highlighted for its results for each of the respective 15 test
functions. Figure 1 below shows a summary of the overall
number of test functions won by each algorithm or drawn.

Fig. 1. Comparison of XDE vs. XjDE.

A. XDE vs XjDE: Results from 10D & 30D

TABLE II
LEFT: RESULTS FOR 10D; RIGHT: RESULTS FOR 30D

D = 10 Variables D = 30 Variables
XDE XjDE XDE XjDE

1.34E+07 4.13E+07

6.19E+04 1.96E+05

2.18E+05 1.02E+07

5.49E+03 1.69E+03

2.03E+01 2.05E+01

2.01E+01 2.02E+01

7.40E+01 1.43E+02

4.39E+00 1.09E+01

2.92E+03 4.56E+03

6.54E+01 3.68E+02

2.98E+06 6.13E+06

7.88E+01 1.10E+02

1849

1.23E+01 1.68E+01

6.17E-01 2.66E-01

9.15E+05 1.44E+06

6.64E+00 1.36E+00

1.04E+02 1.05E+02

1.00E+02 1.00E+02

1.35E+06 2.06E+06

2.24E+02 2.30E+02

6.81E+02 9.02E+02

1.72E+02 1.73E+02

1.07E+02 1.08E+02

1.02E+02 1.02E+02

1.06E+02 1.18E+02

2.68E+01 2.77E+01

3.34E+04 3.44E+04

5.79E+03 6.32E+03

1.92E-02 1.60E+01

0.00E+00 0.00E+00

For the test setting with the number of optimization

dimensions set to 10 variables, XDE outperformed XjDE for
all 15 test functions as shown in Table II (left). However,
when the dimensionality of the test problems were increased
to 30 variables, XjDE could be seen to perform at par or
better than XDE in 6 out of the 15 test problems as shown in
Table II (right).

B. XDE vs XjDE: Results from 50D & 100D

For the test setting with the number of optimization
dimensions set to 50 variables, similar to the results obtained
from the 30 variable setting, XjDE could be seen to perform
at par or better than XDE in 6 out of the 15 test problems as
shown in Table III (left). XjDE’s performance against XDE
improved to 7 out of the 15 test problems when the
optimization setting was at its most challenging dimension
of 100 variables as shown in Table III (right).

TABLE III
LEFT: RESULTS FOR 50D; RIGHT: RESULTS FOR 100D

D = 50 Variables D = 100 Variables
XDE XjDE XDE XjDE

5.47E+07 1.95E+08

1.72E+08 4.44E+08

8.67E+03 7.86E+03

5.32E+03 3.44E+03

2.11E+01 2.11E+01

2.13E+01 2.13E+01

3.43E+02 3.46E+02

8.53E+02 8.52E+02

1.26E+04 1.28E+04

2.98E+04 3.00E+04

2.07E+06 1.22E+07

1.77E+07 1.05E+08

4.58E+01 4.69E+01

1.37E+02 1.39E+02

5.29E+05 3.55E+06

6.74E+06 4.80E+07

1.05E+02 1.05E+02

1.08E+02 1.08E+02

4.53E+04 4.01E+04

3.99E+03 1.17E+04

4.34E+127 8.43E+127

5.77E+02 6.62E+02

1.09E+02 1.09E+02

1.19E+02 1.18E+02

2.16E+02 2.20E+02

4.62E+02 4.64E+02

6.65E+04 6.76E+04

1.09E+05 1.09E+05

0.00E+00 0.00E+00

0.00E+00 0.00E+00

The self-adaptive tuning mechanism present in XjDE for

automatically adjusting the CR and F parameters was
probably the main reason why it was able to improve its
performance in the higher dimensional settings. As the
number of dimensions increases, DE is known to be less
effective in terms of its performance due to the static nature
of the CR and F. Since XjDE was able to automatically tune
these parameters during the run, hence it was able to adjust
these parameters to more optimum values in order to
improve its search procedure in the tests involving 30, 50
and 100 dimensions. Hence, this scalability analysis has
shown the promise of adopting a self-adaptive approach to
optimizing the DE algorithm for solving global optimization
problems with a high number of variables.

