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Abstract— The Fiber Distribution Panel (FDP) box is an essential piece of internet access hardware because it provides users with high-

speed data networking and functions as a cable organizer to reduce wire clutter. After installing the FDP, an inspection must be 

performed to ensure that all necessary components are present. However, This examination is still done manually; the technician snaps 

a picture of the panel and sends it to its supervisor for verification, which is time-consuming and often prone to errors. In addition to 

images captured in low-light and complex environments, it makes it more difficult for humans to identify the components with just a 

naked eye. On this matter, a much more efficient method to assess the FDP installation work is very much needed. Therefore, using 

computer vision approaches, we utilize a deep learning algorithm to perform object detection and automate the assessment of FDP 

installation components based on visual data. One of the deep learning models established in the literature is the You Only Look Once 

(YOLO) model, a one-stage deep learning object detection algorithm that employs a fully conventional approach to generate highly 

accurate real-time predictions. This paper uses YOLOv5s to identify the fiber box and its relevant components, even in urban 

environments. Experimentations show that YOLO successfully identified the installation parts with a mean average precision score of 

86% at a 0.5 confidence level, even with limited data. 
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I. INTRODUCTION

The telecommunication sector is one of the fastest-growing 

industries due to its high demands of providing wireless 

communication and acting as Internet Service Providers 

(ISPs) for the public [1]. Amidst the recent pandemic, there 

was a surge of demand for constantly available internet 

connection as more people work from home and rely on video 

conferencing to hold meetings, leading to upticks in revenues 

for the telecom industries despite the temporary closure of 

businesses [2]. According to the Department of Statistics 
Malaysia (DOSM), 96% of Malaysian households had 

internet access in 2022, an increase of 1.1% from the previous 

year [3]. With more people relying on technology for 

information, the industry must be more vigilant and proactive 

to meet people's demands [4]. This requires its employees to 

set up the necessary equipment for network connectivity at the 

speed of light. One of the many important pieces of hardware 

in internet installation is the Fiber Distribution Panel (FDP) 

box.  

FDP boxes are high-density fiber distribution boxes that 
serve as direct splicing, branching, straight-through, splitting, 

and fiber termination devices while shielding them from 

environmental risks such as moisture or ultraviolet light (i.e., 

UV rays). These panels contain fiber optic cables and ports 

that provide high-speed data networking to their end-users 

and are usually mounted either on a utility pole for outside 

installation or on walls for inside installation. A typical fiber 

box can provide internet services to up to eight households 

but can be extended by installing additional ports. With the 

number of fiber cables brought into the network increasing 

exponentially every day, the complexity of the fiber optic 

cabling system also increases. Therefore, network technicians 
frequently utilize cable organizers or fiber panels to reduce 

wire clutter, particularly when dealing with fiber cable 

transfers, additions, and alterations. This allows them to 

manage huge fiber lines and connection points within a 

standard panel or container. As a result, cable management 

and maintenance were simplified and became more 
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convenient for the contractors. Fig. 1 shows a sample of an 

indoor FDP box installed in urban areas.  
 

 
Fig. 1  A sample of indoor Fiber Distribution Panel box installation. Some 

parts are blurred out due to confidentiality concerns. 

 
A newly installed FDP must then be evaluated for the 

quality of fiber optic networks. Network specialists must 

verify that the components are present and in the correct 

arrangement following the company's blueprint. An old 
installation usually comprises an FDP box, a trunk, a copper 

box, and a fiber box, while recent network setups only include 

the FDP and the trunk. Before the epidemic sweeps the world, 

two people install an FDP panel: a network technician and a 

supervisor. The technician will set up the fiber box at the 

designated pole or building, and the inspector will inspect and 

verify that the installation is done properly, following the 

guidelines on the spot. However, since the strict 

implementation of workplace Standard Operating Procedure 

(SOP) due to the COVID-19 pandemic, the movement of 

employees from telecommunications firms has been 
restricted, allowing just one worker to be on site for FDP 

installation. Since then, only the wiremen go on-site and place 

the fiber panel, photograph it, and send it to their supervisor 

via e-mail or messaging application for review and approval. 

This makes the simple task of checking the FDP box overly 

complicated. 

