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Abstract—Using regression analysis techniques for speech-emotion recognition (SER) is an excellent method of resource efficiency. The 

labeled speech emotion data has high emotional complexity and ambiguity, making this research difficult. The maximum average 

difference is used to consider the marginal agreement between the source and target domains without focusing on the distribution of 

the previous classes in the two domains. To address this issue, we propose emotion recognition in speech using a regression analysis 

technique based on local domain adaptation. The results of this study show that the model's generalization ability with the function of 

the local additive method is very good for improving speech emotion recognition performance. Even though it provides excellent benefits 

in resource efficiency, regression analytical techniques are rarely used in the SER field; however, we believe this method is the best 

solution for SER problems. Using the Multivariate Additive Regression Spline, this study developed a predictive model for the existence 

of angry and non-angry emotions (MARS). Using probability analysis of error values, this approach can overcome regression on data 

that is not typically distributed. This method yields an ideal basis function that significantly impacts changes in emotional form. This 

study generates a prediction model with a Mean Square Error (MSE) of 0.0130, a Generalized Cross Validation (GCV) value of 0.0062, 

and a R Square (RSQ) value of 0.9721, yielding test results with a 97% accuracy rate. 
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I. INTRODUCTION

Speech emotion recognition (SER) has grown in popularity 

as a research topic in recent years, and it is critical for various 

applications, including the development of intelligent devices 

and tools for measuring mental states in clinical settings [1]. 

Emotion prediction systems typically comprise a frontend that 

extracts features—emotion-related material extracted from 
utterances—and a backend that records the relationship 

between features and emotion labels. Many different 

frontends for emotion prediction systems have been 

developed over the years [2]–[4], with the eGeMAPS acoustic 

feature set [5]–[7] being one of the most widely used. 

Emotional labels, typically one of three major representations 

of human emotional states supported by psychologists, 

significantly impact backend design. This is a categorical, 

dimensional, and assessment-based representation [8]. The 

main focus of the work is the representation of the emotional 

dimension, which tends to capture the time dynamics of 

emotional interaction more accurately [9]. To use an 

acceptable regression model as a backend, emotions are 

represented by a bipolar circumplex model comprised of 

arousal (activation level) and valence (pleasure level). 

Although many other regression modeling techniques have 

been used to predict emotions, Support Vector Regression 

[10] and Long-Short Memory Recurrent Neural Network

(LSTM-RNN) [11] are the most popular models because they

capture the temporal dynamics of emotion. Furthermore,

relevance vector machine (RVM) [12] and Gaussian mixed

regression (GMR) [13] both successfully predict emotions.
However, these models: 1) involve complicated non-linear

models with numerous model parameters that need to be

estimated, such as LSTM-RNN and GMR; 2) have an

appreciable increase in computation time with a

comparatively small increase in the size of the training data,

such as SVR; or 3) ignore temporal dependencies in emotion

labels, like the majority of RVM and SVR based systems. The

non-interpretability of this non-linear model further hinders

the development of an emotion prediction system [14]. A
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linear model on the back will make interpretation more 

accessible, but it is insufficient to capture the connection 

between speech and emotion. It is challenging to predict the 

presence of potential emotions given the finding from earlier 

studies that voice signals have complex voice feature data 

with a large amount of data and contain uncertain parameters 

that cause problems [15]. Research in the SER field is not 

typically distributed, and it can be challenging to predict the 

voice feature data for a particular type of emotion [16]. 

Meanwhile, linear models for speech emotion recognition, 
such as multivariate linear regression [17], focus only on the 

emotional content of the current time step, whereas linear 

models that account for temporal dynamics [18] focus on the 

emotional content of the entire speech. The data used in SER 

research does not have a distribution, so a nonparametric 

regression approach, such as the Multivariate Adaptive 

Regression Spline (MARS) nonparametric regression 

method, is required to determine a pattern of relationship 

between speech and emotion [19]. MARS is a function in a 

nonparametric regression model that can determine patterns 

of relationships or relationships between unknown response 
variables and predictor variables. 

Statistical methods have also been used to classify various 

emotions in speech [20]. Statistical features have an 

extraordinary ability [21] to distinguish emotions using many 

degrees of standard deviation, but accuracy in SER systems is 

affected by many factors [22], such as the platform used (data 

set), the type of feature, the feature selection algorithm used, 

the classifier, and prediction [23]. In 2018, a study aimed to 

evaluate the effect of tone-related features on the detection of 

various emotions from specific children’s speech signals 

using multivariate analysis. Decision trees were used for 
feature reduction and producing a good level of accuracy [24]. 