C. Scalability Analysis of DE vs Self-Adaptive DEs

TABLE IV
AVERAGE BEST RESULTS FOR 10D

DE DESACR DESACRF SDE jDE

0.00E+00 4.10E+07 3.45E+06 3.38E+05 4.80E-04

0.00E+00 1.00E+07 1.82E+05 8.00E+03 0.00E+00

2.01E+01 2.05E+01 2.00E+01 2.01E+01 1.98E+01

2.46E+01 1.43E+02 1.41E+01 8.88E+00 3.87E+00

8.38E+02 4.56E+03 6.05E+02 3.06E+02 2.25E+02

7.42E+00 6.13E+06 3.48E+04 2.07E+03 1.39E+01

5.10E-01 1.68E+01 2.01E+00 4.37E-01 3.14E-01

2.12E-01 1.44E+06 2.92E+04 6.89E+02 2.24E-01

1.00E+02 1.05E+02 1.00E+02 1.00E+02 1.00E+02

2.17E+02 2.06E+06 6.75E+03 4.31E+02 2.17E+02

2.59E+02 9.02E+02 1.60E+02 1.83E+02 1.43E+02

1.02E+02 1.08E+02 1.03E+02 1.03E+02 1.02E+02

3.14E+01 1.18E+02 3.30E+01 2.77E+01 2.73E+01

6.24E+03 3.44E+04 3.44E+03 4.32E+03 5.58E+03

1850

0.00E+00 1.60E+01 1.63E-02 0.00E+00 0.00E+00

The results for all algorithms tested across the 15 test
problems of the CEC 2015 benchmark test suite are shown
in Tables 4-7. Each algorithm is tested across four
dimensions (D), where D = 10, 30, 50, and 100 as per the
competition’s guidelines. Their average best solutions found
over 51 repeated runs are shown in the tables respectively.

Across all dimensions, the original DE algorithm
outperformed both DESACR and DESACRF except for 50D
where DESACR performed better in 8 problems compared
to 7 for DE respectively. When comparing DESACR against
DESACRF, DESACR outperformed DESACRF across all
problems in all settings for D. DE and SDE were tied at 7
wins each with 1 draw for 10D while DE outperformed SDE
in 30D and 100D. SDE outperformed DE in 50D with 8 wins
to 6 with 1 draw.

TABLE V
AVERAGE BEST RESULTS FOR 30D

DE DESACR DESACRF SDE jDE

3.47E+04 4.10E+07 1.30E+07 4.10E+07 4.29E+04

9.70E-08 1.00E+07 2.18E+05 1.00E+07 1.79E-01

2.09E+01 2.05E+01 2.03E+01 2.05E+01 2.04E+01

1.79E+02 1.43E+02 7.40E+01 1.43E+02 4.25E+01

6.71E+03 4.56E+03 2.92E+03 4.56E+03 2.29E+03

1.45E+03 6.13E+06 2.98E+06 6.13E+06 3.38E+03

5.28E+00 1.68E+01 1.23E+01 1.68E+01 6.71E+00

6.50E+02 1.44E+06 9.15E+05 1.44E+06 3.53E+02

1.03E+02 1.05E+02 1.04E+02 1.05E+02 1.02E+02

4.10E+02 2.06E+06 1.35E+06 2.06E+06 1.18E+03

4.68E+02 9.02E+02 6.81E+02 9.02E+02 4.78E+02

1.07E+02 1.08E+02 1.07E+02 1.08E+02 1.06E+02

1.22E+02 1.18E+02 1.06E+02 1.18E+02 1.05E+02

3.32E+04 3.44E+04 3.34E+04 3.44E+04 3.38E+04

0.00E+00 1.60E+01 1.92E-02 1.60E+01 0.00E+00

Finally, jDE performed the best amongst all the

algorithms when comparing against the original DE where it
outperformed DE in all settings except 30D where it was
equal to DE with 7 wins each and 1 draw. jDE outperformed
DE most greatly in 50D where it won 12, lost 2 and drew 1.

However, it is also interesting to note that the original
version of DE although being quite dated is still among the
best performers after jDE.