An emerging challenge would be communication between 

the two different parties. Late replies or approval from the 

supervisor make it difficult for contractors to know whether 

the installation is done according to its standards in a timely 

manner. By the time the supervisor replied, the technician 
might have left the site. If they disapprove, it may take some 

time for the network specialist to come back to rearrange the 

FDP box since they have their own schedule to work with. In 

cases where the contractor may have forgotten to update or 

take a picture after the installation, the review approval from 

the supervisor will be delayed. The current system is still 

being performed manually, so human errors can negatively 

affect the component’s durability. An inspector or contractor 

can accidentally overlook missing components in the FDP 

setup, which does not comply with the company’s 

requirements. 

Moreover, images captured in low-light or occluded 
environments make it difficult for humans to identify the 

objects with just a naked eye. When done carelessly, the 

verification process can jeopardize data integrity, resulting in 

underperformance. This proves the current inspection and 

verification method is inefficient, costly, and resource-

consuming process. 

Frequently, these engineering requirements were 

overlooked by humans during the installation. Thus, this 

paper aims to investigate possible methods for detecting the 

FDP box by using computer vision approaches to assist in 

overcoming the challenges above. In this work, we consider 

utilizing a deep neural network to detect and recognize the 

components based on visual data. With computer vision, we 
hope to overcome these human errors and provide quality data 

integrity in telecommunication while minimizing the overall 

loss of value caused by external factors. 

A. Literature Review 

Current object detection algorithms can be separated into 

two groups: models that predict object location and 

classification separately (two-stage), like Faster Region-

based Convolutional Neural Network (Faster R-CNN), and 
models that perform the localization and classification at the 

same time (one-stage), like You Only Look Once (YOLO) 

[5]. The two-stage algorithms identify the expected location 

of objects, called regions, using a region proposal method and 

detect objects in those regions with a Convolution Neural 

Network (CNN), resulting in a more precise approach [6]. In 

contrast, one-stage detectors use a fully convolutional method 

to predict the bounding boxes and objects without proposing 

regions. Thus, it is a much faster approach as compared to 

two-stage detectors. In this section, we describe the 

development of the YOLO models and literature on object 

detection for assessment purposes. 

B. YOLO 

You Only Look Once (YOLO) is one of the famous object 

detection algorithms due to its accurate and real-time 

prediction of classes and bounding boxes on images [7]. 

Introduced by Redmon et al. in 2015, the original YOLO 

architecture has 24 convolutional layers and two fully 

connected layers at the end of the model with a Leaky 

Rectified Linear Unit (LReLU) activation function across all 
convolutional and dense layers except for the last layer which 

has a linear activation function. The method divides the input 

image into grids of cells where each cell predicts the bounding 

box coordinates of the object as well as the likelihood of the 

object belonging to different classes. YOLO uses some 

predefined class score threshold and non-max suppression to 

discard less relevant as well as overlapping bounding boxes 

of the same object [8]. The first development of YOLO was 

able to outdo state-of-the-art object detection models in terms 

of its performance and F1 scores across different datasets [9]. 

Over the years, multiple versions of YOLO have been 

released. In YOLOv2, the creators used a Darknet-19 
backbone framework (19 convolution and five max-pooling 

layers), replaced dense layers with fully convolutional 

architecture, and introduced batch normalization to improve 

convergence while preventing overfitting [10]. The backbone 

was once again changed in the third version to Darknet-53, 

which replaces all max-pooling layers with stride 

convolutions consisting of 53 convolutional layers. An 

essential feature in YOLOv3 is the ability to perform multi-

scale predictions, thus improving the detection of small 
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objects. In 2020, YOLOv4 was released with the introduction 

of mosaic data augmentation along with a new classification 

and loss function. YOLOv5, developed in PyTorch instead of 

Darknet, was announced a couple of months later with 

improved performance and was more lightweight compared 

to previous variants [11]. At the end of 2022, YOLOv6 was 

implemented using the EfficientRep backbone, which uses 

higher parallelism and introduces a quantization scheme using 

RepOtimizer to achieve faster detection. The launch of 

YOLOv7 surpassed all known object detectors in terms of 
performance, speed, and accuracy, as it uses an extended 

efficient layer aggregation network (E-ELAN) to enhance the 

model learning without destroying its gradient path. The latest 

YOLO version 8 was released in January 2023 with a smaller 

number of box predictions and a faster NMS process [12]. 