The results show that the selected tone-based features have 

relatively great power in fear recognition, with the highest 

accuracy reaching 78.7% using the KNN algorithm [25], but 

the complexity of the features causes high data dimensions 

that allow overfitting to occur in learning. Several studies in 

speech emotion recognition (SER) use sensing techniques and 

predictions of audio signal features to figure out how well 

emotions can be guessed from speech [26].  

II. MATERIALS AND METHOD 

This section will introduce the work of developing a 

predictive model to recognize emotional states (anger and 

neutral) based on MARS model development, using a 

multivariate regression spline analysis approach as the 

foundation for establishing SER prediction models and 

producing new methods of speech emotion recognition. 

A. Developing the SER Model with a Regression-based 

Analytical Approach 

The proposed emotion recognition model was formed 

using a nonparametric regression analysis method. The 

regression method is rarely used to predict the capture of 

sound features and emotion labels [27]. Consistency between 

sound characteristics and studied emotion labels can result in 

a more discriminative model for predicting emotion labels 

[28]. Lastly, the regression analytic approach is utilized for 

model prediction, and algorithm optimization will be 

employed to determine the optimal function basis [29]. There 

are numerous methods for determining the relationship 

pattern between predictor variables and responses when 

attempting to predict speech emotions for which the 

regression curve is unknown [30]. The spline model has 

unique and highly effective statistical and visual 

interpretations. The steps for establishing the MARS model 

must first determine the maximum Functional Basis (FB), 

Maximum Interaction (MI), and Minimum Observation (MO) 

between nodes to obtain the optimal model with the least 

amount of general cross-validation (GCV). 

B. MARS-Based Model Development 

MARS uses a sequential algorithm [31] to determine the 

relationship between the response variable and the predictor 

variable, as explained by the basics function (BF) [32]. 

Typically, the selected basis function is a continuous 

polynomial derivative at each vertex, whereas the 

fundamental function in each zone is parametric. Polynomial 

slices in MARS are splined and have segmented properties; 
they are more flexible than ordinary polynomials and can 

adapt to local characteristics to make a function or data set 

more efficacious [33]. In general, the MARS model can be 

described as follows: 

Basis function equations: 

 �(�) = �� + ∑ �
�
(�)�
�  (1) 

This can be simplified to: 

 ��(�) = �� + ����� + ����� + ⋯ + �
��
 (2) 

 = �� + ∑ �
�
�(�, �)�
�  (3) 

Where: 

 1

( , )
,

.
mK

mi

k

B x t
K vN kmm k m

S x t





         

(4) 

With: 

��(�.
) ∈ ������
�

 and ��
 ∈ ���(�.
)����
�

 

Modification of the basis function equation: 

 
 

1 2 0

1 1

, , ,
,

.
mKM

i i pi m

m k

f x x x a a
km vN km

k m
S x t

 


 
        

K

; 

� = 1,2, … , #    

(5) 

MARS employs piecewise linear Basis Functions (BFs) 

expansion on a dataset-by-dataset basis to offer a flexible 

method for high-dimensional nonparametric regression. For 

BFs ($ − &)' and (& − $)( 

($ − &)' = )� − &
0

,
, if � > /
otherwise 

(& − $)( = )& − �
0

,
, if � < /
otherwise 

So that: 

 8+(� − &)9', 8−(� − &)9' (6) 

The MARS method focuses on solving the problem of the 

truncated spline’s weakness; in deep learning, the MARS 

work scheme belongs to the feed-forward category [34]. 

MARS determines essential parameters based on covariance 

and correlation between parameters. Using the elimination of 

a subset of all features, an intelligent algorithm can determine 
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the attribute’s weight based on its contribution, making this 

method more flexible for prediction. Therefore, it is 

improbable that the learning data process will fail because 

MARS uses the selected attribute on the associated basis 

function. Furthermore, because MARS employs filtered 

important attributes to reduce processing time and 

significantly increase processing speed, the learning model on 

MARS can accurately and effectively analyze each feature 

[35], [36]. 