TABLE VI
AVERAGE BEST RESULTS FOR 50D

DE DESACR DESACRF SDE jDE

3.23E+06 1.60E+08 3.70E+07 2.60E+08 4.67E+05

2.71E+02 1.50E+07 1.64E+05 1.83E+04 8.02E+02

2.13E+01 2.07E+01 2.04E+01 2.09E+01 2.06E+01

8.20E+02 2.96E+02 1.38E+02 3.12E+02 8.41E+01

3.00E+04 8.49E+03 4.86E+03 1.10E+04 4.96E+03

6.47E+05 2.20E+07 7.74E+06 1.90E+07 2.99E+04

1.31E+02 6.72E+01 5.00E+01 5.04E+01 4.12E+01

1.32E+05 1.20E+07 7.17E+06 7.82E+06 8.26E+03

1.08E+02 1.08E+02 1.07E+02 1.05E+02 1.04E+02

2.05E+03 1.00E+07 3.15E+06 1.46E+06 1.83E+03

8.25E+02 7.00E+130 1.00E+130 2.00E+128 1.00E+122

1.18E+02 1.10E+02 1.09E+02 1.11E+02 1.08E+02

4.64E+02 2.10E+02 1.89E+02 2.16E+02 1.98E+02

1.09E+05 6.66E+04 6.09E+04 6.45E+04 6.68E+04

0.00E+00 2.45E+01 8.40E-09 0.00E+00 0.00E+00

IV. CONCLUSION

In this performance and scalability comparison of two
crossover-first algorithms, the fixed XDE algorithm was
compared against the self-adaptive XjDE algorithm over 15
challenging numerical optimization problems. It was shown
that although the XjDE algorithm performed worse than the
XDE algorithm in all 15 test functions for the 10-
dimensional problem, XjDE was able to improve its
performance for the higher dimensional problems of 30, 50
and 100 variables. XjDE was able to perform at par or better
than XDE in 6 out of the 15 test problems in the 30 and 50
variable setting. XjDE returned its best performance with 7
test problems at par or better than XDE for the largest setting
of 100 dimensions. Therefore, this study has shown that as
the dimensionality of the problem grows, the self-adaptive
XjDE algorithm with the crossover-first approach has some
merits in terms of solving challenging non-linear numerical
optimization problems with complex landscapes.

This study has made a systematic scalability comparison
of fixed versus four self-adaptive DE algorithms using 15
benchmark test problems. The fixed parameter and original
version of Differential Evolution (DE) was compared against
DESACR, DESACRF, SDE and jDE representing four
different schemes of self-adapting the various parameter
values of DE. Observable differences were found between the

1851

fixed and self-adaptive DE algorithms as the number of
optimization dimensions were increased.

TABLE VII
AVERAGE BEST RESULTS FOR 100D

DE DESACR DESACRF SDE jDE

3.23E+06 0.00E+00 3.40E+08 0.00E+00 2.19E+06

2.71E+02 1.50E+07 2.37E+04 4.82E+03 2.06E+03

2.13E+01 2.09E+01 2.06E+01 2.12E+01 2.08E+01

8.20E+02 7.85E+02 7.12E+02 8.73E+02 1.84E+02

3.00E+04 2.13E+04 1.57E+04 2.82E+04 1.27E+04

6.47E+05 1.90E+08 5.60E+07 1.50E+08 1.48E+05

1.31E+02 1.92E+02 1.56E+02 1.61E+02 1.23E+02

1.32E+05 7.70E+07 3.40E+07 7.30E+07 4.87E+04

1.08E+02 1.15E+02 1.13E+02 1.10E+02 1.06E+02

2.05E+03 5.60E+07 1.70E+07 8.95E+05 5.27E+03

8.25E+02 3.05E+03 2.87E+03 3.54E+03 1.64E+03

1.18E+02 1.17E+02 1.17E+02 1.21E+02 1.16E+02

4.64E+02 4.36E+02 4.13E+02 4.61E+02 4.34E+02

1.09E+05 1.39E+05 1.12E+05 1.09E+05 1.10E+05

0.00E+00 5.67E+04 4.27E+01 4.15E-01 4.00E-01

It was found that the jDE algorithm performed the best

among all the self-adaptive variants where it outperformed
DE in all settings except 50D. SDE came second in the
comparison with DESACR coming third and the worst being
DESACRF. Across all dimensions, it was found that a self-
adaptive parameter adaptation scheme was more beneficial to
the DE algorithm compared to a fixed parameter setting
scheme, particularly for larger number of optimization
dimensions.

For future work, it would be interesting to extend the
crossover-first approach to multi-objective DE algorithms as
well as to test the XDE and XjDE algorithms in solving real-
world practical problems such as in evolutionary robotics and
evolutionary game-playing applications.

ACKNOWLEDGMENT

This work was supported in part by the ERGS research
project ref: ERG0043 & FRG0435 granted by the Ministry
of Education, Malaysia.

REFERENCES
[1] J. Teo, M.H.A. Hijazi, H.K. Lau, S. Fattah and A. Baharum,

“Crossover-First Differential Evolution for Improved Global
Optimization in Non-Uniform Search Landscapes,” Progress in
Artificial Intelligence, 2015, 3(3-4): 129-134.