However, its architecture is still under exploration, as no 

official papers were released at the time this paper was 

written.  

After much deliberation, this project decided to utilize the 

YOLOv5 variant as it has been shown to give better precision 

and speed performance compared to the other versions [13]. 
Moreover, due to hardware limitations, we will apply 

YOLOv5 as it is faster when a system with normal GPU trains 

and tests the object detector, especially on a custom dataset. 

Ultralytics released four structural models of YOLOv5: 

YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x. The model 

size ranges from small to large, and the detection accuracy 

ranges from low to high [14]. When testing on the public 

COCO dataset, YOLOv5s has a faster detection speed, and 

YOLOv5x has a higher detection accuracy as compared to 

YOLOv3 and YOLOv4 [15]. Therefore, we will be 

implementing YOLOv5s in this project. 

C. Safety Assessment Using Computer Vision 

Automatic safety assessment based on object detection in 

machine vision has garnered increasing scientific interest. 

Several researchers have developed systems to digitalize 

safety control duties for a substantially higher quality of a 

product and safety assurance of its workers [16], [17]. At the 

time this study was conducted, there were no published 

articles that identified the telecommunication fiber box 

components using deep learning. Furthermore, most systems 
are highly implemented in the construction sector and not 

from a telecommunication firm’s point of view. However, we 

can still get insights from their methods as past papers have 

used object detection to improve manual safety assessment 

tasks.  

An early study done by [18] curated real-time guardrail 

detection by using transfer learning knowledge and 

Convolutional Neural Networks (CNN) to detect the presence 

of guardrails in construction sites. In need of a large data set, 

they developed a 3D model of a metal guardrail according to 

a real guardrail dimension and added noise and random colors 
to simulate different guardrail specifications. The synthetic 

guardrail was put on images at different camera heights, 

distances, and angles to cover different viewpoints in the 

dataset. The authors utilized VGG-16 as its base model while 

integrating the last few layers with a Multilayer Perceptron 

(MLP) or SVM. When there is only a single guardrail in the 

image, MLP returned a high accuracy score of 97% as 

compared to SVM, which only achieves 78%. Although the 

MLP and SVM model’s accuracy dropped when multiple 

guardrails were present, they still have a decent detection 

accuracy of 86% and 72%, respectively. The authors 

emphasize that the models faced difficulties finding the 

guardrail in poor lighting conditions and when other objects 

that look structurally similar to a guardrail exist in the image. 

A study in [19] covers a similar problem in the construction 

industry but towards detecting the safety harness to reduce fall 

accidents and enhance worker safety. The Region Proposal 
Network in Faster R-CNN was set with three distinct scales, 

aspect ratios, and nine anchors at each location to detect 

human bodies of varying sizes. Then, the box coordinates of 

the detected worker outputted by Faster R-CNN were used as 

input for their five convolutional, three fully connected, and 

one SoftMax layer CNN, to identify whether or not the 

construction worker is wearing the harness. At a 0.8 threshold, 

their human detection model receives a precision of 99% and 

recall of 95%, while their safety harness detection model 

achieves 80% and 98%, respectively. Their approach was able 

to overcome differing perspectives and illumination in 
images, as almost all workers were able to be detected 

correctly. However, CNN faces a slight issue with detecting 

the harness due to the presence of shadows and identical 

colors between the worker’s clothes and their harness. This is 

also due to their limited data and small sample size for 

training, especially in the cases above, making it a challenge 

for their model to recognize these safety harnesses. 

To conclude, research on using object detection to 

automate assessment tasks has been made in recent years to 

ensure safety equipment is present during construction work 

[20]. In this paper, we proposed a method for FDP box 
detection to assist inspectors in identifying the components in 

complex backgrounds. With deep learning models, we can 

quickly identify the telecom fiber box installation parts to free 

it from potentially hazardous materials that could physically 

damage the components, resulting in network 

underperformance. By integrating object detection 

technology, the condition of the FDP, along with the other 

components, can be improved and safeguard the overall 

reliability of the network infrastructure. Moreover, the papers 

above focused on the construction sector, not the 

telecommunication sector. Studies on implementing object 

detection for FDP installation in telecom industries still 
remain very scarce. This shows a significant study gap on this 

matter, highlighting the need for this project. 