C. Optimal Base Function Selection in MARS Models 

For optimal basis selection, both forward and backward 

stepwise procedures are possible [37]. The purpose of the 

forward stepwise method is to construct a model by adding 

truncated spline basis functions (knots and interactions), 

which will result in a model containing the greatest possible 

number of basis functions [38]. The forward stepwise process 

is a hidden layer in MARS, and the value obtained from 

forward stepwise will be used to determine if backward 
stepwise modeling is feasible. 

1) Forward Stepwise: Forward stepwise is enabled on 

MARS to select the maximum number of basic functions. 
�
� ∑ ($� − ��(�� , :))����  is a function used as a basis function 

selection criterion to obtain the minimum average sum of 

square residuals. To obtain the minimum ASR value, divide 

the number of parameters for the C(M) model by n 

observations minus 1 of this function, which is the ASR 

dividing value. The following are the forward stepwise steps 

in the process of selecting the basis function: 

Initialization and constant-coefficient conjecture 

�; = 1 

Assuming there are < + 1 basis functions 

�;, ��(�), … , ��(�), add two new basis functions: 

��'�(�) = ��(�)8+(��(�,=) − ��(�,=)∗ )9'
 

��'�(�) = ��(�)8−(��(�,=) − ��(�,=)∗ )9'
 

Where ��(�) is the initial function basis (parent), ��(�,=) is 
a variable not included in the basis function ��(�), and 

� ∗�(�,=) is the knot point. 

 ��(�,=)∗ ∈ ���(�,=)�, � = 1, … , #  (7) 

Minimum determinants according to GCV standards 

 ?@A = �
�  ∑ BCD(E�F(GD,F)HIJDKL

�((MN(F)/�)I  (8) 

The addition of the basis function is still being done in 

order to ensure that the maximum value of P
QG represents 

the basis for the < function. 

2) Backward Stepwise: The backward stepwise step in 

MARS is used to simplify models with overlapping regions 

by removing the basis function and producing a model with 

continuous derivatives. Using the recursion partition 

regression algorithm (RPR) on a set of basis functions  R∗ =
S1,2, … , P
QG(�T the sum of the basis functions from the 

previous step forward stepwise, removing the basis function 

on MARS does not result in a hole in the predictor variable 
space (as long as the constant basis is not removed). The 

following is a list of the backward stepwise steps involved in 

getting rid of the basis function: 

Initials of  R∗ = S1,2, … , P
QG(�T; <∗ ← < . Lack of fit 

(LOF) will be assigned to non-conforming functional bases. 

 WX� ← Y�#SQZ|�∈\∗T  ]^�_∑ :��� (�)�∈\∗ ` (9) 

Each iteration outside the for loop causes the elimination 

of one basis function, while each iteration inside the for loop 

selects a basis function. The base constant �� (�) = will not 

be eliminated during the backward stepwise elimination 

process. This algorithm can produce up to ��  (�) = model 
lines. Each succeeding sequence has one fewer basis function 

than its predecessor. 

D. MARS Model Estimation And GCV 

The MARS model will select a sub-model to minimize the 

prediction of residual estimation (chosen based on optimal 

function basis) according to the generalized cross-validation 

(GCV) criteria in equation (8). :a is the parameter to be 
estimated via the penalized residual sum of squares problem 

(PRSS). The following is a PRSS model with P
QG Basis 

Functions (BFs) utilizing the MARS method: 

bcdd ≈ f$� − �fgNhih�
�

+ j :


�klm∑ ∑ nDkI oDkI
(pqL)rk
DKL


�
 

(10) 

Where, 

The (s × (P
QG + 1))- matrix is denoted by �fgNh =
B�fgN�h, … �fgNuhHv

, the Euclidean form is indicated by ||.||2, 

and the number ]�
 is what defines the roots. 

For the probability model based on the equation below: 

 b(w = 1|x = �) = y(�) = z{(m)
�'z{(m)  (11) 

probability transformation of the MARS model 

 
0

1 1

( )

1 ( ) ,
.

mKM

m i

m k

x
in a a

km vN kmx k m
S x t




  


 
   

          

(12) 

III. RESULTS AND DISCUSSION 

This research was carried out to develop a predictive model 

by employing a regression analytic strategy with the MARS 

model and applying it to a collection of uncertain sound 

feature data. In addition to allowing for greater flexibility in 

data analysis regression problems, splines are also developed 

to accommodate local data and exhibit distinct behavior in 

each sub-interval. Because spline is a piecewise polynomial, 

i.e., polynomials with segmented properties, this indicates 
that the spline regression approach that we propose in the field 

of speech emotion recognition with high data dimensions is 

ideally suited for the problem of predicting specific forms of 

emotion. This segmented property offers greater flexibility 

than conventional polynomials, allowing for more effective 

adaptation to the characteristics of a function or database. 