[2] R. Storn, K. Price, “Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces”,
Technical Report TR-95-012, 1995, International Computer Science
Institute, Berkeley.

[3] U. Chakraborty. Advances in Differential Evolution, 2008, Springer.

[4] S. Das, P.N. Suganthan. Differential Evolution: A Survey of the State-
of-the-art. IEEE Transactions on Evolutionary Computation, 2011,
15(1):831–836.

[5] J. Brest, V. Zumer, M. Maucec, “Self-adaptive differential evolution
algorithm in constrained real-parameter optimization”. IEEE Congress
on Evolutionary Computation, 2006, pp. 215-222, IEEE.

[6] J. Brest, B. Boskovic, S. Greine, V. Zumer, M. Maucec, “Performance
comparison of self-adaptive and adaptive differential evolution
algorithms”, 2007, 11(7): 617-629.

[7] A. Zamuda, J. Brest, B. Boskovic, V. Zumer, "Large Scale Global
Optimization using Differential Evolution with Self-adaptation and
Cooperative Co-evolution," IEEE World Congress on Computational
Intelligence, 2008, pp. 3718-3725.

[8] J. Teo. “Exploring dynamic self-adaptive populations in differential
evolution”. Soft Computing, 2006, 10(8):673-686.

[9] J.J. Liang, B.Y. Qu, P.N. Suganthan, Q. Chen. “Problem definitions
and evaluation criteria for the CEC 2015 competition on learning-
based real-parameter single objective optimization”. Technical Report
201411A, 2014, Zhengzhou University, China.

[10] S.M. Guo, J. Tsai, C.C. Yang, P.H. Hsu. "A self-optimization
approach for L-SHADE incorporated with eigenvector-based
crossover and successful-parent-selecting framework on CEC 2015
benchmark set." In Evolutionary Computation (CEC), 2015 IEEE
Congress on, pp. 1003-1010. IEEE, 2015.

[11] C. Yu, L.C. Kelley, and Y. Tan. "Dynamic search fireworks algorithm
with covariance mutation for solving the CEC 2015 learning based
competition problems." In Evolutionary Computation (CEC), 2015
IEEE Congress on, pp. 1106-1112. IEEE, 2015.

[12] K.M. Sallam, R.A. Sarker, D.L. Essam, S.M. Elsayed. "Neurodynamic
differential evolution algorithm and solving CEC2015 competition
problems." In Evolutionary Computation (CEC), 2015 IEEE Congress
on, pp. 1033-1040. IEEE, 2015.

[13] M.R. Tanweer, S. Suresh, N. Sundararajan. "Improved SRPSO
algorithm for solving CEC 2015 computationally expensive numerical
optimization problems." In Evolutionary Computation (CEC), 2015
IEEE Congress on, pp. 1943-1949. IEEE, 2015.

[14] J.L. Rueda, I. Erlich. "Testing MVMO on learning-based real-
parameter single objective benchmark optimization problems." In
Evolutionary Computation (CEC), 2015 IEEE Congress on, pp. 1025-
1032. IEEE, 2015.

[15] N. Awad, M.Z. Ali, R.G. Reynolds. "A differential evolution
algorithm with success-based parameter adaptation for CEC2015
learning-based optimization." In Evolutionary Computation (CEC),
2015 IEEE Congress on, pp. 1098-1105. IEEE, 2015.

[16] Y. Zhang, M. Zhou, Z. Jiang, and J. Liu. "A multi-agent genetic
algorithm for big optimization problems." In Evolutionary
Computation (CEC), 2015 IEEE Congress on, pp. 703-707. IEEE,
2015.

[17] M. Omran, A. Salman, A. Engelbrecht. “Self-adaptive Differential
Evolution”. In Computational Intelligence and Security, Hao, Y. et al.
(eds.), 2005, 192-199, Springer.

[18] Dhanalakshmy, D.M., Pranav, P., Jeyakumar, G. “A Survey On
Adaptation Strategies For Mutation And Crossover Rates Of
Differential Evolution Algorithm”. International Journal on Advanced
Science, Engineering and Information Technology, 2016, 6 (5), pp.
613-623.

[19] Ong, J.H., Teo, J. “A Time-Critical Investigation Of Parameter Tuning
In Differential Evolution For Non-Linear Global Optimization”.
International Journal on Advanced Science, Engineering and
Information Technology, 2016, 6 (4), pp. 426-436.

1852