II. MATERIAL AND METHOD 

The method of assessing FDP installation using computer 

vision requires several steps that must be taken prior to 

completing the required task. Our proposed framework for 

automated assessment on FDP installations using deep 
learning is shown in Fig 2. The research starts with gathering 

our data by capturing images of FDP boxes around urban 

areas. After the images are annotated and processed, the data 

will be used to train the YOLO model for FDP box 

recognition, and the results will be evaluated using the 

specified metrics. 
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Fig. 2  The process framework of our FDP installation object detection using deep learning. 

 

A. Data Collection 

In many computer vision problems, a comprehensive 

dataset on the object of interest is needed to perform object 

recognition successfully. Due to works on deep learning-
based object recognition for FDP panels being scarce, there is 

no known existing image database of FDP box images with 

their associated components at the moment this research was 

conducted. Therefore, data collection on these images is much 

needed in this study to train the models.  

A dataset containing 370 images was captured from 104 

unique FDP boxes, which consist of four classes, including 

FDP box, trunk, fiber box, and copper box. As FDP 

installations have indoor and outdoor arrangements, we 

decided to put our focus on indoor or wall-mounted FDP 

boxes that can be constantly seen in urban areas. Images were 
captured using a smartphone camera at approximately 50 cm 

apart from the FDP box with a height of 170 cm and a 90-

degree angle throughout the data collection. All images have 

a dimension of 2252 by 4000 pixels, and each FDP box was 

captured from three different perspectives (left-view, front-

view, and right-view) to increase the dataset's robustness. 

This will then generalize our system to identify the FDP box 

and its components even from multiple angles. 

B. Data Annotation 

The next step was to label every single picture in our 

dataset before incorporating them with the YOLO model. 

Data labeling is one of the computer vision pipeline's most 

important and exhaustive parts. Poor annotation can often 

lead to poor model performance. Therefore, we consult an 

expert in the field to assist us in identifying the different 

variations of FDP as well as the common components 

associated with the FDP box. Important pieces when it comes 

to FDP installation are the FDP box, green trunking, copper 

box, and fiber box. Fig 3 depicts a sample of the 

aforementioned components. Then, we annotate the box and 
its related components using an open-source image annotation 

tool to draw rectangle boxes on our object of interest. We 

chose labeling as it allows us to save the classes in the form 

of XML files in YOLO format, making it easier for our model 

to integrate, and no external conversion is needed. 
 

 

Fig. 3  Sample illustration of (a) FDP box, (b) green trunking, (c) copper box and (d) fiber box. Some parts are blurred out due to confidentiality concerns. 
 

The images are divided into training, validating, and testing 

sets with an 80:10:10, ratio, respectively. The training dataset 

was used for training the deep learning model, while the 

validation dataset was used to evaluate our model. Finally, the 

model was tested on a completely new set of images from the 

testing dataset.  

C. Image Pre-processing 

Image pre-processing was done for formatting the images 
to ensure the quality and uniformity of images before feeding 

them to the models. It plays a crucial part in future procedures 

as it may decrease model training time and increase overall 

detection accuracy [21], [22]. Many model architectures, 

including the ones used in this research, have specific input 

sizes. For example, the YOLOv5 network only accepts 

images in the size of 640 by 640 pixels. However, over-

resizing often makes images lose certain information in the 

process [23]. Although larger image size leads to better 

results, it may take longer to train the models as they contain 

a high amount of information. Therefore, it is important to 
make sure the input image should be altered carefully without 

affecting the quality of the images. 

D. YOLOv5 

The YOLOv5 object detector is the first YOLO variant that 

was implemented using PyTorch. The structure of YOLOv5 

comprises four main components: the input, backbone, neck, 

and head layer, as shown in Fig 4. The input network of 

YOLOv5 includes mosaic data enhancement, auto image 

resizing, and an adaptive anchor box calculation process. 

Mosaic data enhancement was a feature introduced in 
YOLOv4 that enriches the background and small objects by 

combining four training images to improve the detection of 

small objects. Adaptive image scaling adds the least number 

of black borders to the original image with different widths 

and heights to have a uniform standard size before inputting 

it into the model. Once more information is filled in, as in the 

image is added with black borders, the inference speed 

increases. The adaptive anchor box calculation compares the 

output predicted boxes with the ground truth boxes based on 

the initial anchor boxes, calculates the gap, and updates it in 

reverse. This process is iterated continuously until parameters 
obtain the most suitable anchor box value [24]. 
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Fig. 4  Our proposed YOLOv5s architecture. 
 