A descriptive analysis of the initial phases of data 

exploration to gain an overview of the employed data. This 

study employs the RAVDESS dataset consisting of 120 

WAV-format sound files along with sound feature extraction 
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and selection techniques employing Mel Frequency Cepstral 

Coefficients (MFCC) to generate 180 sound features 
S��, ��, … , ��; �� = ��|;T. This leads to two forms of 

emotion, ‘angry’ = 1 and not angry ‘neutral’ = 2, the sound 

feature data produced is not normally distributed, so a 

nonparametric regression analysis approach is highly 

appropriate. 

The next step is to determine the Basis Function (BF), 

Maximum Interaction (MI), and Minimum Observation (MO) 
values after determining the shape of the data distribution 

through data exploration. For values of BF = 36, MI, and MO 

in this study using values 1, 2, and 3, more than three results 

in a model that is extremely complex and less accurate [36]. 

The stages involved in determining the value of BF, MI, and 

MO are shown in the table below. 

TABLE I 
MI AND MO DETERMINATION 

BF MI MO GCV MSE R2 

36 1 None 0.0172 0.0079 0.9643 

36 1 0 0.0164 0.0062 0.9720 

36 1 1 0.0173 0.0061 0.9723 

36 1 2 0.0130 0.0062 0.9721 

36 1 3 0.0161 0.0065 0.9706 

36 2 None 0.0172 0.0079 0.9643 

36 2 0 0.0164 0.0062 0.9720 

36 2 1 0.0173 0.0061 0.9723 

36 2 2 0.0130 0.0062 0.9721 

36 2 3 0.0161 0.0065 0.9706 

36 3 None 0.0172 0.0079 0.9643 

36 3 0 0.0164 0.0062 0.9720 

36 3 1 0.0173 0.0061 0.9723 

36 3 2 0.0130 0.0062 0.9721 

36 3 3 0.0161 0.0065 0.9706 

 

Table 1 demonstrates that the minimum observation 

significantly influences the 36 basis functions in determining 

the minimum GCV value. In contrast, the maximum value of 
interaction does not affect the formation of speech emotion 

prediction models, so MI = 1, MO = 2 with BF = 36 function 

basis can be used. 

MARS modeling’s development prediction model employs 

Google Colab and the Python 3.8 programming language. As 

shown in Fig. 1, the MARS regression of the training data, 

with the intercept value and the maximum variable coefficient 

for each predictor variable for the response variable and the 

maximum variable coefficient for each predictor variable. 

 
Fig. 1  MARS regression training data 

 

Based on the forward and backward stepwise, the MSE 

value of 0.0062 is obtained for the sought optimal model 

formation function. With a minimum GCV of 0.0130, RSQ of 

0.9721, and GRSQ of 0.9427, the estimation results are as 

follows: 

��f�h = 1.34026 + 2144.68(0.00157683 − X174)
+ 441.753(0.000905255 − X153)
+ 323.265(0.00148962 − X143)
+ 294.935(0.00105291 − X130)
+ 12.2874(X56 − 0.0217354)
+ 4.47767(0.0217354 − X56)
+ 0.0768236(2.03928 − X4)
+ 0.0421214(X8 − 0.278314)
+ 0.0329961(−2.42489 − X4)
+ 0.0229372(X7 + 5.37789)
+ 0.00473996(−4.60009 − X6)
− 0.0162542(X1 − 45.8014)
− 0.0773223(X4 − 2.03928)
− 0.0834014(X2 − 4.22414)
− 0.103768(−1.29819 − X36)
− 1.03407(0.16162 − X75 )
− 116.07(0.00134537 − X112)
− 124.981(0.0023004 − X120) 

Then, the results of the optimal estimation of the 

accommodating weight can be interpreted using equation 

(11), an example of estimation/interpretation of the optimal 

estimation of weight: 
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Approximate example:  