The backbone comprises a focus element, a few 

convolution modules, Cross Stage Partial (CSP) structures, 

and Spatial Pyramid Pooling (SPP). The focus structure splits 

the input image in each R, G, and B channel into four slices, 

where each slice is half the size of the input size. The four 

slices of each channel will then be concatenated, resulting in 

a feature map with 12 channels. After passing through one 
convolution operation, the final feature map contains 32 

channels without losing any information. The input will then 

go through a Convolutional, Batch, and LeakyReLU (CBL) 

algorithm, which performs two-dimensional convolution, 

Batch Normalization (BN) regularization, and Sigmoid 

Linear Unit (SiLU) activation function. The main component 

in the backbone is the CSP module. The idea of CSP was 

adapted from YOLOv4 and was incorporated with Darknet in 

YOLOv5, called CSPDarknet, for feature extraction. The use 

of CSP, denoted as CSP1_X, was inspired by CSPNet [25], 

which brings a boost to the backbone by solving the repeated 
gradient information problem and increases the learning 

capability of CNN while reducing computational and model 

size [26][27]. The input of CSP goes through two 

convolutional layers and combines with the original value to 

perform residual feature transfer without increasing the output 

depth. Spatial Pyramid Pooling (SPP) fuses the features from 

max-pooling layers with 5×5, 9×9, and 13×13 kernel sizes to 

improve feature extraction abilities. 

The neck of YOLOv5 utilizes a joint of Path Aggregation 

Network (PAN) [28] and Feature Pyramid Network (FPN) to 

boost the feature fusion capability of the network [29]. PAN 
improves the information flow within the model by conveying 

strong localization features from lower feature maps into 

higher feature maps. In contrast, FPN strengthens the object 

localization features using a top-down approach. The CSP 

structure, CSP2_X, is also applied for feature fusion 

enhancement in the neck network. Thus, further increasing 

the location accuracy of the object. 

Lastly, the head of the network is made up of the YOLO 

layer where the three generated feature maps of various sizes 

pass through three detection layers for multi-scale object 

detection and prediction. Each layer outputs a corresponding 

vector containing the objectness score, an object's class 

probability, and its bounding box position. Finally, the 

object's predicted bounding box and category will be 

generated on the original image. 

The loss functions used in YOLOv5 include localization, 

classification, and confidence loss. The localization loss 

function calculates how far the predicted bounding box is to 

an object's ground truth bounding box so that the parameters 
can be automatically adjusted and correct the position of the 

prediction frame to be as close as possible to the real value. 

This measure can be done using the concept of Intersection-

Over-Union (IoU). However, using IoU itself as a loss 

function has its disadvantages. When no intersection exists 

between the predicted and the real bounding boxes, as in IoU 

is equal to 0, it prevents the model from calculating the 

gradient; hence, parameters cannot be optimized, making 

learning and training impossible to perform [27]. To 

overcome this issue, they introduce the idea of Generalized 

IoU (GIoU) [30]. IoU and GIoU are calculated as shown in 
Equations (1) and (2), respectively. A and B represent the 

central points of the predicted and ground truth bounding 

boxes, respectively, while C is the area of the smallest box 

that can encapsulate both the predicted and ground truth 

boxes. IoU can then be described as the intersection area of 

the predicted and ground truth box divided by its area of 

union. In that sense, YOLOv5, by default, uses the GIoU loss 

function, which can be described in Equation (3). 

Confidence loss and classification loss are calculated 

during the training phase by using Binary Cross-Entropy 

(BCE) function, as it reduces computational complexity. 
While confidence loss measures the confidence that the 

detected object is an actual object, classification loss 

measures the probability of an object belonging to a class. A 

score value near 1 indicates that the model performs better in 

determining the FDP box and other items with higher 

confidence. 