Maximum coefficient value = 2144.68 with a base function 

B8 = (0.000157683-X174) 

y(�) = exp (2144.68 + 1.34026)
1 + exp (2144.68 + 1.34026) = 0.9995 

Assuming that the other independent variables remain 

constant, the emotion of anger is determined if the added 
value of the feature less than 1 (X174 < 1) has the potential to 

affect the emotional form of 0.9995, and the coefficient B8 

(function 8th basis) increases the effect on changes in the 

emotional form of anger by 2144.86. In contrast, if the value 

of the added feature is greater than 1 (X174 > 1), the B8 

coefficient (8th function basis) is not significant, and its value 

is 0. The optimal function basis estimate results for estimating 

the probability of emotional shape variables are presented in 

the table below. 

TABLE II 
FUNCTIONAL BASIS FOR ESTIMATING THE PROBABILITY OF VARIABLES OF 

EMOTIONAL SHAPE  

Basis Function 

Anger 

Emotional 

Possibility 

�(�) 

Not Anger 

Emotional 

Possibility (neutral) 

� + �(�) 

B2 = (0.000905255-
X153) 

0.9977 0.0023 

B3 = (X56-0.0217354) 0.9316 0.0684 
B4 = (0.0217354-X56) 0.8533 0.1467 
B5 = (X4-2.03928) 0.5581 0.4419 
B6 = (2.03928-X4) 0.5569 0.4431 
B8 = (0.000157683-

X174) 
0.9995 0.0005 

B12 = (0.00148962-
X143) 

0.9969 0.0031 

B14 = (0.0023004-
X120) 

1.0089 -0.0089 

B15 = (X2-4.22414) 0.5786 0.4214 
B18 = (0.00134537-
X112) 

1.0088 -0.0088 

B20 = (-2.42489-X4) 0.5863 0.4137 
B21 = (X8-0.278314) 0.5803 0.4197 
B25 = (X1-45.8014) 0.5697 0.4303 
B27 = (X7+5.37789) 0.5768 0.4232 
B30 = (0.00105291-
X130) 

0.9966 0.0034 

B32 = (-1.29819-X36) 0.5529 0.4471 
B34 = (0.16162-X75) 0.2344 0.7656 

B36 = (-4.60009-X6) 0.5718 0.4282 

 

From the estimated results in Table 2 the learning process 
or learning of the input variables or variable xi. This study 

produces a speech emotion recognition prediction model with 

a number of variables that are recognized as variables that 

influence changes in emotional form as much as 15 of 180 

voice features Mel Frequency Cepstral Coefficient (MFCC) 

with an accuracy rate of 97.21%. The outcomes of learning 

test data and training data from predictive models were 

constructed utilizing the multivariate additive regression 

spline (MARS) regression approach, acquiring four 

prediction errors and 116 accurate predictions, as shown in 

Table 3. 

 

 

Fig. 2  Prediction Results of Actual Emotional Data 

TABLE III 
ACCURACY LEVEL MEASUREMENT 

  Actual Value 
  TRUE FALSE 

P
re

d
ic

te
d
 V

al
u
e 

POSITIVE 70 1 

NEGATIVE 46 3 

 

������X# = v�
v�'��  × 100 

�;
�;'�  × 100 = 99% 

 

����WW = v�
v�'�u × 100 

�;
�;'� × 100 = 96% 

 

�������$ = v�'vu
v�'vu'��'�u × 100 

�;'��
�;'��'�'� × 100 = 97% 

 

The accuracy test for the predictive model yields 97% with 

99% precision and 96% recall. The prediction model was 

created for speech emotion recognition using a nonparametric 
regression analysis approach, and the best model accurately 

predicts the presence of potential angry, non-angry , or neutral 

emotions. 

IV. CONCLUSION 

In this study, we devised a method using nonparametric 

regression analysis to develop a predictive model for emotion 

recognition in speech. Generally, sound feature data are 
coefficient values and lack a data distribution; therefore, 

nonparametric regression is the appropriate method. 

Developing a prediction model using the MARS model to 

examine the relationship between predictors and responses 

through the basis function is one method that can be used to 

solve problems in SER. By determining the optimal 

estimation of the basis function, it is possible to reduce sound 

features that influence emotional form changes. For future 

studies, we can extend the nonparametric regression analytic 
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approach to sound feature data types containing noise or 

spontaneous sound data under various conditions. 
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