 ��� =  
| �∩	 |

| �∪	 |
 (1) 

 ���� =  ��� −
| �(�∪	) |

|  |
 (2) 

 �_���� = 1 − ���� (3) 
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III. RESULTS AND DISCUSSION 

To validate the performance of the proposed approach, 

precision, recall, precision-recall curve (PR curve), and mean 

average precision (mAP) are used as measurement indicators 

[31]. Precision is the ratio of correctly classified positive 

samples to the total number of positively classified samples, 
while recall is the ratio of the correctly classified positive 

samples to all positive samples. Precision and recall are 

defined in Equation (4) and (5), respectively.  

 

 ��������� (�) =
��

�����
 (4) 

 ��� !! (�) =
��

����"
 (5) 

where TP is the number of correctly detected objects, FP is 

the number of incorrectly detected objects, FN is the number 

of undetected objects the model misses, and TN is the number 

of correctly undetected objects.  

The PR curve plots the recall value on the horizontal axis 

and the precision value on the vertical axis. PR curve tells 

whether the model can detect all the objects in a single image 

correctly. The mean average precision is the average of all 

average precisions across all classes. YOLO calculates two 

mAP types: mAP@0.5 and mAP@0.5:0.95 defined in 

Equation (6) and (7), respectively.  

 #$�� %� ��������� (#�) =  & �(�)'(�)
(

)
 (6) 

 *#� =  
(

"
∑ #�,

"
,-(  (7) 

where P(R) is the precision value at a specified recall, d(R) is 

the difference between the current and next recalls while N is 

the total number of classes in the dataset. The mAP@0.5 

calculates the average of average precision (AP) of all classes 

when the IoU threshold is 0.5, and the mAP@0.5:0.95 is the 

average mAP at numerous thresholds from 0.5, slowly 

incrementing by 0.05 until it reaches 0.95.   

Three experiments were conducted in this research. In 

every experiment, a different dataset size was used, i.e., the 

total number of images in the experiment was different. 
Therefore, the number of images in our training, validating, 

and testing sets varies for every experiment while still 

maintaining the 80:10:10 ratio. The results of our experiment 

were saved, and the training time was recorded in Table 1.  

TABLE I 

EVALUATION METRICS FOR OUR EXPERIMENTS 

Experiment 1 2 3 

Dataset size 74 270 370 
Precision (%) 50.33 77.85 84.89 

Recall (%) 64.61 84.34 87.29 

mAP@0.5 (%) 54.82 81.11 86.12 

mAP@0.5:0.95 (%) 27.39 55.42 59.72 

Total training time (mins) 30 105 140 
*bold indicates the highest score achieved for each measure 
 

Fig 5 depicts the performance metrics of YOLOv5s across 

every experiment. Experiment 3 retrieves the highest scores 

on all measures, followed by Experiments 2 and 1. Our initial 

test with 74 images shows that our model performed 

admirably, with 50.33% precision and 64.61% recall. 

Experiment 2 improves the model's precision by nearly 30% 

and recall by 20%. The values further increased during 

Experiment 3 where precision and recall obtained scores of 

84.89% and 87.29%, respectively. 

Furthermore, in each of our experiments, the recall value 
was always greater than the precision. This indicates that the 

model produces more detections but is not always classified 

correctly. The mAP@0.5 was likewise elevated. The model 

retrieves 54.82% in our first experiment, rising to 81.11% and 

86.12% in Experiments 2 and 3, respectively. When analyzing 

its mAP values at different thresholds, its peak was in 

Experiment 3 (59.72%), and its lowest was in Experiment 1 

(27.39%). This means that the model is able to detect objects 

with a precision of at least 59% and a recall of at least 50% 

across a range of IoU thresholds. We also observe that the 

total training time increases as more data is fed into training 
the model. Experiment 3 took almost five times longer to 

complete the YOLOv5s training than Experiment 1 on a 

custom dataset. We discovered that for every 74 images in the 

dataset, model training will take approximately 30 minutes to 

complete.  

 
Fig. 5  Performance of YOLOv5s model in each experiment. 

 

Fig 6 illustrates the precision-confidence graph for each 
component in every experiment. Experiment 1 shows that the 

precision steadily increases for the FDP class but fluctuates 

for the green trunk and copper box. For Experiments 2 and 3, 

it can be seen that the model could detect the green trunking 

much more accurately than the other parts. This is possibly 

due to the trunking being the biggest item among all the others 

in terms of space area, making it easier for our model to 

recognize the trunk. When the precision is at 1.00 for all 

classes, the confidence value increases. With 74 images, all 

classes only attain a precision of 1.00 at 85% confidence, but 

this rises to 91% with a larger dataset. Then, the confidence 
slightly increased by 2% when a dataset with additional 

photos was used.  
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Fig. 6  Precision-Confidence Curve for (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3. 
 

Fig 7 represents the PR curve of YOLOv5s on the three 

tests. Experiment 3 was seen to be the best performance test 

from the graph as its curve is at the top-right corner of the 

graph and has a larger area under the PR curve for all classes, 

meaning both the precision and recall are maximized. The 

results also show that as more images are used in the training 

process, all the classes’ mAP@0.5 increases with 0.446, 

0.994, and 0.995 for each experiment, respectively. 

 
Fig. 7  PR Curve for (a) Experiment 1, (b) Experiment 2 and (c) Experiment 3. 

 
   (a)            (b) 

 
      (c) 

 
    (a)        (b) 

 
                    (c) 
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Fig 8 shows a sample of object detection results after the 

YOLOv5s were trained on a custom dataset. The model for 

Experiment 1 was able to detect the components, especially 

in the FDP boxes with 77% confidence, even with less than 

100 images. Copper boxes and trunks were also detected with 

less than 50% confidence. 

 

 
Fig. 8  Sample result of object detection using our proposed method for (a) Experiment 1, (b) Experiment 2 and (c) Experiment 3 

 

There are also instances where the detected objects were 

incorrectly classified. For example, in Fig 8(a), the copper box 

was identified at 41% confidence but also as an FDP box with 

a higher confidence of 65%. The model in Experiment 1 also 

produces multiple predictions and duplicate bounding boxes 

on a single component. The results of detection improve in 

Experiment 2 with only a single prediction on one object. 

Although the copper box was still wrongly classified as an 

FDP box by the model with 69% confidence, the model’s 

ability to identify the trunk improved with 94% confidence. 
When trying out with a bigger dataset, YOLOv5s was finally 

able to correctly identify the copper box with a whopping 91% 

confidence while maintaining high accuracy for the trunk and 

FDP boxes with 95% and 92%, respectively. 

Overall, YOLOv5s achieved satisfactory metrics scores. It 

receives more than 80% in precision, recall, and mAP scores 

in Experiment 3. The difference between precision and recall 

was high at first, but it became smaller as a larger dataset was 

used in our experiments. In the case of mAP@0.5:0.95 

results, it receives quite low scores compared to mAP at a 0.5 

threshold. However, it was still able to achieve 59% in 

Experiment 3, which is still considerably high given the small 
number of images we had. Cases of false positives like those 

in Fig 8(a) suggest that the model has some difficulties 

distinguishing between copper and FDP boxes. We believe 

the lack of data in our training set mainly causes this. During 

our data collection, we discovered there had been a variety of 

copper and FDP types. Therefore, there could be an imbalance 

in our dataset if we were to consider the different builds of 

each component. 

Moreover, both boxes have similar colors, so our model 

struggles to differentiate between them. One way to address 

this issue is to increase the samples of each copper or fiber 
box variation to enhance the learning ability of YOLOv5s. As 

observed in Experiment 3, with a bigger dataset, the YOLO 

algorithm better detects and predicts objects without duplicate 

bounding boxes with much higher confidence. 

IV. CONCLUSION 

This research implemented computer vision approaches to 

detect the telecommunication fiber box (FDP box) to ensure 
the presence of crucial components during the installation and 

inspection tasks. A new dataset of FDP components in urban 

areas was created and annotated into four classes of essential 

parts. Results of YOLOv5s demonstrate the efficacy in 

detecting the FDP installation components amidst occlusions 

and type variation. From our observation, YOLOv5s 

significantly improve traditional inspection methods, 

enhancing the speed and safety of telecommunication 

networks. The findings highlight the potential of object 

detector models as a valuable tool in the telecom industry, 

enabling improved work efficiency while maintaining 

network integrity and reliability. Moreover, even with less 
than 500 images, the model could correctly identify every 

component with high confidence. To our knowledge, this is 

also the very first Fiber Distribution Panel dataset that existed. 

This provides a solid foundation for future research to 

improve the detection rate of our model for better component 

distinguishability. 
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